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Abstract

In this paper, we consider the particular case of the general rational Hermite interpolation

problem where only the value of the function is interpolated at some points, and where the function

and its first derivatives agree at the origin. Thus, the interpolants constructed in this way possess a

Padé–type property at 0. Numerical examples show the interest of the procedure. The interpolation

procedure can be easily modified to introduce a partial knowledge on the poles and the zeros of the

function to approximated. A strategy for removing the spurious poles is explained. A formula for

the error is proved in the real case. Applications are given.

Keywords:Rational interpolation Padé–type approximation barycentric formula piecewise rational
interpolation.
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1 Padé–type approximation and rational interpolation

For representing a function f , rational functions are usually more powerful than polynomials. The
information on the function f can consist either in the first coefficients of its Taylor series expansion
around zero, or in its values at some points of the complex plane.

In the first case, Padé–type, Padé, or partial Padé approximants can be used. They are rational
functions whose series expansion around zero (obtained by Euclidean division in ascending powers of
the numerator by the denominator) coincides with the series f as far as possible. In Padé–type ap-
proximation, the denominator can be arbitrarily chosen and, then, the coefficients of the numerator are
obtained by imposing the preceding approximation–through–order conditions. In Padé approximation,
both the denominator and the numerator are fully determined by these conditions. For partial Padé
approximants, a part of the denominator and/or a part of the numerator can be arbitrarily chosen,
and their remaining parts are given by the approximation–through–order conditions. On these topics,
see [1, 7, 13, 14].

In the second case, an interpolating rational function can be built using Thiele’s formula, which
comes out from continued fractions (see, for example, [12, pp. 102ff.] or [15, Sec. III.3–4]). It achieves
the maximum number of interpolation conditions, and, so, no choice is left for its construction [12].
The same is true for Hermite rational interpolants, a subject treated in many publications (see, for
example, [26]) which is related to Newton–Padé approximants [15, p. 157]. On the other hand, when
the degrees of the denominator and of the numerator are the same, writing the rational interpolant in
a barycentric form allows to freely choose the weights appearing in this formula. These weights can be
chosen by imposing various additional conditions such as monotonicity or the absence of poles [2–4,17].

For an interesting discussion between the coefficients of the interpolating rational function and the
weights of its barycentric representation, see [5]. For the important problems of the ill–conditioning of
rational interpolation, and of the numerical stability of the algorithms for its solution, consult [5, 18].
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In this paper, we will construct for the first time rational functions possessing both properties,
that is interpolating f at some points of the complex plane, and whose series expansion around zero
coincides with the Taylor series f as far as possible. Of course, this case is a particular instance of the
general rational Hermite interpolation problem treated in its full generality in [26], for example. Then,
using a different number of conditions than required, we are able to construct rational interpolants in
the least squares sense. We will also show how information on the poles and the zeros of f could be
included into these interpolants in a style similar to the definition of the partial Padé approximants [8].

2 Problem statement

We consider two different arguments.

• Let f be a function whose Taylor series expansion around zero is known. A Padé–type approxi-

mant of f is a rational function with an arbitrarily chosen denominator of degree k, and whose
numerator, also of degree k, is determined such that the power series expansion of the approxi-
mant around zero coincides with the development of f as far as possible, that is up to the term
of degree k inclusively [6]. By choosing the denominator appropriately, this rational function
has a series expansion which agrees with that of f up to the term of degree 2k inclusively. It is
then called a Padé approximant, and there is no freedom in the choice of the coefficients of the
numerator and the denominator of the rational approximant. On this topic, see, for example [1,7].

• Let f be a function whose values at k + 1 distinct points in the complex plane are known. It
is possible to construct a rational function, with a numerator and a denominator both of degree
k, which interpolates f at these points. If this rational function is written in barycentric form,
it depends on k nonzero weights which can be arbitrarily chosen. But, by Thiele’s interpolation
formula, it is also possible to obtain a rational function, with a numerator and a denominator
both of degree k which interpolates f at 2k+1 distinct points in the complex plane. In that case,
there is no freedom in the construction of the rational interpolant.

We now consider these two themes together and work in both directions in a different way. Each of
these choices leads to a different rational function whose series expansion agrees with that of f as far
as possible, and which interpolates f at distinct points in the complex plane.

• We determine the denominator of the Padé–type approximant so that it also interpolates f at
as many distinct points in the complex plane as possible, that is k points. Thus we obtain a
rational function interpolating f at k points and with an order of approximation k+1 at 0. Such
a rational function will be called a Padé–type rational interpolant.

• We determine the weights of the barycentric formula for the rational interpolant so that its power
series expansion coincides with that of f as far as possible, that is up to the term of degree k− 1
inclusively. This approach produces a rational function with an order of approximation k at 0,
and interpolating f at k+1 points. Such a rational function will be called a Padé–type barycentric

interpolant.

In each case, different interpolation or approximation conditions can be considered, and the rational
function can be computed in the least squares sense. Rational interpolants with arbitrary degrees in the
numerator and in the denominator of the interpolant could also be defined similarly. Let us mention
that it is also possible to work with the reciprocal function g of f , and its reciprocal series which is
defined by the algebraic relation f(t)g(t) = 1.

In the sequel, the formal power series f will be written as

f(t) = c0 + c1t+ c2t
2 + · · ·

3 Padé–type rational interpolants

We will begin by treating the case of a formal power series and, then, we will consider a series in
Chebyshev polynomials.
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3.1 Power series

Let Rk be written as

Rk(t) =
Nk(t)

Dk(t)
=
a0 + a1t+ · · ·+ akt

k

b0 + b1t+ · · ·+ bktk
.

If the coefficients bi of the denominator are arbitrarily chosen (with bk 6= 0), and if the coefficients ai
of the numerator are computed by the relations

a0 = c0b0
a1 = c1b0 + c0b1

...
ak = ckb0 + ck−1b1 + · · ·+ c0bk





(1)

then Rk is the Padé–type approximant (k/k)f of f which satisfies the approximation–through–order
conditions f(t) − Rk(t) = O(tk+1). Let us remind that this condition means that f , Rk, and their
derivatives up to the kth inclusively take the same values at the point t = 0. Replacing a0, . . . , ak by
their expressions (1) in Nk, and gathering the terms corresponding to each bi, we also have

Nk(t) = b0Sk(t) + b1tSk−1(t) + · · ·+ bkt
kS0(t), (2)

with
Sn(t) = c0 + c1t+ · · ·+ cnt

n, n = 0, 1, . . . (3)

Let us now determine b0, . . . , bk such that R(τi) = f(τi)(=: fi) for i = 1, . . . , l, that is such that

Nk(τi)− fiDk(τi) = 0, i = 1, . . . , l,

where τ1, . . . , τl are distinct points in the complex plane (none of them being 0). We obtain the system

(Sk(τi)− fi)b0 + τi(Sk−1(τi)− fi)b1 + · · ·+ τki (S0(τi)− fi)bk = 0, i = 1, . . . , l. (4)

Since a rational function is defined up to a multiplying factor, we set b0 = 1 (imposing another
normalization condition could lead to b0 = 0 and, so, a0 = 0, thus reducing the degree), and we
obtain a system of l linear equations in the k unknowns b1, . . . , bk. We consider its least squares
solution if l > k (overdetermined system), and its minimum norm solution for l ≤ k (underdetermined
or singular system). The system has always a unique solution which determines a unique rational
interpolant. Therefore, the bi’s are first determined by the interpolation conditions and, then, the ai’s
are calculated by formulae (1).

Multiplying each equation in (4) by τ−k
i (the reason will be made clear later) and using (2), we

obtain the following Property, assuming that the denominator is different from zero.

Property 1

When l = k, it holds

Rk(t) =

∣∣∣∣∣∣∣∣∣

Sk(t) tSk−1(t) · · · tkS0(t)

τ−k
1 (Sk(τ1)− f1) τ−k+1

1 (Sk−1(τ1)− f1) · · · S0(τ1)− f1
...

...
...

τ−k
k (Sk(τk)− fk) τ−k+1

k (Sk−1(τk)− fk) · · · S0(τk)− fk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 t · · · tk

τ−k
1 (Sk(τ1)− f1) τ−k+1

1 (Sk−1(τ1)− f1) · · · S0(τ1)− f1
...

...
...

τ−k
k (Sk(τk)− fk) τ−k+1

k (Sk−1(τk)− fk) · · · S0(τk)− fk

∣∣∣∣∣∣∣∣∣

.

Proof:

Let us take t = τi in this formula, and multiply the first row of the numerator and of the denominator
by τ−k

i . Then, subtract the row i + 1 of the numerator from the first one. This first row becomes
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τ−k
i fi, τ

−k+1
i fi, . . . , fi, and we obtain Rk(τi) = fi, for i = 1, . . . , k, since the first row of the denominator

is τ−k
i , τ−k+1

i , . . . , 1. Thus the interpolation property of Rk has been recovered from its determinantal
expression. �

Let us now define the linear functionals Li acting on the vector space of polynomials by (this is the
reason for multiplying each equation in (4) by τ−k

i )

Li(t
j) = τ−j

i (Sj(τi)− fi), j = 0, 1, . . . , i = 1, 2, . . .

The polynomial

Pk(t) = Dk

∣∣∣∣∣∣∣∣∣

tk tk−1 · · · 1

τ−k
1 (Sk(τ1)− f1) τ−k+1

1 (Sk−1(τ1)− f1) · · · S0(τ1)− f1
...

...
...

τ−k
k (Sk(τk)− fk) τ−k+1

k (Sk−1(τk)− fk) · · · S0(τk)− fk

∣∣∣∣∣∣∣∣∣

,

where Dk is any nonzero normalization factor, satisfies the so–called biorthogonality conditions

Li(Pk(t)) = 0, i = 1, . . . , k, Lk+1(Pk) 6= 0.

Such a polynomial is the kth member of the family of formal biorthogonal polynomials with respect
to the linear functionals {Li} [9, pp. 104ff.], and we see that the denominator of Rk is equal to

P̃k(t) = tkPk(t
−1). This polynomial may not exist for some values of k, or its degree may be less than

k. There is no general theory about that but, when it exists, Pk is unique up to its normalization
factor.

Let now c be the linear functional acting on the vector space of polynomials and defined by c(xi) = ci
for i = 0, 1, . . ., let Qk be the polynomial of degree k − 1 in t

Qk(t) = c

(
x
Pk(x)− Pk(t)

x− t

)
,

and set Q̃k(t) = tk−1Qk(t
−1). From the definitions of P̃k, Q̃k, and the determinantal formula of Rk

given in Property 1, we have the following Property.

Property 2

Rk(t) = c0 + t
Q̃k(t)

P̃k(t)
, when l = k.

This Property shows that Rk is exactly the generalization of the Padé–type approximants defined
in [9, pp. 97ff.], and, thus, it holds Rk(t)− f(t) = O(tk+1) as required by our approximation–through–
order conditions.

It is possible to construct Padé–type rational interpolants (p/q)f with an arbitrary degree p in
the numerator and q in the denominator, and then to determine its denominator in order to satisfy
q (or even l 6= q) interpolation conditions [13, 14]. Let us set Np(t) = a0 + a1t + · · · + apt

p, and
Dq(t) = b0 + b1t+ · · ·+ bqt

q. The coefficients of the denominator are first computed as the solution of
the system (4) with l = q (or even l 6= q). Then, the coefficients of the numerator are given by

a0 = c0b0
a1 = c1b0 + c0b1

...
ap = cpb0 + cp−1b1 + · · ·+ cp−qbq,





with the convention that ci = 0 for i < 0, and the partial sums (3) computed accordingly. Such an
interpolant satisfies (p/q)f (τi) = fi for i = 1, . . . , q and (p/q)f (t)− f(t) = O(tp+1).

If some poles and some zeros of f are known, this information could be included into the construction
of the rational interpolant. Let p1, . . . , pm and z1, . . . , zn be these poles and zeros, respectively.
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Setting Pm(t) = (t− p1) · · · (t− pm) and Zn(t) = (t− z1) · · · (t− zn), we are looking for the rational
function

Rk(t) =
Nk(t)Zn(t)

Dk(t)Pm(t)

such that Rk(τi) = f(τi)(= fi) for i = 1, . . . , k, and such that f(t) − Rk(t) = O(tk+1). Such a
rational function is called a partial Padé–type rational interpolant since it is similar to the partial Padé
approximants introduced in [8], but with a lower order of approximation.

We must have

Nk(τi)Zn(τi)− fiDk(τi)Pm(τi) = 0

Nk(τi)− fi
Pm(τi)

Zn(τi)
Dk(τi) = 0, i = 1, . . . , k.

Setting Nk and Dk as above, the coefficients of Dk are first determined as the preceding ones with fi
replaced by fiPm(τi)/Zn(τi) in the system (4), and then the coefficients of Nk are obtained by the same
relations as before where, now, the coefficients ci have to be replaced by those of the series expansion
of f(t)Pm(t)/Zn(t) in (3). Thus, we first compute the coefficients of h(t) = f(t)/Zn(t) by identification
in the relation f(t) = h(t)Zn(t). Then the coefficients of f(t)Pm(t)/Zn(t) = h(t)Pm(t) are obtained by
a simple product. These coefficients replace the ci’s in the definition of the partial sums (3). Let us
mention that this division and the following multiplication can be performed monomial by monomial
in order to avoid the computation of the coefficients of the polynomials Zn and Pm. Indeed, we can
begin by computing the coefficients of f(t)/(t− z1), then, from these coefficients, we compute those of
(f(t)/(t− z1))/(t− z2), and so on until the division by (t− zn). Thus, we obtain the coefficients of h.
Then, we formally multiply h(t) by (t− p1), the result by (t− p2), and so on until (t− pm) which gives
the coefficients of h(t)Pm(t) = f(t)Pm(t)/Zn(t).

3.2 Fourier and Chebyshev series

Fourier series can be approximated similarly by a procedure introduced in [30] and developed in [11].
It consists in adding to the Fourier series its conjugate series, thus transforming it, by a change of
variable, into a power series, then computing the interpolants as described above, and finally keeping
only their real part. The approximation of parametric curves is another topic which could be explored.

Let us consider the case of a series in Chebyshev polynomials

f(t) =
c0
2

+

∞∑

i=1

ciTi(t),

where Ti(t) = cos(i arccos t). The rational interpolant Rk is defined as

Rk(t) =
h0/2 + h1T1(t) + · · ·+ hkTk(t)

e0/2 + e1T1(t) + · · ·+ ekTk(t)
.

Adapting to our case a general approach due to Hornecker [21,22] and particularized by Paszkowski [24]
using the multiplication law Ti(t)Tj(t) = (T|i−j|(t) + Ti+j(t))/2 for Chebyshev polynomials, we have
Rk(t)− f(t) = O(Tk+1(t)) for any choice of the coefficients ei of the denominator, if the coefficients hi
of the numerator are computed by

h0 = c0e0/2 +

k∑

i=1

ciei

hn = (cne0 +

k∑

j=1

(c|n−j| + cn+j)ej)/2, n = 1, . . . , k.

Let us now choose e0, . . . , ek such that Rk(τi) = fi for i = 1, . . . , k. Similarly to the procedure followed
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for a power series, these coefficients must satisfy

c0e0/2 +

k∑

j=1

cjej +

k∑

n=1


cne0 +

k∑

j=1

(c|n−j| + cn+j)ej


Tn(τi)−

fi


e0 + 2

k∑

j=1

ejTj(τi)


 = 0,

for i = 1, . . . , k, thus leading to the system

(
c0/2 +

k∑

n=1

cnTn(τi)− fi

)
e0 +

k∑

j=1

(
cj +

k∑

n=1

(c|n−j| + cn+j)Tn(τi)− 2fiTj(τi)

)
ej = 0,

for i = 1, . . . , k. Since a rational function is defined apart a multiplying factor, we set e0 = 1 for solving
it.

This approach can be extended to a numerator of degree n + k, k ≥ 1 [10, pp. 161ff.], [7, pp.
220ff.]. Moreover, since a Chebyshev series is a cosine series, its conjugate series could be added to it,
as indicated above for Fourier series, and then a rational Padé–type interpolant could be constructed,
keeping only its real part.

4 Padé–type barycentric interpolants

We consider the following barycentric rational function

Rk(t) =

k∑

i=0

wi

t− τi
fi

k∑

i=0

wi

t− τi

,

where fi = f(τi). This rational function interpolates f at the k + 1 points τi, i = 0, . . . , k, whatever
the wi 6= 0 are. It is well–known that, by the Lagrangian interpolation formula for the denominator of
Rk, wi = qi/v

′(τi) with v(t) =
∏k

j=0(t − τj), and v
′(τi) =

∏k

j=0,j 6=i(τi − τj), where qi is the value of
the denominator of Rk at the point τi. This remark shows that, as in the case of Padé–type rational
interpolation, the rational interpolant Rk is fully determined by its denominator as mentioned in [5].
Let us remind that, for the choice wi = v′(τi), Rk becomes a polynomial and that, for several choices
of the points τi closed expressions of the weights wi are known.

Let us now determine w0, . . . , wk such that

f(t)−Rk(t) = O(tk).

In that case, Rk is a Padé–type approximant (k/k)f of f , but with a lower order k of approximation
instead of k+1. This condition means that f and Rk and their derivatives up to the (k−1)th inclusively
take the same values at the point t = 0. Let us mention that it is not possible to improve the order of
approximation for obtaining an exact Padé–type approximant.

The preceding approximation–through–order condition reads

k∑

i=0

wi

t− τi
fi = (c0 + c1t+ · · · )

k∑

i=0

wi

t− τi
+O(tk).
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Dividing each fractional term by the corresponding τi (obviously all the τi have to be different from
zero, which is not a restriction since our Padé–type barycentric interpolant will interpolate f at t = 0),
changing the signs, and using the formal identity

1

1− t/τi
= 1 +

t

τi
+
t2

τ2i
+ · · · ,

we have

k∑

i=0

wi

τi
fi

(
1 +

t

τi
+
t2

τ2i
+ · · ·

)
=

(c0 + c1t+ · · · )
k∑

i=0

wi

τi

(
1 +

t

τi
+
t2

τ2i
+ · · ·

)
+O(tk).

Identifying the coefficients of identical powers of t on both sides leads to

k∑

i=0

wi

τi
fi = c0

k∑

i=0

wi

τi

k∑

i=0

wi

τi
fi

1

τi
= c0

k∑

i=0

wi

τi

1

τi
+ c1

k∑

i=0

wi

τi

k∑

i=0

wi

τi
fi

1

τ2i
= c0

k∑

i=0

wi

τi

1

τ2i
+ c1

k∑

i=0

wi

τi

1

τi
+ c2

k∑

i=0

wi

τi
,

and so on up to the term of degree k − 1 inclusively.
Thus, the wi must be the solution of the linear system

k∑

i=0

(fi − c0)
wi

τi
= 0

k∑

i=0

(
fi
τi

−
c0
τi

− c1

)
wi

τi
= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
k∑

i=0

(
fi

τk−1
i

−
c0

τk−1
i

−
c1

τk−2
i

− · · · − ck−1

)
wi

τi
= 0.





(5)

Since a rational fraction is defined apart a multiplying factor in its numerator and in its denominator,
we will set w0 = 1 and, thus, we obtain a system of k equations in the k unknowns w1, . . . , wk.

This approach needs the knowledge of the values of f at k + 1 points, and that of the coefficients
c0, . . . , ck−1.

Let us write the system (5) as

k∑

i=0

ajiwi = 0, j = 1, . . . , k.

Then, we obtain two determinantal expressions for Rk, the first one in a barycentric form, and the
second one in a Lagrangian–type basis.
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Property 3

Rk(t) =

∣∣∣∣∣∣∣∣∣

f0/(t− τ0) · · · fk/(t− τk)
a10 · · · a1k
...

...

ak0 · · · akk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1/(t− τ0) · · · 1/(t− τk)
a10 · · · a1k
...

...

ak0 · · · akk

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

f0L0(t) · · · fkLk(t)
a10 · · · a1k
...

...

ak0 · · · akk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

L0(t) · · · Lk(t)
a10 · · · a1k
...

...

ak0 · · · akk

∣∣∣∣∣∣∣∣∣

,

with, for i = 0, . . . , k,

a1i = (fi − c0)
wi

τi

aji =
aj−1,i − cj−1wi

τi
, j = 2, . . . , k,

and

Li(t) =

k∏

j=0

j 6=i

(t− τj).

Proof:

The second formula comes out from Li(t) = L(t)/(t − τi) with L(t) = (t − τ0) · · · (t − τk). Since
Li(τm) = 0 for m 6= i and Li(τi) 6= 0, we immediately recover, from the second expression, the
interpolation property Rk(τi) = fi for i = 0, . . . , k. For recovering the approximation–through–order
property, the expressions 1/(t− τi) in the numerator and in the denominator of Rk have to be replaced
by −1/(τi(1 − t/τi)) = −(1 + t/τi + t2/τ2i + · · · )/τi, and the coefficient of each power of t has to be
separately identified up to the degree k − 1 inclusively. �

Assume now that only c0, . . . , cl−1 are known, with l < k. We can choose w0, . . . , wk such that
f(t) − Rk(t) = O(tl) by considering only the first l equations in the preceding system, and replacing
the last ones by the equations

k∑

i=0

(
fi

τ l+j−1
i

−
c0

τ l+j−1
i

−
c1

τ l+j−2
i

− · · · − cl−1

)
wi

τi
= 0, j = 1, . . . , k − l,

which is equivalent to considering that the coefficients cl, . . . , ck−1 are zero in the system (5). The
rational function Rk now interpolates f in k + 1 points and its expansion coincides with that of f up
to the term of degree l − 1 inclusively.

It is also possible to consider the case where l > k coefficients of the series of f are known. Adding
to the preceding system the equations

k∑

i=0

(
fi

τ ji
−
c0

τ ji
−

c1

τ j−1
i

− · · · − cj

)
wi

τi
= 0, j = k, · · · , l − 1,

and solving it in the least squares sense leads to an approximation Rk whose series expansion agrees
with that of f only in the least squares sense, and which interpolates f at k + 1 points.

Let us again consider the case where some poles and some zeros of f are known. The rational
function

Rk(t)
Zn(t)

Pm(t)
=

k∑

i=0

wi

t− τi
fiPm(τi)/Zn(τi)

k∑

i=0

wi

t− τi

,
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interpolates f at the k + 1 points τi, i = 0, . . . , k, whatever the wi 6= 0 are, and it has the poles
p1, . . . , pm and the zeros z1, . . . , zn. Thus it can be constructed as above after replacing everywhere fi
by fiPm(τi)/Zn(τi), and we obtain f(t)−Rk(t)Zn(t)/Pm(t) = O(tk).

When the poles of f are known, an explicit expression for the weights of the near–best rational
interpolants in a Chebyshev sense can be obtained [29]. As mentioned in this paper, the knowledge of
the poles dramatically improves the interpolation process as can be seen from the numerical examples
given there, and also in [8, 28].

5 Study of the error

Let us set Rk(t) = Nk(t)/Dk(t) either for the Padé–type rational interpolants or the Padé–type barycen-
tric interpolants. We have

f(t)Dk(t)−Nk(t) = O(tn)

with n = k + 1 in the first case and n = k in the second one.
We assume that all the interpolations points τi are real and belong to an interval [a, b] and that, in

this interval, f has poles α1, . . . , αν of respective multiplicities r1, . . . , rν with r1+ · · ·+rν = m ≤ n−1,
that none of these poles coincides with an interpolation point, and that, outside of the poles, f has a
bounded (n+ k)th derivative. We set

φ(t) = (t− α1)
r1 · · · (t− αj)

rν .

Thus, f(t)φ(t) is bounded in [a, b]. Let ψ be a polynomial such that Q(t) = φ(t)ψ(t) has degree n− 1.
We write the error under the form

f(t)−Rk(t) = g(t)
tn(t− τ1) · · · (t− τk)

Dk(t)Q(t)
,

and set
w(x) = f(x)Dk(x)Q(x) −Nk(x)Q(x) − g(t)xn(x− τ1) · · · (x− τk), t ∈ [a, b].

The function w has a simple zero at x = t (by definition of the error), a zero of multiplicity n at
x = 0, and simple zeros at x = τ1, . . . , τk. Therefore, by Rolle’s theorem and since the (n + k)th
derivative of Nk(x)Q(x) is identically zero, there exists a point ξt ∈ [a, b], which depends on t, such
that w(n+k)(ξt) = 0. Thus

g(t) =
1

(n+ k)!

dn+k

dξn+k
[f(ξ)Dk(ξ)Q(ξ)]

∣∣∣
ξ=ξt

,

and it follows

Property 4

Under the preceding assumptions

f(t)−Rk(t) =
tn(t− τ1) · · · (t− τk)

(n+ k)!Dk(t)Q(t)

dn+k

dξn+k
[f(ξ)Dk(ξ)Q(ξ)]

∣∣∣
ξ=ξt

, t, ξt ∈ [a, b].

If f has no pole in [a, b], one can take Q(x) = Dk(x) when n = k + 1. This result is adapted
from [23, pp. 116–7].

6 Numerical examples

We will now show some numerical examples which gather several interesting properties that will allow
us to exemplify the effectiveness of our procedures. But, before, let us give the following consistency

property

Property 5

If f is a rational function with a numerator and a denominator both of degree smaller or equal to k,
then, our two procedures produce a rational function Rk which is identical to f when l = k.

9
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Padé−type rational interpolants for f(t)=tan(4t)/(4t)

Figure 1: Padé–type rational interpolants with k = 8 for tan(4t)/(4t): equidistant points in the interval
[−1,+1] (solid), roots of unity (dashed), Chebyshev zeros (dash-dotted).

Proof:

This property comes out from the fact that Rk is defined by a set of linear equations which is the same
as the set of equations which defines f , and the result follows from the uniqueness of Rk. �

Our numerical experiments were performed using Matlabr 7.11. Let us remind that the solution of a
rectangular system of equations Ax = b of maximal rank r = min(l, k) with A ∈ Cl×k is x = A†b, where
A† is the Moore–Penrose pseudo–inverse of A defined by A† = (A∗A)−1A∗ if r = k ≤ l (overdetermined
system) and A† = A∗(AA∗)−1 if r = l ≤ k (undertermined or singular system). If the rank r is not
maximal, then A† = V Σ†U∗ where A = UΣV ∗ is the singular value decomposition of A. The Matlabr

instruction pinv(A)*b gives the least squares solution when the system is overdetermined (that is the
unique solution minimizing the 2–norm of the residual if the matrix is full rank, and the vector of
minimal 2–norm among those minimizing the 2–norm of the residual, if not), and the minimal 2–norm
solution when the system is underdetermined or singular. In all cases, the computation is based on the
singular value decomposition of A.

All curves (except in Figure 8) represent the errors in logarithmic scale.

Example 1: a function with poles

We consider the following function, and its series expansion

f(t) =
tan(ωt)

ωt
= 1+

1

3
ω2t2 +

2

15
ω4t4 +

17

315
ω6t6 +

62

2835
ω8t8 + · · ·

This function has poles at odd multiples of π/(2ω), and zeros at odd multiples of π/ω, except at 0.

We considered three sets of interpolations points: equidistant points in the interval [−1,+1], the
roots of unity, and the zeros of the Chebyshev polynomials of the first kind. The complex choice was
discussed in [20]. Let us mention that none of the interpolation points τi should be 0, since it is the
point where the Padé–type approximants are computed and thus it always appears as an interpolation
point.

10
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 Partial Padé−type rational interpolants for f(t)=tan(4t)/(4t) 

Figure 2: Partial Padé–type rational interpolants with k = 8 for tan(4t)/(4t): equidistant points in the
interval [−1,+1] (solid), roots of unity (dashed), Chebyshev zeros (dash-dotted).

Padé–type rational interpolants

The errors obtained with the Padé–type rational interpolants are given in Figure 1 for ω = 4 and
k = 8. The solid line corresponds to the real interpolation points, while the dashed one refers to the
points on the unit circle, and the dash-dotted one to the zeros of the Chebyshev polynomial. The poles
of f are, in the interval considered in Figure 1, at the points ±0.39269908 . . . and ±1.1780972 . . ., and
the zeros at ±0.78539816 . . .

Since the poles and the zeros are known, we took Z2(t) = (t − π/4)(t + π/4) and P2(t) = (t −
π/8)(t + π/8). The errors obtained with the partial Padé–type rational interpolants are displayed in
Figure 2. Let us mention that, for some values of k, we could observe Froissart’s doublets (nearby poles
and zeros) that can be removed by the technique described below (Example 4).

The improvement brought by partially taking into account the knowledge of the poles and of the
zeros is clear. Choosing the zeros of the Chebyshev polynomials as the real interpolation points in
[−1,+1] does not change much the quality of the results for such small values of k.

Padé–type barycentric interpolants

Let us now consider the same example but with the Padé–type barycentric interpolants. The results
are given in Figure 3. With the partial Padé–type barycentric interpolants, we obtain the results of
Figure 4. In both figures, the solid line corresponds to the real interpolation points, and the dashed
one to the interpolation points on the unit circle.

Let us mention that, with the Shepard’s weights wi = 1/(t − τi) [27], the interpolants have poles
around −0.4 and +0.4.

Example 2: a function with a cut

We consider the series

f(t) =
log(1 + t)

t
= 1−

t

2
+
t2

3
−
t3

4
+ · · ·

which converges in the unit disk and on the unit circle except at the point −1 since there is a cut from
−1 to −∞.

11
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 Padé−type barycentric interpolants for f(t)=tan(4t)/(4t)

Figure 3: Padé–type barycentric interpolants with k = 8 for tan(4t)/(4t): equidistant points in the
interval [−1,+1] (solid), roots of unity (dashed).
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Figure 4: Partial Padé–type barycentric interpolants with k = 8 for tan(4t)/(4t): equidistant points in
the interval [−1,+1] (solid), roots of unity (dashed).
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Figure 5: Padé–type rational interpolants with k = 7 for log(1 + t)/t, and 3 (dashed), 7 (solid) and 14
(dash-dotted) interpolation points.

Padé–type rational interpolants

For a Padé–type interpolant of degree 7, we consider equidistant real interpolation points in the
interval [−0.9,+1.2]. For 7 points (solid line), the system to be solved is square. For 3 points (dashed
line) and 14 points (dash–dotted line), the system is solved in the least squares sense as explained
above. The results are given in Figure 5. We see that they are quite good even for values of t far
outside the convergence interval.

Padé–type barycentric interpolants

The interpolation points τi are taken equidistant in [−0.9,+4], and k = 7. In Figure 6, three types
of weights wi are considered: those corresponding to the Padé–type barycentric interpolants are the
same as explained above (solid line), the weights wi = (−1)i of Berrut [2] (dashed line), and the weights
wi = 1/(t− τi) suggested by Shepard [27] (dash–dotted line), these last two choices ensuring pole–free
interpolants on the real line.

Example 3: a continuous function

We consider the exponential function

f(t) = et = 1 +
t

1!
+
t2

2!
+ · · ·

Let us now compare, for the degree k = 4, the Padé–type rational interpolant, the Padé–type barycentric
interpolant, and the Padé approximant [4/4] which is given by

[4/4]f(t) = (1680 + 840t+ 180t2 + 20t3 + t4)/(1680− 840t+ 180t2 − 20t3 + t4).

Let us remind that [4/4]f(t) − et = O(t9), and that its construction makes use of the first 8
coefficients of the power series. The results are given in Figure 7, where the solid line represents the
error of the Padé–type rational interpolant, the dashed line corresponds to the Padé approximant, and
the dash–dotted line to the Padé–type barycentric interpolant.
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Figure 6: Padé–type barycentric interpolants with k = 7 for log(1+t)/t (solid). Barycentric interpolants
with Berrut weights (dashed), and Shepard weights (dash-dotted).
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Figure 8: Padé–type rational interpolant (dashed) of the cosine function (solid).

The interpolation points were chosen equidistant in the interval [0.1, 0.8]. Notice that, for the inter-
polants, the error is smaller around the interpolation points, while the errors of the Padé approximant
is more symmetric around the origin.

Example 4: spurious pole removal

Let us now give an example showing that the rational interpolant can have poles even if the function is
continuous. In fact, it is known [25] that if, after cancelation of common factors between the numerator
and the denominator and ordering the interpolation points, two consecutive weights wi and wi+1 in
the barycentric formula have the same sign, then the reduced interpolant has an odd number of poles
in [τi, τi+1).

We consider the Padé–type rational interpolant of the cosine function with 5 equidistant interpola-
tion points in the interval [−π/2,+π/8]. As may be seen in Figure 8, the interpolant (dashed line) has
one real pole at t = −2.8636 . . . (its other poles are complex). When t goes to infinity, the interpolant
tends to 25.269 . . .

However, the results are quite good (the cosine function is the solid line in Figure 8) from the right
of the pole up to almost π.

It is possible to remove a spurious pole p by forcing the Padé–type interpolant to go through the
point (p, f(p)). In Figure 9, the first of the equidistant interpolation points is replaced by the pole p,
a procedure which removes it and leads to a better result (dashed line).

If the interpolant exhibits several poles, they can be eliminated successively. If a new pole is
introduced during the procedure, then it can be removed similarly.

In our case, the location of the pole was directly computed from the coefficients bi of the denominator
of the interpolant since they were available. It is also possible to locate approximately a pole when the
absolute value of the interpolant becomes larger than a fixed threshold, or when the interpolant has a
sudden change of sign, and then to impose it as an interpolation point.

This procedure was tried on the Padé–type barycentric interpolant for cos t in the same interval as
before, but with k = 13. The interpolant was computed at 500 points in [−π,+2π]. A sudden change
of sign was observed in the interval [5.3010, 5.3199]. We had R13(5.3010) = 15.068 and R13(5.3199) =
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Figure 9: Error before (solid) and after (dashed) the pole removal in the Padé–type rational interpolant
for f(t) = cos t.

−25.101. Replacing the first interpolation point τ0 = −π/2 by τ0 = 5.3050, the spurious pole was
removed, and no other pole appeared.

The advantage of this procedure is that it can also be used for Padé–type barycentric interpolants
where the coefficients of the denominator are not explicitly known.

The same techniques can be applied to the case of partial Padé–type rational and barycentric
interpolation.

7 Applications

Let us now briefly discuss some possible applications to numerical analysis problems.

7.1 Convergence acceleration

We consider the sequence (Sn = f(τn)) where (τn) is a sequence of parameters such that limn→∞ τn =
τ∞ 6= 0,±∞, and where f is a function whose first coefficients of the series expansion around 0 are
known. We set S = limn→∞ Sn.

The convergence of the sequence (Sn) can be accelerated by computing the Padé–type rational

interpolant or the Padé–type barycentric interpolant R
(n)
k satisfying R

(n)
k (τi) = Si for i = 0, . . . , k − 1

(or k in the second case), and setting T
(n)
k = R

(n)
k (τ∞).This is the essence of an extrapolation method

for accelerating the convergence of a sequence [12]. Under certain assumptions, the sequences (T
(n)
k )

converge to S faster than (Sn) either when k is fixed and n goes to infinity, or vice versa.

7.2 Inversion of the Laplace transform

We consider the Laplace transform

F (p) =

∫ ∞

0

e−psf(s) ds.
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Figure 10: Error for the inversion of the Laplace transform of F (p) = log(1 + 1/p2).

Assume that F is known at some points pn for n = 0, . . . , k−1 (or k), and also the first coefficients of
its series expansion around 0. F can be approximated by a Padé–type rational interpolant or by a Padé–
type barycentric interpolant Rk, and the interpolant then inverted, thus leading to an approximation
of f . Let us remark that, since limp→∞ F (p) = 0, the degree of the numerator of the interpolant must
be smaller than the degree of its denominator. The inversion can be performed without decomposing
F into its partial fractions by a procedure due to Longman and Sharir [19]. Let F have the form

F (p) = A
pm + α1p

m−1 + · · ·+ αm

pn + β1pn−1 + · · ·+ βn
,

with m < n. They showed that

f(s) = A

∞∑

i=0

vi
i!
si

with
vi = ui+m + α1ui+m−1 + · · ·+ αmui, i = 0, 1, . . . ,

where

ui = 0, i = 0, . . . , n− 2,

un−1 = 1,

ui = −(β1ui−1 + · · ·+ βnui−n), i = n, n+ 1, . . .

Usually, the series giving f is quickly converging.

Let us take the example considered in [12, p. 350]

F (p) = log(1 + a2/p2), f(s) = 2(1− cos as)/s.

We make the change of variable t = a2/p2, and we set

F (p) = G(t) = log(1 + t) = t−
t2

2
+
t3

3
− · · ·
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The Padé–type (rational and barycentric) interpolants will be approximations of G. Replacing t by
a2/p2 in a Padé–type rational interpolant of degree k in t produces an interpolant of degree 2k in p,
and we obtain an approximation of F of the form

R2k(p) =
a0p

2k + a1a
2p2k−2 + · · ·+ aka

2k

b0p2k + b1a2p2k−2 + · · ·+ bka2k
.

Notice that, since c0 = 0 in the series expansion of G(t), the relations (1) lead to a0 = 0, and, thus,
limp→∞R2k(p) = 0 which is consistent with the asymptotic property of the Laplace transform. Thus,
this approximant can be written as

R2k(p) = A
p2k−2 + α2p

2k−4 + · · ·+ α2(k−1)

p2k + β2p2k−2 + · · ·+ β2k
,

with A = a2a1/b0, α2i = a2i(ai+1/a1), for i = 1, . . . , k − 1, β2i = a2i(bi/b0), for i = 1, . . . , k, the α’s
and the β’s with an odd index being zero. We see that the series expansion of R2k(p) only contains
even powers of 1/p as the series F (p) itself. Inverting R2k by the procedure of Longman and Sharir [19]
(after replacing m by 2k − 2 and n by 2k in the formulae for the vi’s and the ui’s), or performing its
partial fraction decomposition, gives an approximation of f .

For k = 5, a = 1, τi = 1/p2i with pi = 0.1 + ih for i = 0, . . . , k − 1, and h = 2/(k − 1), the Padé–
type rational interpolant leads to the results of Figure 10, using 12 terms in the series expansion of f .
Although f(0) = 0 and the series expansion by the method of Longman and Sharir is also 0 at s = 0
(since v0 = 0), there is a loss of accuracy around this point due to the indeterminacy. These results
have to be compared with those given in [12, p. 350] which were obtained by constructing a rational
interpolant with a numerator of degree 7 and a denominator of degree 8, that is using 16 interpolation
points. We see that our Padé–type rational interpolant provides a much better precision. Moreover,
the precision can be even improved by taking more terms in the series for f at almost no additional
price.

This example could also be treated by making the change of variable t = a/p, thus leading to
F (p) = G(t) = log(1 + t2) = t2 − t4/2 + t6/3− · · · .

7.3 Piecewise rational interpolation

Our approach can be used for constructing piecewise rational interpolants. Let a < a′ ≤ 0 ≤ b′ < b.
We construct a first Padé–type rational or barycentric interpolant in [a, a′], and then a second one in
[b′, b]. Due to the Padé–type property of these interpolants and the fact that, for all i, ci = f (i)(0)/i!,
the two interpolants and their first derivatives will have the same values at the point t = 0. Obviously,
by a change of variable, the same construction holds at a point different from the origin, and it can be
repeated.

One of the advantages of such a construction is to obtain a good accuracy with a low degree in the
interpolants, thus avoiding the usually bad conditioning when using more interpolation points and a
rational interpolant with a higher degree.

We interpolate the function f(t) = log(1 + t)/t on the intervals [−0.9,−0.1] and [+0.1,+1] with
k = 2, which means that the first rational function interpolates f only at the points −0.9 and −0.1,
and the second ones interpolates it at +0.1 and +1. These two interpolants and their first and second
derivatives agree with that of f at t = 0. The solid line in Figure 11 corresponds to the curve formed by
these two Padé–type rational interpolants. The two systems have a condition number of 3.25× 104 and
2.86× 104, respectively. Then, we construct the Padé–type rational interpolant interpolating f at the
4 points −0.9,−0.1,+0.1 and +1, and with a O(t3) error at the origin. The system is overdetermined
since l > k, its condition number is 1.90 × 103, and the error is given by the dashed line. Finally,
with the same 4 interpolation points, we construct the interpolant of degree k = 3. The system is also
overdetermined, its condition number is 6.37×1013, and we obtain the results given by the dash–dotted
line.
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Figure 11: Padé–type rational interpolants for log(1 + t)/t: the piecewise case.

8 Conclusions

In this paper, we presented in details the particular case of the general rational Hermite interpolation
problem (in rational and barycentric form) where only the values of the function are interpolated at
some points, and where the function and its first derivatives agree at the origin. Thus, the interpolants
constructed in this way possess a Padé–type property at 0. An expression for the error in the real
case is given. The interpolation procedure can be easily modified to introduce a partial knowledge on
the poles and the zeros of the function to approximated. We also showed how spurious poles can be
eliminated. Numerical examples show the interest of the procedures.

The ideas developed in this paper need additional investigations. An important open problem is
to be study the convergence of the interpolants when the degree tends to infinity as done in [16] for
Padé–type approximants. In our case, we performed some numerical experiments which show that, in
some cases, convergence seems to occur while, in some others, no conclusion could be drawn since, for
high degrees, the systems are numerically singular.
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