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Abstract. Schoner [Schoner G (1995) Ecol Psychol 7:
291-314] argued that the relative phase dynamics of
rhythmic interlimb coordination may be attributed to the
timing level in that the stability properties of the relative
phase are largely independent of dynamical principles
operating at the goal level, such as those related to the
maintenance of a particular amplitude or target position.
Yet, according to the coupling functions in the coupled
oscillator model proposed by Haken et al. [Haken H,
Kelso JAS, Bunz H (1985) Biol Cybern 51: 347-356], the
effect of frequency on the stability properties of relative
phase is either wholly or partially mediated by frequency-
induced changes in amplitude, implying that the relative
phase dynamics strongly depends on spatial factors. In
order to distinguish between these contrasting interpre-
tations of the organizational principles underwriting the
phase dynamics of interlimb coordination, an experiment
was conducted in which the effects of frequency and
amplitude on the stability of relative phase were sepa-
rated. Six subjects performed both in-phase and anti-
phase coordination patterns at seven different frequen-
cies and three different amplitudes. Two measures of
pattern stability were used, the standard deviation of
relative phase and the exponent of the relaxation process
following phasic perturbations of relative phase. Accord-
ing to both measures, pattern stability decreased with
increasing frequency, whereas the amplitude manipula-
tion only had a significant effect on the standard
deviation of relative phase. This result was interpreted
to imply that the organizational principles at the (rela-
tive) timing level are affected only moderately by task
constraints pertaining to the goal level, and that models
of interlimb coordination in which amplitude coupling
plays a partial or subordinate role should be preferred
above models relying solely on amplitude coupling.

Correspondence to: A. A. Post
(e-mail: auke.post@fbw.vu.nl, Tel.: +31-20-4448454,
Fax: +31-20-4448509)

1 Introduction

A central and longstanding question in the study of
motor control is: what variables are controlled by the
central nervous system (cf. Stein 1982)? In this context,
controlled variables are often defined as those variables
that can take on new values independently of other
controlled variables as conditions are changed (Latash
1993; cf. Schoner 1995). The assumption of mutual
independence of controlled variables is essential in view
of the fact that the human actor can perform a large
variety of tasks in a multitude of manners: we can move
to a particular location slowly or quickly, we can grasp
an object firmly or gently, we can adopt a particular
posture stably or unstably, and so on.

In extant models of motor control, these behavioral
possibilities are accounted for by means of a small, but
sufficiently large set of controlled variables that mini-
mally allow for independent regulation of end point,
speed and stiffness (tension). Two examples may serve
to illustrate this point, the 2 model of Feldman (1986)
and Latash (1993), and the combined VITE-FLETE
model of Bullock and Grossberg (1988, 1989). The A
model for (single-joint) motor control capitalizes on the
“spring-like” properties of muscles instantiated by the
tonic stretch reflex (Feldman 1980a,b; Latash 1993).
According to this model, joint position is controlled by
means of r commands, defining the intercept of the joint
compliant characteristic, and joint stiffness by means of
¢ commands defining the slope of the joint compliant
characteristic, where the » and ¢ commands are assumed
to be controlled independently of each other. Move-
ment speed is controlled indirectly by means of the time
courses of the postulated r and ¢ commands. In contrast
to the A model, which is based on the premise that the
nervous system controls the threshold (1) of the tonic
stretch reflex, the combined VITE-FLETE model is
built on the assumption that muscle length itself is a
controlled variable. In addition, independent controls of
movement speed and stiffness are postulated. Specifi-
cally, this model assumes a target position command for
controlling the end position of the movement (in the
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form of a multidimensional vector of muscle lengths), a
GO-signal for controlling movement time (or speed),
and a P command for controlling tension. In spite of
the non-trivial differences between these two models,
the independence of the variables allegedly controlled
by the nervous system is postulated a priori in both
models.

1.1 Levels in neural functioning

A different tack on the issue of controlled variables was
proposed by Schoner (1995). He defined controlled
variables as those measures of behavior that are stable
against phasic (transient) perturbations, opening up the
possibility of examining experimentally which variables
are controlled by the nervous system. In this perspec-
tive, the term stability refers to the asymptotic stability
of invariant solutions in dynamical systems, that is,
after a phasic perturbation has driven the system away
from an invariant solution, it will return to that
solution after a certain relaxation time. For instance,
if the relative phasing between two limbs moving
rhythmically at the same frequency is perturbed me-
chanically (e.g., Scholz and Kelso 1989; Scholz et al.
1987), thus momentarily changing its value, it will
return spontaneously to its pre-perturbation value.
Likewise, if a goal-directed movement is perturbed by
displacing the target, the end-effector will still reach the
target (e.g., Georgopoulos et al. 1981; Prablanc and
Martin 1992). Finally, in producing an isometric torque
of an externally specified strength (i.e., target force
level), small perturbations due to noise are known to
lead to small initial errors that are counteracted by
means of compensatory adjustments in the force
trajectories (Gordon and Ghez 1987). Thus, in these
examples, relative phase, target posture and target force
are controlled variables in the sense that they are
characterized by invariant solutions that are stable
against brief, transient perturbations.

Schoéner’s definition (1995) of controlled variables is
closely allied to his operationalization of levels in the
behavioral analysis of neural functioning. A prerequisite
for the identification of different levels of neural func-
tioning is that behavioral components or dimensions
associated with these levels are only weakly coupled.
This may be assessed by means of perturbation tech-
niques, as each level is deemed to stabilize a particular
feature of behavior against a particular kind of pertur-
bation. Schoner (1995) distinguished three such levels,
the load level, the timing level and the goal level. The
load level is defined as the set of dynamic variables that
stabilizes against force perturbations, the timing level as
the set of dynamic variables stabilizing against pertur-
bations of (relative) timing, and the goal level as the level
at which global properties of the movement trajectory,
such as amplitude and target position, are stabilized.
Each of these levels might be studied in isolation by
experimental variations that minimally affect the two
other levels. For example, in experiments on relative

timing, a gradual increase of movement frequency has
been shown to induce a differential loss of the stability of
the in-phase and anti-phase modes of coordination
(Kelso 1984; Schoner and Kelso 1988) without, however,
affecting the load and the goal level. According to
Schoéner (1995), this can be inferred from the fact that
the mechanical coupling between the moving fingers is
negligible, while the relevant frequencies are all well
within the range of frequencies attainable with ease and
constant precision in single-limb movement. Thus, ac-
cording to Schoéner (1995), the observed coordination
phenomena, including the loss of stability of the anti-
phase pattern, could be attributed exclusively to the
timing level.

The aforementioned conclusion seems quite justified
in view of the fact that the relative timing experiments in
question only involved the bimanual production of the
in-phase and anti-phase coordination, while the ampli-
tudes (i.e., the turning points) of the individual limb
movements were free to vary. However, in these exper-
iments, the gradual increase of movement frequency led
to a systematic decrease of movement amplitude, sug-
gesting that the relative phasing task involved an implicit
adaptation of the global properties of the movement
trajectories. In fact, this frequency-induced decrease in
movement amplitude was modeled by Haken et al.
(1985) as the ‘formal mechanism’ through which the
differential loss of stability of the in-phase and anti-
phase mode of coordination, including the loss of sta-
bility of the anti-phase mode, occurred (cf. Peper and
Beek 1999). Thus, there is an interesting tension between
the implications of the theoretical notions developed by
Schoner (1995), which may be taken to imply that
variations in target position (for discrete tasks) or am-
plitude (for cyclic tasks) would have no or little effect on
the stability of relative phase, and the assumption of the
Haken-Kelso-Bunz (HKB) model (Haken et al. 1985)
that the effect of frequency on the stability of relative
phase is mediated (fully or partially, see later) by
movement amplitude.

In recognition of the importance of these contrasting
interpretations for the issue of levels in the neural con-
trol of movement and their relative independence, we
conducted a perturbation experiment that was designed
to assess the differential effects of frequency and am-
plitude on the stability properties of relative phase. It
follows from the preceding discussion that the goal of
this experiment was twofold. It aimed to contribute to
the theoretical framework proposed by Schoéner (1995)
by determining whether the organization of the stability
properties of relative phase are indeed relatively inde-
pendent of experimental manipulations referring to the
goal level. Additionally, it aimed at a direct empirical
test of the assumptions underlying the coupling func-
tions proposed by Haken et al. (1985) in their (nonlin-
ear) coupled oscillator model for bimanual rhythmic
coordination. In view of this second goal, it is necessary
to explain the HKB model in some detail and to briefly
summarize previous research on the effects of frequency
and amplitude on the stability of coordination.



1.2 The HKB model: amplitude influences pattern stability

The HKB model (Haken et al. 1985), which was
originally developed for bimanual 1:1 frequency coordi-
nation, consists of two parts, the level of the so-called
potential and the level of coupled oscillators. The
potential formalizes the stability properties of the
relative phase ¢ between the limbs (the variable
capturing the coordination phenomena of interest) in
terms of a two-well potential landscape that is deform-
able as a function of the parameters a and b

V(p) = —acos¢p —bcos2¢ . (1)

The minima of this potential represent the coordination
modes to which the behavior is attracted, implying that
the in-phase (¢ = 0°) and anti-phase (¢ = 180°) coor-
dination patterns are stable. Extensions of this model
have been formulated, incorporating the impact of
frequency differences between the oscillating compo-
nents and the influence of stochastic forces. When the
dynamics of the relative phase is expressed in terms of
the corresponding order parameter equation [with
d¢/dt = —dV (¢)/d¢], the additional influences of noise
can be incorporated (Schoner et al. 1986)

%:—asin¢—2bsin2¢+\/§é : (2)
This fundamental coordination equation has provided
the theoretical framework and motivation for a large
number of experimental studies focusing on the effect of
frequency on the stability properties of relative phase (as
mediated by the ratio between the parameters b and a in
Eq. 2). Virtually all studies involving stationary perfor-
mance employ the standard deviation of relative phase (or
its circular equivalent) as a measure of stability. However,
a more direct measure for stability can be obtained by
perturbing the steady state, yielding an estimate of the
strength of the relaxation process of relative phase
(Schoner et al. 1986). This method has been applied
successfully by Post et al. (in press), who compared these
two stability measures and estimated the parameters a, b
and Q of the stochastic version of the HKB model.

In contrast to the level of the potential, the level of
coupled oscillators has received only limited attention.
At this level, the full kinematics of the oscillating limbs
and their interactions are modeled as a system of non-
linearly coupled nonlinear oscillators. Two elementary
coupling functions have been formulated, namely the
time derivatives and time delay version (see Sect. 2.5 for
details), which differ with respect to the way in which the
oscillators are supposed to be coupled. Although, in
both versions, frequency-induced transitions from anti-
phase to in-phase coordination are mediated by a fre-
quency-induced drop in amplitude in the component
oscillators, the predicted effects of frequency and am-
plitude on pattern stability are not identical. According
to the time derivatives version, the stability properties of
relative phase depend solely on amplitude, whereas the
time delay version implies that these properties are af-
fected by both frequency and amplitude.
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To date, these predictions have never been tested in
the context of a bimanual 1:1 frequency coordination
task. They have been investigated, however, in the
context of a unimanual rhythmic tracking task (Peper
and Beek 1998a) and in the context of a bimanual
multifrequency coordination task (Peper and Beek
1998b). By dissociating frequency and amplitude
through experimental manipulation, these two studies
sought to test the predicted effects of these variables on
pattern stability in a different task domain. In the
unimanual coordination experiment, arm-stimulus cou-
pling was investigated on the basis of transition trials,
using both the critical frequency and the standard de-
viation of relative phase as stability measures. In the
bimanual coordination experiment, involving a multi-
frequency tapping task, Peper and Beek (1998b) used the
degree of harmonicity of the movement trajectories in
steady-state trials as an index of coupling strength (i.e.,
pattern stability). Whereas both experiments showed an
inverse relationship between movement frequency and
the stability-related measures, the predicted relation
between movement amplitude and stability was not
supported. In order to establish the generalizability of
these studies, further experiments are required. More-
over, a motivated choice between (or against) the cou-
pling functions formulated by Haken et al. (1985) calls
for an experiment on 1:1 bimanual coordination for
which the model was originally formulated. The present
perturbation experiment allowed for testing the effects of
amplitude and frequency on pattern stability using the
strength of the relaxation process after perturbation as a
direct measure of stability. Additional in-depth analyses
with regard to specific model predictions were conducted
on the basis of estimated values of the coupling pa-
rameters o and f.

1.3 Experiment

In the present experiment, the effects of frequency and
amplitude on the stability of relative phase were tested in
separate conditions by applying phasic mechanical
perturbations. These effects were assessed using two
measures of pattern stability: the standard deviation of
relative phase SD(¢) and the decay parameter A.' On the
basis of Schoner’s analysis (1995) of neural functioning,
it was expected that the timing level would remain only
weakly coupled to the goal level and that therefore the
stability properties of variables pertaining to the timing
level would be relatively insensitive to experimental
manipulations referring to the goal level; more specifi-
cally, amplitude manipulation would have little or no
effect on the stability of relative phase, whereas
frequency as such would be inversely related to pattern
stability. With regard to the second objective of the
study, qualitative predictions pertaining to the effects of

"For denoting the decay parameter, we used / instead of f (cf.
Beek et al. 1995; Post et al. in press) as, following Haken et al.
(1985), the latter was reserved to denote one of the coupling
parameters.
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frequency and amplitude on the coupling parameters
followed from the time derivatives and the time delay
coupling version of the HKB model, respectively.
Contrary to the expectation formulated above, a positive
relation between amplitude and pattern stability [i.e.,
larger amplitudes are associated with smaller SD(¢) and
larger A] was expected from the time derivatives version,
whereas frequency as such was predicted to have no effect
on stability. On the basis of the time delay version,
however, the stability of performance was expected to
depend on both amplitude (positively related) and
frequency (inversely related). In addition to testing these
predictions qualitatively, the parameters of the HKB
model were estimated, both at the level of coupled
oscillators and at the level of the order parameter
equation (for specific predictions see Sect. 2.5).

2 Method
2.1 Subjects

Six healthy female volunteers (aged 20-27 years) partic-
ipated in the experiment after having given their
informed consent. They were all right-handed according
to their scores on a Dutch version of the Edinburgh
handedness inventory (Oldfield 1971). The subjects were
selected on the basis of their ability to perform in-phase
and anti-phase movements successfully in the experi-
mental amplitude and frequency ranges. Successful
performance was operationalized as the completion of
an unperturbed pilot trial at a given combination of
amplitude and frequency without loss of coordination.
A maximum of five attempts per amplitude/frequency
level was allowed.

2.2 Apparatus

Subjects were seated in a modified chair. Each forearm
rested comfortably in a premolded carbon fiber splint
mounted on a vertical axis, which was fitted into a
slider to permit placement of the epicondilus medialis of
the subject’s elbow above the center of rotation. The
arm rests were vertically adjustable. The splints allowed
for flexion and extension around the elbow in the
horizontal plane only, in a range of approximately
120°. The angular position of each axis was measured
with a hybrid potentiometer (22HHPS-10, Sakae). A
Digital Actuator Controller (developed by Fokker
Aerospace) yielded positional data with an accuracy
of 0.2°. A sampling rate of 300 Hz was used in all
trials. In the frequency-paced conditions, computer-
generated auditory stimuli (50 ms, pitch 440 Hz) were
presented by means of two speakers. In the prescribed-
amplitude conditions, two target light-emitting diodes
(LEDs) were presented on two LED bows (one for
each arm), defining the targets for maximal excursion
of the manipulanda. Each LED bow consisted of two
curved displays (30° segments of a circle with a radius
of 2 m) on which a horizontal series of light-emitting

diodes was mounted. Subjects received continuous
feedback on amplitude by means of two laser diodes
(5 mV) that were attached to the splints and projected
the position of the manipulandum onto the LED bow.
Data were stored for further analysis.

2.3 Procedure

Each subject was trained in session 1 and subsequently
tested in sessions 2—-5. Three factors were manipulated:
coordination mode (in-phase and anti-phase), frequency
[unpaced and paced (seven conditions, ranging over
0.75-2.25 Hz, in steps of 0.25 Hz)], and amplitude?
[preferred and prescribed (three conditions: 0.1, 0.2 and
0.3 rad, further referred to as small, medium and large)].
Subjects were required to flex both forearms simulta-
neously with the tones of the pacing signal in the in-
phase trials. In the anti-phase trials, they were instructed
to flex the right arm and extend the left arm on each
tone. In the training session, subjects performed unper-
turbed trials for each prescribed amplitude level with all
frequency pacing levels nested within it in ascending
order. This procedure was followed first for in-phase,
then for anti-phase coordination. Training in a given
condition was continued until certain amplitude require-
ments were met (mean absolute error of amplitude
< 0.025 rad; number of cycles with absolute amplitude
error larger than 0.05 rad < 2). The trial length was 15
cycles in all conditions. As each subject performed a
different number of trials in session 1, depending on
their learning rate, the duration of this session varied.

Regarding the experimental sessions, preferred-
amplitude trials were collected in session 2. Trials were
grouped together in two ‘coordination mode’ blocks,
which were presented in the same order to each subject
(first in-phase, then anti-phase). Within each block, one
unperturbed trial and five perturbed trials were pre-
sented for each of the eight frequency levels.®> The trial
order was fully randomized within a block. The six
prescribed-amplitude blocks were presented in sessions
3-5 (two blocks/session). The three in-phase blocks were
presented first to each subject in randomized order
(session 3, first half of session 4), after which the anti-
phase blocks followed in the same fashion (second half
of session 4, session 5)*. Trial randomization within a
block was realized in the same fashion as described for
session 2.

A mechanical perturbation was applied close to a
particular phase in the movement cycle (the moment of
zero velocity at peak elbow extension), thus avoiding

2 Amplitude was defined as range (peak-to-peak) divided by two.
0.1 rad = 5.7°,0.2 rad = 11.5°,0.3 rad = 17.2°.

3For this session, the subjects inadvertently received four per-
turbed trials for the preferred-frequency conditions. In all other
conditions the subjects received five perturbed trials.

“In-phase and anti-phase conditions were presented in this order
since subjects were not able to perform the more difficult (anti-
phase) condition without being accustomed to the amplitude
requirements.



large changes in kinetic energy. In view of the finding
that the choice of a particular phase has no effect on the
strength estimate of the relaxation process after me-
chanical perturbation of a limit cycle (cf. Kay et al.
1991), no other perturbation phases were considered.
The perturbation was applied randomly between cycles
12 and 17 of the trial. The moment of perturbation onset
was extrapolated on-line from the eight preceding
movement cycles. The strength of perturbation was in-
finitely decelerative, resulting in a complete arm arrest,
and had a duration of 0.25 of the cycle time (corre-
sponding to 90°).

To insure that the amplitude requirements were met,
the average amplitude during the pre-perturbation seg-
ment was evaluated upon completion of each trial.
When the amplitude criteria (mean absolute error of
amplitude < 0.025 rad; number of cycles with absolute
amplitude error larger than 0.05 rad < 2) were not met,
the trial was repeated once. The trial length was 32 cy-
cles in all conditions (resulting in a variable trial dura-
tion in seconds) except in the preferred-frequency
condition (fixed trial length of 48 s). Each experimental
session lasted approximately 2 h, including breaks.

2.4 Data reduction

Angular position data were differentiated with a five-
point approximation algorithm into angular velocity
data, which were subsequently low-pass filtered (bi-
directional second-order Butterworth filter, cutoff fre-
quency 25 Hz). Peaks were extracted from the position
and velocity time series for estimation of frequency,
amplitude, and peak velocity. The position signal was
normalized by multiplying it with the within-trial mean
of angular frequency (cf. Beek and Beek 1988). After
conversion to polar coordinates, the normalized contin-
uous phase angle ¢; was determined for each hand, using
¢; = arctan(x;/x}), with x} denoting normalized posi-
tion, x; denoting velocity, and i indicating sample index.
The continuous relative phase (¢) was calculated as
¢ = Pright — Prerr- Three segments of each trial were
selected for further analysis: a pre-perturbation segment
(the eight cycles prior to perturbation onset), a pertur-
bation return segment (3 s following perturbation off-
set), and a post-perturbation segment (the eight cycles
following the perturbation return segment).

2.5 Analysis

2.5.1 Stationary performance. The steady-state behavior
was evaluated on the basis of the mean values and
coefficients of variation (CV) of frequency, amplitude
and peak velocity, as well as the mean ¢ and its standard
deviation [SD(¢)]. These measures were calculated
separately for the pre-perturbation and post-perturba-
tion segments. Frequency (in Hz) was defined as the
inverse of the average time elapsed between positive
peaks in the position signal; amplitude (in degrees) was
defined as the average angular distance between peak
flexion and extension divided by two.
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2.5.2 Pattern stability. Two measures of stability were
used: SD(¢) and the strength of the relaxation process
following a perturbation (41). SD(¢) was calculated as
described previously. The strength of the relaxation
process was determined in the following fashion. The
return signal after perturbation (¢*) was defined as the
difference between the actual return trajectory of relative
phase (¢eum) and the pre-perturbation average of
relative phase (¢.):

d)* = (/J)return - J)pre . (3)

In general, the strength of attraction, which is inversely
related to the relaxation time 7., may be estimated by
determining the exponential decay parameter A,

¢(t)=p+qge ™, (4a)

where p is the offset and ¢ = ¢;_, — p. Large values of 2
correspond to a rapid decay (cf. Schoner et al. 1986;
Beek et al. 1995), and thus to short relaxation times. To
allow for the application of the local linear approxima-
tion, according to which sin ¢ = ¢ (Schoéner et al. 1986),
the exponential fit had to be limited to the vicinity of the
desired relative phase. This was operationalized by
starting the fit (i.e., ¢ = 0) at the point in the return
segment at which ¢* reached 45°, on average resulting in
removal of the first 9% of the return signal (mean 0.28 s,
SD 0.14 s).

In line with previous findings (Post et al. in press),
visual inspection of the return data revealed that the
relaxation process was sometimes compromised by
damped oscillations of the kind depicted in Fig. 1A and
B. To accommodate the occurrence of oscillations in the
obtained return signals, a modified version of the fitting
procedure described by (4a) was applied:
¢*(t) = p+ge “ cos(mgt +0) | (4b)
where wy is the oscillation frequency of ¢, and 0 denotes
the phase of this oscillation (see Post et al. in press). In
this way, extreme sensitivity to the initial decrease of the
return signal was avoided, as is illustrated in Fig. 1A and
B. The procedure did not affect the fit of trials without
such oscillations (see Fig. 1C and D).

Trials were excluded from analysis if one of the fol-
lowing criteria was met: (a) the initial coordination
mode was not re-established after the perturbation
(|Ppre = Ppost| > 90°); (b) ¢* > 45° for the entire return
signal, rendering the local approximation interpretation
inadequate; (¢) no stable pre- or post-perturbation be-
havior was established [SD(¢e pos) > 45°1; (d) the re-
turn signal was not a decay function within the
observation interval (4 < 0); (e) the fit was unreliable
[SE(4) > median(4)]. On the basis of these criteria, 403
of the 1908 perturbed trials (i.e., 21%) were excluded.
The number of excluded trials did not differ significantly
over coordination mode (anti-phase: 231, in-phase: 171),
(1) = 2.39, frequency (preferred: 41, 0.75 Hz: 30,
1.0 Hz: 47, 1.25 Hz: 51, 1.5 Hz: 55, 1.75 Hz: 54, 2.0 Hz:
60, 2.25 Hz: 64), x*(7) = 3.89, or amplitude (preferred,
58; small, 123; medium, 108; large, 113), *(3) = 4.28.
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Fig. 1A-D. Upper panels Com-
parison between ¢*(t) (solid line)
and model fit (dashed line) for a
401 representative trail with oscilla-
tions in ¢. A Using (4a)
i (4 = 282, = 0.07). B Using
*3 207r (4b) for the same trial (2 = 1.1,
- = 0.83, o, = 0.73 Hz).
Lower panels The same compar-
or ison for a trial without such
regular oscillations: C Using (4a)
(4 = 14.0, > = 0.63). D Using
20 . . . . , 20 . . . . . Eq. (4b) for the same trial
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 2.5 3 (4 = 13.9, 2= 0.63,
time (s) time (s) wy = 0.0002 Hz)

In 11 trials, a stable coordination mode was established
after the perturbation, but not without a phase shift of
360° (i.e., one arm ‘jumped’ a full cycle ahead of the
other). Since the fit procedure was based on a local ap-
proximation (i.e., ¢* < 45°) these trials were not ex-
cluded from further analysis.

The fits were performed using the nonlinear Gauss—
Newton algorithm with Levenberg—Marquardt modifi-
cations for global convergence (available in the Matlab
statistics toolbox). To ensure that the fit did not depend
on a local optimum in parameter space, each trial was
fitted with four different initial values for 4 (i.e., 1, 2, 5,
10). The fit with the highest r* was selected for further
analysis. Median values® of A were calculated for each
experimental condition. Group values were derived by
averaging the so-obtained values over subjects for each
condition.

2.5.3 Coupling between limb and pacing signal. To verify
that the response to the perturbation resulted from the
coupling between the limbs rather than from a unilateral
coupling between the perturbed limb and the pacing
signal, the phase relations with the pacing signal before
and after the perturbation were examined. In view of the
discrete nature of the pacing stimuli, this analysis was
based on point estimates of relative phase (cf. Beek et al.
1996). The point estimates of relative phase (g and 60r)

> Throughout the analyses, median values were calculated instead
of mean values in case the set of values for a given dependent
variable was characterized by outliers.

between each individual arm and the pacing signal were
calculated for the pre- and post-perturbation segments.
To investigate whether a systematic offset between the
pre-perturbation and the post-perturbation steady state
occurred in the perturbed frequency-paced trials, the
phase difference was calculated as Alr;L = Or/L post—
QR/L,pre-

To establish whether this phase relation indeed de-
pended on the pacing signal rather than being the
consequence of an endogenous ‘clock’, the phase devel-
opment of each arm during the unprescribed perturbed
trials was also examined. Since point estimates of rela-
tive phase (0) are (by definition) not obtainable for these
trials, right and left continuous phase (¢r and ¢ ) were
used instead. ¢r and ¢ were calculated using the fol-
lowing procedure. The phase time series were
unwrapped to convert them into a monotonically in-
creasing series. Subsequently, the pre-perturbation seg-
ment, representing the steady-state behavior of the
oscillating limb, was selected. The slope of this segment
was calculated, and served as the basis for detrending
the entire unwrapped phase time series. For each arm,
the phase difference was then calculated as Ay, =

d’R/L,post - d)R/L,pre‘

2.54 Parameters a, b and Q (order parameter equa-
tion). Schoner et al. (1986) demonstrated that the
parameters ¢ and b in (2) can be estimated when the
relative phase dynamics is linearized in the vicinity of the
stable values of relative phase. The so-obtained local
potentials (one for in-phase and one for anti-phase
coordination) allow for the estimation of « and b when



the relaxation times for both coordination patterns are
established at a fixed frequency of performance. An
elegant feature of this method is that the estimations are
based on the form of the potential well, which deter-
mines the swiftness of return. According to Schoéner
et al. (1986), the relative phase relaxation after perturba-
tion [with ¢ for the in-phase mode, and ¢ = (¢ — 180°)
for the anti-phase mode] is characterized by

(1) = doe TV a(r) = sge” (5)

As the inverse of the exponential decay parameters can
be equated with the local relaxation times (Schoner et al.
1986), this yields (using Eq. 4a)

Ain = l/"7rel,in =4b+ a, /lanti = l/frel,anti =4b—a .

()

Note that the inclusion of an oscillatory process (cf. Eq.
4b) does not affect the relation between A and 1.
Equation (6) is easily solved for a and b:
lin - ;Lanti )bin + /lanti

a= 3 , b= g . (7)
Thus, the values of a and b were estimated per subject
for each frequency level, using the median values of 4
calculated for each condition. Group values were
obtained by taking the median values of « and b over
subjects for each frequency level.

Following Schoner et al. (1986) and Post et al. (in
press), the noise level Q was estimated using 4 and the
absolute mean of ¢ ((|¢|),) and its SD (\/0gar), as
determined for the pre-perturbation segment. For the in-
phase mode, this was accomplished using

O ~ 2in (s + (18D ) - ®)

Similarly, for the anti-phase mode (with ¢ = ¢ — 180°),
the estimates were obtained using

Qanti ~ 2lanti (O'Stat,anti + <|8|>§tat) . (9)

Thus, Q was estimated for separate trials [using 4, mean
¢, and SD(¢) as determined for each individual trial].
Group values were obtained by averaging the values of
Q over subjects for each experimental condition.

2.5.5 Parameters o, and f (coupling function). In exam-
ining the validity of the proposed coupling functions, it
is useful to estimate the corresponding parameter values.
To date, few (successful) efforts have been made to
estimate the values of the coupling parameters o and f.
The attempt of Beek et al. (1996) to estimate these
parameters® from the level of coupled oscillators led to
unreliable results due to a concatenation of estimation
errors. In the current context, however, the coupling

®In Beek et al. (1996), the coupling function parameters were
defined as a and b (they reserved o and f for oscillator equation
parameters). Haken et al. (1985) defined the coupling function
parameters as o and f (parameters a and b were used for the po-
tential). We follow the convention of Haken et al. (1985) here.
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parameters o and f could be readily obtained on the
basis of the estimated exponential decay parameters.

According to the time derivatives version, the stability
of relative phase varies solely as a function of movement
amplitude, that is, the effect of frequency on pattern
stability is fully mediated by amplitude. As frequency
increases amplitude drops, resulting in a differential loss
of stability of the in-phase and anti-phase solutions of
relative phase described by

%?:@+Q&%gn¢—m%mz¢, (10)
where o+ 2> = —a and pr> =2b (cf. Eq. 2). The
parameters o and f are coupling parameters (and are
assumed to be constant within a trial), and r is the
amplitude of oscillation. Thus, the time derivatives
coupling parameters can be expressed as o = —a — 4b
and f = 2b/r?, which (using Eq. 6) can be rewritten into

/lin + /lanti

—o = )vina ﬁ = 4}"2

(I1a, b)
According to the time delay version, the stability of
relative phase not only depends on amplitude but also
on the inverse of movement frequency squared, as can be
appreciated from the order parameter equation

d¢ 1 . .

Fr —E[(a+6ﬂr2) sin ¢ — 3417 sin2¢] , (12)
where (o + 64r?)/w* = a and 3Br* /w* = —2b (cf. Eq. 2).
The time delay coupling parameters then read
o= w*(a+4b) and f = —w»?(2b/3r*). Using (6) again,
we find

? (jvin + }vanti)

15,2 (13a, b)

o= kg, f = —
The estimations were calculated by entering the averages
per experimental condition of the actual performance
values of frequency (w) and amplitude (r) into the
equations.

A central assumption of the HKB model is that,
during the performance of a transition trial (i.e., a trial in
which movement frequency is gradually increased), the
coupling parameters o and f remain fixed. In the present
experiment, movement frequency was not varied within
a trial. Determination of o and f (for each version of the
model) allows for testing the natural default assumption
that, also in this situation, these parameters were fixed
over the different frequency and amplitude conditions.

3 Results

3.1 Steady-state task performance: frequency,
amplitude and relative phase

Figure 2 summarizes the observed frequency-amplitude
relations, averaged over subjects and trials. The subjects
performed the required coordination pattern at the
prescribed tempo within rather small margins of within-
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trial movement frequency error and variability (mean
absolute error < 0.02 Hz, mean CV < 3%; values
averaged over all subjects and trials). The mean
movement frequency in the unprescribed trials (Fig. 2)
was 1.23 Hz in the in-phase condition and 1.16 Hz in the
anti-phase coordination mode, with mean CVs of 2.2%
and 2.3%, respectively. This indicates that the obtained
values of mean and CV of the unprescribed in-phase and
anti-phase trials were sufficiently similar to permit direct
comparison of these trials. For the prescribed-amplitude
trials, the mean values of preferred frequency decreased
over the amplitude conditions (small to large) from
1.47 Hz to 1.23 Hz (Fig. 2). The mean CV of preferred
frequency decreased with prescribed amplitude from
3.0% to 2.0%. The actual excursion of the limbs
matched the prescribed amplitude values quite closely
(mean absolute amplitude error < 0.01 rad, mean
CV < 6%; values averaged over subjects and trials;
see Fig. 2). Conform to the instructions, movement
frequency did not have a profound effect on movement
amplitude in these conditions. For the preferred-ampli-
tude conditions, however, a clear decrease with increas-
ing frequency was observed (Fig. 2). In these conditions,
the mean CV of amplitude increased with pacing
frequency from 4% to 7%. Together, these values
indicate that subjects moved their arms in a rather
consistent fashion in all conditions.

3.2 Pattern stability

3.2.1 Variability of ¢. A paired-samples z-test was
performed on the mean SD(¢) values obtained for the
unprescribed trials (i.e., preferred-amplitude, preferred-
frequency trials), which revealed that the effect of mode
tended toward significance [#(5) = 2.33, P = 0.068].
The mean SD(¢) was 9.4° for the anti-phase mode, and
6.1° for the in-phase mode.

The mean SD(¢) values of the prescribed-amplitude,
preferred-frequency trials were tested in a 2 x 3 repeated
measures ANOVA’ with the factors mode (in-phase,
anti-phase) and prescribed amplitude (small, medium,

"In all repeated measures ANOVAs performed, the Huynh-Feldt
¢ adjustment was applied in order to correct degrees of freedom, F
and p values for violation of the sphericity assumption.

050 0.75 1.00 1.25 150 1.75 2.00 225 2.50
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Fig. 2. Movement amplitude as
a function of pacing frequency.
Gray symbols represent values
obtained for performance at the
preferred frequency

frequency (Hz)

#v= 0.3 rad

large). Significant main effects of mode (F(1, 5) = 8.55,
P < 0.05) and prescribed amplitude (F(2, 10) = 16.26,
P < 0.005) were found. Mean SD(¢) was higher in the
antiphase mode (9.5°) than in the in-phase mode (8.1°),
and was higher in the small prescribed amplitude con-
dition (10.3°) than in the larger amplitude conditions
(medium: 8.5°, large: 7.5°) (Tukey HSD, P < 0.05).

A 2 x 7 repeated measures ANOVA with the factors
mode (in-phase, anti-phase) and pacing frequency (0.75,
1.00, 1.25, 1.50, 1.75, 2.00, 2.25 Hz) was used to test
the mean SD(¢) values of the preferred-amplitude,
prescribed-frequency trials. Significant effects of mode
[F(1, 5) = 124.22, P < 0.005] and pacing frequency
[F(4,20) = 1491, P < 0.001] were found. The mode x
pacing frequency interaction tended toward significance
[F(4, 19) = 2.87, P = 0.055]. Again, the mean SD(¢)
was higher in the anti-phase mode (10.4°) than in the
in-phase mode (6.8°). Furthermore, SD(¢) was a
function of the pacing frequency, with frequencies
higher than 1.5 Hz resulting in significantly larger SDs
than frequencies below 1.5 Hz (Tukey HSD,
P < 0.01).

The mean SD(¢) values of the fully prescribed trials
were subjected to a 2 x 3 x 7 repeated measures ANO-
VA with the factors mode (in-phase, anti-phase), pre-
scribed amplitude (small, medium, large) and pacing
frequency (0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 Hz).
This analysis yielded significant main effects of mode
[F(1, 5) = 363.36, P < 0.001], prescribed amplitude
[F(2,8) = 17.73, P < 0.005] and pacing frequency [F(4,
18) = 10.38, P < 0.001]. A significant effect of the
mode X pacing frequency interaction was also observed
[F(6, 29) = 1291, P < 0.001]. The mean SD(¢) was
larger in the anti-phase mode than in the in-phase mode
(10.7° and 7.9°, respectively), as well as for small pre-
scribed amplitudes (10.6°) compared to medium (8.9°)
or large amplitudes (8.4°) (Tukey HSD, P < 0.01).
Furthermore, SD(¢) depended on pacing frequency,
with frequencies higher than 1.75 Hz resulting in sig-
nificantly larger SDs than frequencies below 1.75 Hz
(Tukey HSD, P < 0.01). The interaction effect revealed
a differential effect of pacing frequency on the SDs ob-
tained for the two modes: SD(¢) in the anti-phase mode
increased at higher pacing frequencies, whereas SD(¢)
remained virtually constant for the in-phase mode (see
Fig. 3).
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3.2.2 Decay parameter .. The group-averaged median
values of A that were obtained by fitting the decay
process according to (4b) are presented in Fig. 4. Note
that high values of / (i.e., fast decay) reflect high pattern
stability. Statistical tests were performed in the same
fashion as described for SD(¢). For the unprescribed
trials, a paired-samples 7-test on the factor mode (anti-
phase, in-phase) yielded no significant effect. The
prescribed-amplitude trials were tested in a 2 (mode) x 3
(amplitude) repeated measures ANOVA, which pro-
duced no significant effects. Furthermore, the pre-
scribed-frequency trials were subjected to a 2 (mode) x 7
(frequency) repeated measures ANOVA. Again, no
significant effects were observed. Finally, the fully
prescribed trials were subjected to a 2 x 3 x 7 repeated
measures ANOVA with the factors mode, amplitude
and frequency. In this case, a main effect was found for
pacing frequency [F(3, 17) = 8.08, P < 0.005], while
prescribed amplitude tended toward significance [F(2,
8) = 3.33, P = 0.097]. A Tukey HSD test (P < 0.05)
showed that A was significantly larger at 1 Hz and
1.25 Hz than at the higher frequencies (= 1.5Hz).

Since SD(¢) and A are both considered to be indices
of the stability of relative phase, they should produce
comparable statistical effects, albeit in opposite direc-
tions. Since the results reported show that this is not the
case, we decided to investigate whether the expected
inverse relation between SD(¢) and 4 was indeed pre-
sent. The SD(¢) and 4 values used in the ANOVA were
therefore subjected to a non-parametric correlation test
(Spearman rank correlation, n = 384). The measures

were significantly negatively correlated (Spearman’s
p = —0.265, P < 0.0005), confirming the existence of
the expected relation between SD(¢) and 4.

3.2.3 Coupling between limb and pacing signal. The mean
value of 0 (averaged over all trials, subjects and arms)
was —71° (SD = 28°), indicating the presence of a
considerable phase lag between the arm movements and
the stimulus, which was not in agreement with the task
requirement of phase locking at & = 0°. For each arm,
the offsets obtained for the pre-perturbation and post-
perturbation segments of each individual trial were
subjected to a paired-samples #-test.

Only perturbed, frequency-paced trials were included
in the first analysis (n = 1318). For the right (perturbed)
arm, a systematic difference between the pre- and post-
perturbation segments was observed [#(1317) = 7.36,
P < 0.005]; ABr = —3.9°. For the left (unperturbed)
arm, a similar effect occurred [#(1317) = 9.33,
P < 0.005]; A0, = —5.0°. This implies that the phase
lag of each arm relative to the pacing signal increased,
that is, the arm movements did not completely recover
from the 90° perturbation. To compare the phasing of
the arms relative to the stimulus (0) with the phasing of
the arms relative to each other (¢), a paired-samples
t-test was performed in which the pre-perturbation and
post-perturbation means of ¢ were entered for the same
trials. A small but significant offset of 1.3° was found
[#(1317) = 7.41, P < 0.005], which corresponds well
with |A0r — AOr| = 1.1°. Note that the small difference
of 0.2° was due to the manner in which relative phase



538

was determined (point estimate versus continuous esti-
mate).

The second offset analysis was performed for the
unpaced trials (n = 187), which revealed the existence of
a highly significant change in the phase of oscillation of
both arms: A¢r = 52.8° [#(186) = 17.60, P < 0.005];
App = 51.0° [1(186) = 16.99, P < 0.005]. The changes
in phase were comparable for the two arms
(|Apr — A¢p; = 1.8°), which implies that subjects suc-
ceeded in maintaining the required phase difference be-
tween them.

3.3 Parameter estimation

3.3.1 Parameters a, b and Q (order parameter equa-
tion). The estimated values of ¢ and b (averaged over
subjects) are presented in Fig. 5. To test the model
prediction that the values of both parameters scale
positively with movement amplitude (as predicted by
both versions of the HKB model) and decrease with
increasing frequency for the estimates based on the time
delay version, ¢ and b were separately subjected to
repeated measures ANOVAs. The tests regarding pre-
scribed-amplitude trials and prescribed-frequency trials
yielded no significant effects. For the fully prescribed
trials, however, a significant main effect of frequency on o
was obtained [F(3, 17) = 8.08, P < 0.005]. A Tukey
HSD test (P < 0.05) showed that b was significantly
higher at 1.0 and 1.25 Hz than at the higher frequencies
(= 1.5 Hz).

The group-averaged estimates of noise strength Q are
plotted as a function of pacing frequency in Fig. 6. To
investigate whether Q was affected by the experimental
manipulations, a 2 x 3 x 7 repeated measures ANOVA
with the previously described factors mode, prescribed
amplitude, and pacing frequency was applied to the
paced trials. A significant main effect was found for
frequency [F(6, 30) = 3.74, P < 0.01]. A post-hoc test
(Tukey HSD, P < 0.05) revealed that Q did not change
monotonically with pacing frequency, but that its values
were significantly higher at 1.0 Hz and 1.25 Hz than at
1.75 Hz (see Fig. 6).

3.3.2 Parameters o and B (coupling function). Figure 7
depicts the group-averaged estimates of o and f as a
function of frequency. To examine the impact of the
experimental manipulations on these parameters, the
estimates of o and S were tested in a 3 x 7 repeated
measures ANOVA with factors prescribed amplitude
(0.1, 0.2, 0.3 rad) and pacing frequency (0.75, 1.0, 1.25,
1.5, 1.75, 2.0, 2.25 Hz). Separate tests were performed
for the parameter estimates obtained for the time
derivatives and for the time delay version. In this way,
the first-order assumption that « and f do not vary over
the frequency and amplitude manipulations was tested.

3.3.3 Time derivatives version. Parameter o was signifi-
cantly affected by both amplitude [F(2, 10) = 4.61,
P < 0.05] and frequency [F(4, 20) = 3.04, P < 0.05].
Post-hoc analysis (Tukey HSD) revealed that o was
more strongly negative in the small amplitude condition
than in the large amplitude condition (P < 0.05), and
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that its value was significantly smaller at 1.0 Hz than at
frequencies of 1.5 Hz and higher (P < 0.05). For
parameter f3, a significant effect of amplitude was found
[F(1, 6) = 124.28, P < 0.005], resulting from the fact
that  was much larger in the small amplitude condition
than in the medium and large amplitude conditions
(Tukey HSD, P < 0.01).

3.3.4 Time delay version. Parameter o was significantly
affected by frequency [F(5, 23) = 26.86, P < 0.005]. A
Tukey HSD test (P < 0.01) showed that the estimates
were significantly larger at frequencies of 2.0 Hz and
higher than the estimates at frequencies of 1.5 Hz and
lower. Parameter f§ was significantly affected by both
amplitude [F(1, 5) = 64.13, P < 0.005] and frequency
[F(4,19) = 16.19, P < 0.005], as well as by the interac-
tion between these two variables [F(5, 25) = 9.72,
P < 0.005]. The amplitude effect was due to the fact
that f was more negative in the small amplitude
condition than in the medium or large amplitude
conditions (Tukey HSD, P < 0.01). The post-hoc test
for frequency revealed that the estimates at the higher
frequencies were significantly more negative than the
estimates at the lower frequencies (P < 0.01). The
interaction effect revealed that the frequency manipula-
tion had a stronger effect on the estimated f values in the
small amplitude condition than in the medium or large
amplitude conditions.

4 Discussion
The goal of the present experiment was twofold. The

first, general goal was to develop empirically Schoner’s
analysis (1995) of neural functioning in terms of

delay version

distinguishable levels or behavioral components. This
was accomplished by means of an experiment on the
stability properties of relative phase that was not
designed to isolate the timing level as much as possible,
as in the original experiments of Kelso (1984), but rather
to deliberately add experimental constraints, in the form
of prescribed amplitudes (i.e., turning points), that
referred explicitly to the goal level. In so doing, we
could examine to what degree the timing and the goal
level remained independent. The second, more specific
goal was to use the empirical findings to evaluate the
coupling functions proposed by Haken et al. (1985) to
account for the dynamics of rhythmic interlimb coordi-
nation and their underlying assumptions. Specifically,
the predictions from two coupling functions were tested.
According to the time derivatives version, only ampli-
tude would affect the stability of relative phase, whereas
according to the time delay version, both amplitude and
frequency would have an impact on stability. The
employed method involved the independent prescription
of frequency and amplitude in an experimental design
allowing for the estimation of two measures of pattern
stability, the variability of relative phase [SD(¢)] and the
exponent of the relaxation process following a phasic
perturbation of relative phase (4).

Before discussing the experimental results in view of
the general and specific goals of the study, it is useful to
briefly summarize the results with regard to the validity
of the applied method. This examination concentrated
on bimanual coupling effects (versus unilateral coupling
with a pacing signal) and the question of constancy of
noise level Q [a necessary prerequisite for the use of
SD(¢) as a measure of stability]. Comparison of the
phase relations before and after perturbation for both ¢
and 0 revealed that the phase of both arms (rather
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than the phase of the perturbed arm only) was adjusted
in order to satisfy the required phase relation. This
indicated that the return characteristics were due to the
coupling between the limbs. An analysis in terms of the
stability of interlimb coupling was therefore deemed
adequate. In the present experiment, noise did not vary
systematically with frequency; Q was elevated at only
two intermediate frequency levels. Therefore, we re-
garded the noise level as being sufficiently constant to
justify a stability analysis based on SD(¢).

4.1 Independence of levels

To examine Schoner’s hypothesis (1995) that the relative
phase dynamics of interlimb coordination reside pre-
dominantly at the timing level and are relatively inde-
pendent of the goal level, we explicitly introduced task
constraints referring to the goal level in the form of
amplitude (i.e., turning point) requirements. If the timing
level and the goal level are indeed separately identifiable,
that is, weakly coupled levels of neural functioning, then
the introduction of spatial targets in the relative timing of
interest would be expected to have only a small effect on
the stability properties of relative phase.

To evaluate this expectation, it is important to realize
that, in the present experiment, it was not attempted to
isolate the timing level as much as possible. Instead, the
experimental variations referring to the timing level
were deliberately supplemented with task constraints
referring to the goal level. It should be noted that this
situation deviates from that in the original experiment
of Kelso (1994) in which amplitude was free to vary.
Nevertheless, we found some but no strong effect of the
introduced spatial constraints on the stability properties
of relative phase. This implies that even if the two levels
are mixed as in our experiment, the expected indepen-
dence of the timing level is largely preserved. This is not
to say that the coordination was totally immune for the
introduced task constraint. Coordination stability ex-
pressed as the variability of relative phase was signifi-
cantly lower in the smallest amplitude condition than in
the other two amplitude conditions. This effect was
roughly additive to the effect of the tempo (cf. Fig. 3).
When stability was expressed as the exponent of the
relaxation process, the lower coordination stability in
the small amplitude condition was still visible (cf.
Fig. 4), but no longer statistically significant. Thus, to
the extent that manipulation at the goal level (i.e., in-
voking spatial requirements) had any effect, confining
them to small values was most effective in influencing
the timing level.

The conclusion that the relation between these levels
of neural organization depended on the prevailing task
constraints is in agreement with Schéner’s notion (1995)
that the nervous system is organized in a task-dependent
manner. The behavioral space of the nervous system can
be restructured as a function of task constraints through
their impact upon the stability properties of the per-
formed pattern. Such restructuring can lead from vir-
tually no interaction between levels (as in experimental

setups designed to isolate a particular level and to study
it in its ‘pure’ form) to stronger interactions between
them (as has been demonstrated by the present experi-
ment). Extending this line of reasoning, it is conceivable
that even more demanding constraints at the goal level
may not only reduce the stability of variables at the
timing level, but ultimately compromise the coordina-
tion task itself.

4.2 Appropriateness of proposed coupling functions

If stability was expressed in terms of variability of steady-
state relative phase, an effect of amplitude was observed.
However, when stability was expressed in terms of a
more direct measure (attractor strength, i.e., inverse of
relaxation time), only a tendency toward significance of
amplitude was found. Nevertheless, the significant
Spearman correlation between these measures reassured
us that these two key quantities were in fact related to
pattern stability. A significant effect of tempo was
revealed in both measures. The SD(¢) results do not
fully corroborate the relative phase variability results of
Peper and Beek (1998a), who found a nonsignificant
tendency for variability to be lower in their medium
amplitude condition than for a small or large amplitude.
Their experiment involved paced unimanual tracking of
a continuously oscillating stimulus within a transition
protocol. The critical frequency at which the transition
from anti-phase to in-phase coordination occurred was
not influenced by the amplitude of the movements, which
indicated that neither version of the HKB coupling
function could adequately account for their results. In
the present experiment, involving paced bimanual trials
and a discrete stimulus within a perturbation protocol,
significant effects of frequency [on both A and SD(¢)] and
an effect of amplitude [on SD(¢)] were found. Therefore,
we conclude that the assumption underlying the time
derivatives coupling function, namely that the degree of
interaction between the limb movements is determined
solely by their amplitudes, has to be rejected.

The two coupling parameters, o and f3, turned out to
vary with both amplitude and frequency. This may in-
dicate that they were adjustable between trials (e.g., due
to intention; see Post et al. in press; Schmidt et al. 1998).
Presumably, such adjustments served the purpose of
preserving the stability of performance in the face of the
task requirements at hand. In the current context, the
results obtained for the time delay version of the cou-
pling function might reflect adjustments in o« and f
counteracting a reduction of stability (i.e., smaller values
of /; cf. Eq. 13a and b) due to the amplitude and fre-
quency manipulations. Also for the time derivatives
version, significant effects of amplitude and frequency
were obtained. Since the latter variable does not influ-
ence the coupling parameters in this version of the model
(cf. Eq. 11a and b), its influence can only be understood
indirectly (namely through the effect of frequency on the
values of 1 obtained for the in-phase condition; cf. Eq.
11a). As such, the analysis of the estimated coupling
parameters seems to support the time delay version of



the model and renders the time derivatives version less
likely.

Thus, if a choice has to be made between the pro-
posed coupling functions, the delay version has to be
preferred in view of the current data since, in this case,
the coupling is determined both by amplitude and fre-
quency. This conclusion was supported by the esti-
mated values of the coupling function parameters o and
f. Note that the effects of frequency and amplitude
observed in the present study and those observed by
Peper and Beek (1998a) were not the same. This sug-
gests that the functional form of the coupling was quite
different in these two experimental tasks (bimanual
coupling versus visual-unimanual coupling). With re-
spect to a comparison between the present experiment
and the study of Peper and Beek (1998b), a similar
conclusion can be drawn. Although both tasks were
bimanual coordination tasks, the differences in cou-
pling type [1:1 forearm oscillations in the present ex-
periment versus 2:3 hand tapping in the experiment of
Peper and Beek (1998b)] make it quite conceivable that
the functional form of the coupling in these experi-
ments differed.

Our overall conclusion regarding the HKB model is
that, although the HKB potential is broadly applicable
and as such reflects generic coordination principles (ac-
counting for phenomena such as bistability and loss of
stability), the adequacy of the accompanying analysis in
terms of coupled oscillators is questionable (cf. Peper
and Beek 1998a, 1999). This discrepancy can be under-
stood logically in that the HKB potential represents a
more general formulation of the observed coordination
dynamics than the accompanying effort to model the
individual limb movements and the nature of their in-
teraction in terms of coupled oscillators. It could well be
that such an effort is hampered by the fact that the hu-
man movement system has the ability to restructure its
behavioral components and their interactions to satisfy a
specific set of task constraints. In the light of this ability,
it seems highly unlikely that a single ’fundamental bio-
physical coupling’ can be derived that applies generically
to all possible sets of task constraints, as has been sug-
gested by Jirsa et al. (1994) (see also Kelso 1994).

Therefore, if the researcher’s objective is to identify
general principles, it seems more useful to look for
general principles in the manner in which behavioral
components are structured and restructured as a func-
tion of task constraints, instead of embarking on a re-
search program aimed at constructing a large,
potentially infinite number of context-specific coupling
functions. If the researcher’s objective is to gain deeper
knowledge about a particular type of behavior, it re-
mains a perfectly valid enterprise to search for the
coupling function which specifically applies to the
studied phenomenon. As pointed out, for instance, by
Peper and Carson (1999), coordinative phenomena may
be contingent upon sensory feedback and bilateral mo-
tor activation processes. In both the identified scenarios,
the question remains how coordination principles at the
behavioral level correspond to the functional organiza-
tion of the nervous system.
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