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Abstract. This paper describes the methods used in EMPIRE, a tool
to detect concurrency-related bugs, namely atomic-set serializability vi-
olations in Java programs. The correctness criterion is based on atomic
sets of memory locations, which share a consistency property, and units
of work, which preserve consistency when executed sequentially. EMPIRE
checks that, for each atomic set, its units of work are serializable. This
notion subsumes data races (single-location atomic sets), and serializ-
ability (all locations in one atomic set).

To obtain a sound, finite model of locking behavior for use in EM-
PIRE, we devised a new abstraction principle, random isolation, which
allows strong updates to be performed on the abstract counterpart of
each randomly-isolated object. This permits EMPIRE to track the sta-
tus of a Java lock, even for programs that use an unbounded number of
locks. The advantage of random isolation is that properties proved about
a randomly-isolated object can be generalized to all objects allocated at
the same site. We ran EMPIRE on eight programs from the ConTest
benchmark suite, for which EMPIRE detected numerous violations.

1 Introduction

This paper describes the methods used in EMPIRE, a tool to detect atomic-set
serializability violations in concurrent Java programs. Atomic-set serializability
[1] is a data-centric correctness criterion for concurrent programs. It is based
on the notion of an atomic set of memory locations, which specifies the exis-
tence of an invariant or consistency property. Associated with atomic sets are
units of work, which preserve atomic-set consistency when executed sequentially.
Atomic-set serializability means that, for each atomic set, its units of work are
serializable, where an execution is serializable if it is equivalent to a serial exe-
cution in which each thread’s units of work are executed with no interleavings
from other threads.

Atomic-set serializability subsumes other correctness criteria for concurrent
systems, such as data-race freedom (single-field atomic sets), and serializability
(all fields in one atomic set). Such other criteria ignore the intended relationships
that may exist between shared memory locations, and thus may not accurately
reflect the intentions of the programmer about correct behavior.
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EMPIRE is a tool to statically detect atomic-set serializability violations
(henceforth referred to as “violations”) in concurrent Java programs. A key chal-
lenge that we faced was how to create a sound, finite model of a Java program’s
locking behavior that is capable of tracking the status of a Java lock, for pro-
grams that use an unbounded number of locks. To address this issue, we devised
a new abstraction principle, random isolation, which has two key advantages:

1. It allows strong updates to be performed on the abstract counterparts of each
randomly-isolated object, which permits EMPIRE to track the status of the
Java lock associated with a randomly-isolated object.

2. It allows properties proved about a randomly-isolated object to be general-
ized to all objects allocated at the same site.

EMPIRE is based on the result that executions that are not atomic-set seri-
alizable can be characterized by a set of problematic interleaving scenarios [1]:
an execution that is free of all of these scenarios is guaranteed to be atomic-set
serializable. In EMPIRE, a problematic interleaving scenario with respect to
a set of shared memory locations is used as an input specification to a model
checker. Specifically, EMPIRE translates a concurrent Java program into a com-
municating pushdown system (CPDS) [2, 3], and translates the scenario into a
violation monitor that checks for the occurrence of the scenario, and runs con-
currently with the other CPDS processes. Once the translation is performed, the
generated CPDS is fed into a CPDS model checker [3].

Previous work [1] addressed the inference of synchronization and appropriate
placement of locks, given annotations for atomic sets and units of work. A second
paper [4] focused on legacy code and checking whether an existing multi-threaded
program is appropriately synchronized, by dynamically detecting the occurrence
of problematic interleaving scenarios. The work on EMPIRE complements these
other approaches by providing a method to statically check Java programs for
problematic interleaving scenarios. EMPIRE’s checking algorithm uses the CPDS
model checker’s semi-decision procedure to (symbolically) consider multiple exe-
cutions of the program. This is in contrast with the dynamic-detection approach
[4], which only looks at one execution at a time.

EMPIRE has two modes of operation. For code that satisfies certain proper-
ties, it can verify the absence of violations. If the properties are not met, then
it can miss errors, and thus operates as a bug detector, rather than a verification
tool. The contributions of our work can be summarized as follows:

— We introduce a new abstraction principle, random isolation, which allows
strong updates to be performed on the abstract counterparts of each randomly-
isolated object. With this approach, properties proved about a randomly-
isolated object can be generalized to all objects allocated at the same site.
Random-isolation is a generic abstraction that should be applicable in many

4 This result relies on an assumption that programs do not always satisfy: a unit of
work that writes to one location of an atomic set, writes to all locations in that
atomic set.
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other contexts, such as typestate verification [5] and other temporal-safety
analyses for object-oriented programs.

— We present a static technique for detecting atomic-set serializability vio-
lations in concurrent Java programs. The method uses random isolation to
obtain a sound, finite model of locking behavior that, in many circumstances,
is able to track the status of a Java lock precisely, even for programs that
use an unbounded number of locks.

— We implemented these techniques in EMPIRE, and ran EMPIRE on eight
programs from the ConTest benchmark suite[6], for which EMPIRE detected
numerous violations, including ones involving multiple locations.

2 Overview

Fig. 1 is a simple Java program inspired by one of the ConTest programs [6].
There are two classes, Shop and Client. The intention of the programmer is
that the method Client.buy() executes atomically, so that when getItem()
is called on the parameter Shop s, s is non-empty. However, this intention is
not implemented correctly: method buy () is synchronized on this and not on
s, hence multiple clients of the same shop could interleave. Fig. 1 shows an
interleaved program execution illustrating this concurency-related bug. After
thread 2 finishes the call to getItem(), the field items is —1, which leads thread
1 to access the array storage with a negative index. This problem can be fixed
by taking a lock on s in the body of buy (). Notice that there is no data race in
this program, so traditional race detectors would not catch this bug.

This concurrency-related bug is an instance of an atomic-set-serializability
violation. In this code, fields items and storage form an atomic set: they are
meant to be updated atomically due to a consistency property. Each method
of class Shop is a unit of work for this atomic set: when executed sequentially,
it preserves the consistency property. In addition, the buy () method of Client
must manipulate the parameter Shop s atomically. It is therefore a unit of work
for the atomic set of s. The interleaved execution of Fig. 1 shows that the
two units of work representing the method buy() are not serializable: i.e., the
execution may produce a final state different from that of any serial execution
of the two methods.

Atomic-set serializability is characterized by a set of problematic interleaving
scenarios: i.e., an execution that does not contain any of the scenarios is atomic-
set-serializable. In the example, the interleaved execution contains the following
problematic scenario: Ry (1), Wa(l2), Wa(ly), R1(l2), where Iy (I2) is bound to
i (s). (See [1] for a complete list of these scenarios.) Notice that atomic-set-
serializability is finer-grained than most notions of serializability because it is
per atomic set, rather than embracing the whole heap.

EMPIRE detects atomic-set-serializability violations by statically checking for
problematic interleaving scenarios. The user provides a concurrent Java program
Prog, and specifies an allocation site v for a class T in Prog. (This is exemplified
by the newy statement in Fig. 1 for the class Shop.) EMPIRE uses the default
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assumptions of [4]: T has one atomic set containing all of T’s declared fields (one
atomic set per object), and every public method of T is a unit of work for that
atomic set. Additionally, any method that takes a T object as a parameter is
also a unit of work. EMPIRE then performs violation detection, focusing on the
atomic sets of objects that can be allocated at .

class Client {

public synchronized boolean buy(Shop s){
if(!s.empty()) { s.getItem(); return true; }
else return false;

class Shop {
Object[] storage = new Object[10];
int items = -1;
public static Shop makeShop(){ )

return newy ShopQ; // K4 public static Client makeClient(){

public synchronized Object getItem(){ return new Client();

Object res = storage[items]; . . . . ;
storage[items—-] = null; public static void main(String[] args){

roturn Tes: Shop shopl = Shop.makeShop();

’ Shop shop2 = Shop.makeShop();

¥ Client clientl = makeClient();

Client client2 = makeClient();
new Thread("1") { clientl.buy(shopl); }
new Thread("2") { client2.buy(shopl); }

public synchronized void put(Object o){
storage[++items] = o;

public synchronized boolean empty(){
return (items == -1); } }
¥
}
buy ()
empty () getItem()
——
1: Rl(l) ........................................ Rl(i)Rl(S)Rl(i)Wl(S)Wl(i)
20 Rz(l) RQ(i)RQ(S)Rz(i)WQ(S)WQ(i) ................................
N
empty () getItem()
buy ()

Fig. 1. Example Program. R and W denote a read and write access, respectively. ¢ and
s denote fields item and storage, respectively. Subscripts are thread ids.

EMPIRE performs violation detection in four stages. First, a source-to-source
transformation is applied to the (potentially) infinite-data program Prog to pre-
pare it for abstraction, obtaining a program Prog” (§3). Second, a finite-data
abstraction is created for translating Prog® into EMPIRE’s intermediate model-
ing language EML (§4). Third, from this EML program, EMPIRE generates CPDSs
to model the program and monitor for problematic interleaving scenarios (§5).
Fourth, state-space exploration is carried out on the generated CPDSs.

The challenge is to design a finite-data abstraction such that (i) the set of
behaviors of the abstracted program is a sound overapproximation of the set of
behaviors of the original Java program, and (ii) the abstraction is able to disallow
certain thread interleavings by modeling the program’s synchronization.

A natural choice for a finite-data abstraction is the allocation-site abstrac-
tion [7]. Given an allocation site ¢ for class T', let Conc(¢)) denote the set of
all concrete objects of type T that can be allocated at . The allocation-site
abstraction uses a single abstract object gﬁ) to summarize all of the concrete
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objects in Conc(v). Thus, for each field f defined by T', field gf,}.f is a summary
field for the set of fields {s.f | ¢ € Conc(¢))}. Because the program has a finite
number of program points, and each class defines a finite number of fields, this
results in a finite-data abstraction.

For such an approach to be sound, an analysis generally has to perform weak
updates on each summary object. That is, information for the summary object
must be accumulated rather than overwritten. A strong update of the abstract
state generally can only be performed when the analysis can prove that there is
exactly one object allocated at ), i.e., |Conc(¢)| = 1.

Violation detection is concerned with tracking reads and writes to the fields
of the T objects allocated at 1. The allocation-site abstraction is a sound overap-
proximation for modeling reads and writes because a read (write) to the abstract
field gg}.f corresponds to a possible read (write) to <. f, for all ¢ € Conc(1)).

Violation detection must also model program synchronization. EMPIRE ac-
complishes this by defining locks in the EML program that correspond to the
objects of Prog™. There are two possibilities for defining the semantics of an EML
lock. The first is to interpret a lock acquire as a strong update, i.e., the program
has definitely acquired a particular lock. This would correspond to acquiring the
locks of all possible instances in Conc(¢)), which in most circumstances would be
unsound. In the example of Fig. 1, this interpretation of locking combined with
the allocation-site abstraction would preclude the interleaved program execution
that contains the bug, because the two Client objects would effectively get the
same lock, and the two buy () methods would execute without interleaving. The
second possibility for defining the semantics of EML locks is to interpret lock
acquire as a weak update, i.e., the program may have acquired a particular lock.
This semantics is sound, but the analysis gains no precision on locking behavior,
since all lock operations are possible rather than definite. In general, this possi-
bility would greatly increase the number of false positives. For instance, in the
example of Fig. 1, if we were to fix the code by adding an additional synchro-
nization block on s inside the body of buy (), analysis would still report a bug
because locking behavior was modeled imprecisely.

Our solution is to use a new abstraction: random-isolation abstraction, which
is a novel extension of allocation-site abstraction. The extension involves ran-
domly isolating one of the concrete objects allocated at allocation site ¥ and
tracking it specially in the abstraction. Whereas allocation-site abstraction would
associate one summary object to v, random isolation associates two objects to 1:
one summary and one non-summary. Because one is a non-summary object, it is
safe to perform strong updates to its (abstract) state. The EML model will have
an EML lock for each non-summary object, on which strong updates—definite
lock acquires and releases—are performed. In constrast, because sound tracking
of the lock state for a summary object generally would result in T, our models
have no locks on summary objects: their modeled behaviors are not restricted
by synchronization primitives. This provides a sound, finite model of the locking
behavior of Prog*. (It is an over-approximation because the absence of locks on
summary objects causes them to gain additional behaviors.)
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The essence of random isolation can be captured via a simple source-to-source
transformation. Consider the following code fragment.

public static Shop makeShop() { return new,, Shop(); } (1)
Random isolation involves transforming the allocation statement into
(rand() && test-and-set(Gy)) ? newy, Shop() : new,, Shop();. (2)

The site ¢ from code fragment (1) is transformed into a conditional-allocation
site, where the conditional “tests-and-sets” a newly introduced global flag G.
The global flag Gy ensures that only one object can ever be allocated at the
generated site 1,. This has two benefits: (i) because abstract object gﬁ* is a
non-summary object, strong updates can be performed on it, and (ii) because
concrete object ¢y, is chosen randomly, every property proven to hold for ¢

must also hold for every concrete object ¢ € Conc(v). ’

3 Random-Isolation Abstraction

The random-isolation abstraction is motivated by the following observation:

Observation 1 The concrete objects that can be allocated at a given allocation
site v, Conc()), cannot be distinguished by the allocation-site abstraction.

Obs. 1 says that if one chooses to isolate a random concrete object ¢ from the
summary object gﬁ), the allocation-site abstraction would not be able to dis-
tinguish the randomly-chosen concrete object from any of the other concrete
objects that are summarized by gf,}.

Random isolation extends allocation-site abstraction in two ways. First, whereas
allocation-site abstraction uses one abstract object gﬁ) to summarize the concrete
objects Conc(v)), random-isolation abstraction associates two abstract objects
with ¢: gﬁ) and CB/;*' Second, the global boolean flag G, records whether the
randomly-isolated object has been allocated or not. This eliminates the possibil-
ity that the concretization of the special abstract object gg}* is the empty set,
and enforces isolation, which gives us Random-Isolation Principle I:

Random-Isolation Principle 1 (Updates) Let, € Conc(¢)) be a randomly-
isolated concrete object. Because s, is modeled by a special abstract object CB/;*:
the random-isolation abstraction enables an analysis to perform strong updates

on the state of gg}*.

Random isolation also provides a powerful methodology for proving proper-
ties of a program: a proof that a property ¢ holds for CB/J* proves that ¢ holds for
all ¢ € Conc(¢)). Consider a concrete trace of the program in which a concrete
object ¢’ is allocated at a dynamic instance of v, and ¢ does not hold for ¢’.
Because of random isolation, the randomly-isolated object ¢y, is just as likely
to be ¢’ as it is to be any other concrete object. Thus, the prover must consider
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the case that ¢, is ¢’. Because the property holds for gﬁ)*, and because gﬁ)* rep-

resents ¢’ in the trace under consideration, then the property must also hold for
¢’, which is a contradiction. This gives us Random-Isolation Principle 2:

Random-Isolation Principle 2 (Proofs) Given a property ¢ and site v, a

proof that ¢ holds for the randomly-isolated abstract object gg}* proves that ¢

holds for every object that is allocated at 1. That is, qb(gfb*) — (Veeconc(y)-9(5))-

Before describing the technical details of how we implemented random iso-
lation, we highlight the benefits of random isolation for performing violation
detection. Because of random isolation, the state of the Java lock that is associ-
ated with the random instance ¢;, can be modeled precisely by the state of the
special abstract object gﬁj*. That is, the acquiring and releasing of the lock for
Gy, by a thread of execution can be modeled by a strong update on the state
of gg}*, thus allowing the analyzer to disallow certain thread interleavings when
performing state-space exploration on the generated EML program.

3.1 Implementing Random Isolation

We implemented random isolation via the source-to-source transformation out-
lined in §2. To keep the source-to-source transformation semantics-preserving,
and to ensure that only one concrete object can be allocated at 1., an atomic
“test-and-set” operation must be performed on the boolean flag G.> Without
the use of an atomic “test-and-set”, the source-to-source transformation intro-
duces a race condition that allows multiple objects to be allocated at ¥,. This
in turn would invalidate Random-Isolation Principles 1 & 2.

While the use of a source-to-source transformation is not strictly necessary
to implement random isolation, it allows existing object-sensitive analyses to
be used with minimal changes. For example, let Pts be the points-to relation
computed via a flow-insensitive, object-sensitive points-to analysis in the style
of [8], and CG be an object-sensitive call graph.® Because these two analysis
artifacts are object-sensitive, their respective dataflow facts make a distinction
between those for ¥, and those for . For example, if T" defines a method T.m,
then CG will contain at least two nodes for T.m: one for object context ,, and
one for object context 1. Thus, inside of the control-flow graph for T.m with
object context ., an analysis is able to take advantage of the fact that the
special Java this variable is referring to the non-summary object gg}*. That is, a

unique context of T.m has been created for CB/J* without modifying the analyses!

5 We use “test-and-set” to emphasize that random isolation is not particular to Java.
For Java, we use the method AtomicBoolean.compareAndSwap.

5 An object-sensitive call graph CG models the interprocedural control flow of a pro-
gram: there is a node in CG for each method of the program for each context in which
it can be invoked [8]. An object-sensitive points-to analysis associates points-to facts
with the nodes of CG, thus computing different points-to facts for different object
contexts of the same method.
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In some situations, however, a CG node’s context is not enough to distinguish
between CB/J* and gﬁ). Consider the code fragment “synchronized(t) { t.m() }”,

where t is defined as in code fragment (2), and Pts(t) = {gﬁ}* , gﬂ}} For performing
violation detection, we require the ability to reason precisely about the state of a
lock. Thus, in the program abstraction, we must be able to distinguish between
the case when t references gﬁ)* and when t references gﬁ).

We solve this via a second source-to-source transformation that dispatches
on the set of objects that are in Pts(t).

if (is_ri(t)) { synchronized(t) { t.m() } } else { synchronized(t) { t.m(); } }

In the source program, the method “is_ri” is defined as the identity function,
and thus has no effect on the meaning of the program. However, the points-to
analysis uses semantic reinterpretation of is_ri that performs a case analysis on
Pts(t). Specifically, the reinterpreted is_ri performs the abstract test “t == gg}*”,
which allows the points-to analysis to perform assume statements on the branch-
ing paths (e.g., when following the true branch of the condition, the points-to
analysis performs an “assume Pts(t) = {gﬁj*}”). One can view this as a way to
achieve object-sensitivity at the level of a program block instead of just at the
method level. Although we presented this second transformation in the context
of violation detection, it is a generic approach that can be applied wherever an
analysis needs to distinguish between gﬁ)* and gﬁ) to perform a strong update.

4 Translation to the Empire Modeling Language (EML)

We now describe how EMPIRE defines an EML program.

4.1 Empire Modeling Language

An EML program & consists of (i) a finite number of shared-memory locations;
(ii) a finite number of reentrant locks; and (iii) a finite number of concurrently
executing processes.

An EML lock is reentrant, meaning that the lock can be reacquired by an EML
process that currently owns the lock, and also that the lock must be released
the same number of times to become free. EML restricts the acquisition and
release of an EML lock to occur within the body of a function, i.e., an EML
lock cannot be acquired in a function f and released in another function f’.
In addition, the acquisition of multiple EML locks by an EML process must be
properly nested: an EML process must release a set of held locks in the order
opposite to their acquisition order. The two restrictions are naturally fulfilled by
Java’s synchronized blocks and methods.

An EML process is defined by a set of (possibly) recursive functions, one of
which is designated as the main function of the process. Each function consists
of a sequence of statements, each of which is either a goto, choice, skip, call f,
label lab, return, read m, write m, alloc [, lock [, unlock [, unitbegin, unitend, or
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| Java | EML | Condition |
x = o.f ; o.f = x|read my ; write my ci* € Pts(o)

sync(o){...} lock qﬁ}* ;. . ;unlock qﬁ}* Pts(o) = {qﬁ}*}

sync(o){...} skip;. . . ;skip Pts(o) # {gﬁ}*}

o.start() start Py, Py, € Pts(0), Thread.start () invoked.
o.u() unitbegin;call u; unitend cﬁj* € Pts(0), u() is a unit of work
0.m(Q) call m

Table 1. Example Java statements, their corresponding EML statements, and the
condition necessary to generate the EML statement.

start P. The statement “start P” starts the EML process named P. This is used
to model the fact that when a Java program begins, only one thread is executing
the main method, and all other threads cannot begin execution until they have
been started by an already executing thread. (The other kinds of statements
should be self-explanatory.)

4.2 EML Generation

EMPIRE defines the EML program & as follows. To model the randomly-isolated
abstract object §5)*, & defines a shared memory location my for each field f of

the class T', and also an EML lock gﬁ)* to model the lock associated with gg}*.

The status of the global flag G, is modeled by the EML lock CB/J* being allocated
or not. Let Threads be the set of all subclasses of java.lang.Thread. For each
0 € Threads, and for each allocation site vy that allocates an instance of 8, £
defines an EML process Py, that models the behavior of one instance of § that
is allocated at 1y. Finally, £ defines an EML process Pnain that models the Java
thread that begins execution of the main method. Each EML process P defines
a function for each method that is reachable from P’s entry point in CG. The
translation from Java statements to EML statements is straightforward, with
example translations given in Tab. 1.

5 Translation to Communicating Pushdown Systems

In this section, we describe the translation of EML programs into CPDSs.

5.1 Communicating Pushdown Systems

Definition 1. A pushdown system (PDS) is a four-tuple P = (Q, Act, I, A),
where Q is a finite set of states, Act is a finite set of actions, I' is a finite
stack alphabet, and A is a finite set of rules of the form (q,v) L(q',u’), where
4,¢ €Q,a€ Act,y e I', and v’ € I'*. A configuration of P is a pair ¢ = (g, u),
where ¢ € Q and u € I'* is the stack contents. A set of configurations C' is
reqular if for each q € Q the language {u € I'* | {q,u) € C} is regular.
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| Rule | Control flow modeled |
{g,n1) <% (g, n2) Intraprocedural edge ni — no
(g,¢) <5 (g ef 7) Call to f from c that returns to r
(g, f) < (g, €) Return from f at exit node x¢

Table 2. The encoding of a call graph’s and CFG’s edges as PDS rules. The action a
denotes the abstract behavior of executing that edge.

We assume that associated with each PDS P is an initial configuration cjnit.
For all w € I'*, a configuration ¢ = (g, yu) can make a transition to a configura-
tion ¢ = (¢’, v u) if there exists a rule r € A of the form (g, ~) L(q’,u’) We
denote this transition by -+ and extend it to 2" in the obvious manner.
For a set of configurations C, we define the target language of P with respect to
C as Lang(P,C) = {w | Ic € C,w € Act*, Cinit — c}.

Because PDSs maintain a stack, they naturally model the interprocedural
control flow of a thread of execution. The translation from a call graph and set
of control-flow graphs (CFGs) into a PDS is shown in Tab. 2.

Definition 2. A communicating pushdown system (CPDS) is a tuple CP =
(P1,...,Pn) of PDSs. The action set Act of CP is equal to the union of the
action sets of the P;, along with the special action T: T has the property that
for all a € \J} Act;, Ta = at = a. The rules A; for PDS P; are augmented to

include {(g,7) ——(q,7) | ¢ € Qi,7 € Ti,a € (Act\ Act;)}.

Given n sets of configurations S = (Ci,...,C,), we define the target lan-
guage of a CPDS CP with respect to S as Lang(CP,S) = (), <,<,, Lang(P;, Cy),
where intersection enforces that all the P; synchronize on the global actions.
The goal of the CPDS model checker [3] is to determine if Lang(CP, .S) is empty.
Because each language Lang(P;, C;) can be, in general, a context-free language,
and the problem of checking their intersection for emptiness is known to be un-
decidable, the CPDS model checker algorithm is only a semi-decision procedure.
The semi-decision procedure may not terminate, but is guaranteed to termi-
nate if there exists a finite-length sequence of actions, w = a; ... a,, such that
w € Lang(CP,.5). Additionally, in some cases, the semi-decision procedure can
determine that Lang(CP, S) = (). We refer the reader to [3] for more details.

5.2 CPDS Generation

An EML program has a set of shared-memory locations, Syem, a set of EML
locks, Siocks, and a set of EML processes, Sprocs- EMPIRE generates a number of
CPDSs for a given EML program: a CPDS is generated for each pair (mys,my) €
SMem X Smem for the fourteen interleaving scenarios. Pairs are used because the
interleaving scenarios are defined in terms of at most two locations from an
atomic set [4]. In total, EMPIRE generates O(14 * (|Swvem|?)) CPDSs for an EML
program.

For a generated CPDS CP, there is a PDS for each global component of the
EML program: CP contains a PDS that monitors for a violation, a PDS for each
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6 R, (i) @ W,(s) %Wz(i) % Ry(s) @ @ i.aIIoc@/i::zlzk @

(a) (b)

Fig. 2. (a) Race automaton for interleaving scenario 12 for example program in Fig. 1.
(b) Lock automaton template. There is a state “i” for each EML process in Sprocs.

lock, and a PDS for each EML process. We now describe the generation technique
for each component in turn. When the target language of a PDS is regular, we
define it in terms of a finite-state machine (FSM). (An FSM is a single-state PDS
with no push or pop rules; the initial configuration describes the initial state;
and the final set of configurations describes the accepting state(s) of the FSM.)

The violation monitor detects when one of the interleaving scenarios occurs
during a unit of work. The violation monitor is defined by a race automaton [4],
which is a finite automaton that contains one state for each access defined by
the scenario; transitions between states that reflect that an access has occurred;
and self-transitions on states for accesses that do not make the scenario progress.
Fig. 2(a) shows the race automaton that accepts the violation of scenario 12 for
the example program.

Because an EML lock is reentrant, the language of the PDS that describes such
behavior is context-free. However, previous work by the authors [9] developed
a technique that safely removes reentrant acquisitions from an EML process,
enabling the EML lock to be modeled as an FSM. Fig. 2(b) depicts a template
FSM for one EML lock. The FSM begins in the Unallocated state, transitions
to the Free state upon being allocated, and alternates between an “acquired-
by-process-i” state and the Free state. Transitioning from Unallocated to Free
denotes setting the global flag G associated with gﬁ)*.

Generating a PDS P for an EML process P is performed in two stages. First,
a single-state PDS Py = (Q1, Acty, I'1, A1) is generated using the rule templates
depicted in Tab. 2, with Act; being the set of all distinct EML statements used
by P. Py captures the interprocedural control flow of P.

Second, PDS Py = (Q, Acty, I, Ay) is defined as follows: Qo = 2o x Q1
Acty = {P.a | a € (Acty \ start)} U {P alloc ¢! | P’ € (Sprocs \ {P})}, I> =
It U{guess}, and A is defined from A; as shown in Tab. 3. Attaching the EML
process’s name P to the actions in Acty enables the violation monitor and locks
to know which EML process performs an action. In Tab. 3, row 2 ensures that
no lock is allocated more than once; row 3 ensures that a lock is not used before
being allocated; and rows 4 and 5 ensure that the shared-memory locations are
not accessed before gﬁ)* has been allocated. Row 6 defines rules that invoke the
“guessing” procedure for each configuration of P,. Guessing is necessary because
an EML process cannot know when another EML process allocates a lock. Row 7
defines rules that implement the guessing procedure: from state (s, q), s C Siocks,
guess that EML process P’ € (Sprocs \ { P}) allocates a lock de (SLocks \ ), and
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|Action a |Ru|e (q,7) —{q,w) |

T, start P’ {{(s,9),7) L((s,q'),uﬁ |s € 9 Stocks }

alloc ¢ [{ {(5,9).7) = ((s',#), w) s €25 Nt ¢ A = sU{cE) )

lock /unlock <! |{ ((s,q),7) &((57(1/)710) |'s € 25eis Ah €5}

read /write m s |{ ((5,9),7) “{(s,¢), w) [sc2mndt cs}

ubegin/uend |{ {(s,q),7) &((5761’)710) | 5 € 25tocks /\gﬁ,* cs}

* {((s,9),7) —((s,q), guess 7) | s € 25tocks }

* [ {(00). guess) " 25 (o p).e) | 5 € 2% el g s n s’ = s (et}
A P € (Sproes \ {P}) }

Table 3. Each row defines a set of PDS rules that are necessary for modeling the
allocation of locks (see §5.2).

return back to the caller in the new state (s U{s?},¢). The guessing rule is then
labeled with action P’.alloc ¢f.

Once CP has been generated, a language-emptiness query is passed to the
CPDS model checker. This requires defining the target set of configurations for
each PDS P;. For a PDS whose target language is regular, the target set of
configurations is defined by the FSM. For a PDS that describes an EML process,
the target set of configurations is any configuration (i.e., {{q,u) | ¢ € Q,u €
I'*}). Let S be the configuration sets for the PDSs. The language-emptiness
query as defined is such that Lang(CP,S) = 0 is true if-and-only-if the EML
program cannot generate a trace accepted by the violation monitor.

6 Experiments

EMPIRE is implemented using the WALA [10] program-analysis framework. Ran-
dom isolation uses WALA’s support for rewriting the abstract-syntax tree of a
Java program. The default object-senstive call graph construction and points-to
analyses are modified to implement the semantic reinterpretation of “is_ri”, as
described in §3.1.

We evaluated EMPIRE on eight programs from the ConTest suite [6], which
is a set of small benchmarks with known non-trivial concurrency bugs. All ex-
periments were run on a dual-core 3 GHz Pentium Xeon processor with 16 GB
of memory. The analyzed programs are modified versions of those in the Con-
Test suite. To reduce the size of the generated models, we removed all use of
file I/O from the programs. When a benchmark used a shared object of type
java.lang.0Object as a lock, the type was changed to java.lang.Integer be-
cause our implementation uses selective object-sensitivity, for which the use of
java.lang.0Object as a shared lock removes all selectivity and severely de-
grades performance. The programs AllocationV and Shop define a thread’s
run () method that consists of a loop that repeatedly executes one unit of work.
For these programs, the code body of the loop was extracted out into its own
method so that the default unit-of-work assumptions would be correct. Finally,



Finding Concurrency-Related Bugs using Random Isolation 13

Nr| Program CPDSs| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14
1| account 352 V| vV VIV

2| airlinesTckts 630 v'| vV v VI vV

3| AllocationV 15| V| v

4| BuggyProgram 68 v

5| BugTester 435

6| PingPong 460| V| V| vV AW AW AW awaw 4 Va4
7| ProdConsumer 21| V| VI VIV V| V| V| V]V v V|V
8| Shop 542| v'| v v ViV V|V
Totals 2793

Table 4. Marked entries denote violations reported by EMPIRE, with v* being a verified
violation and A a false positive. Scenarios 6-11 involve two memory locations.

many benchmarks allocate threads in a loop. We manually unrolled these loops
to make the programs use a finite number of threads.

For 6 of the 8 benchmarks listed in Tab. 4, EMPIRE found multiple viola-
tions. The false positives reported for PingPong are due to an overapproxima-
tion of a thread’s control flow—exceptional control paths are allowed in the
model that cannot occur during a real execution of the program. The program
ProducerConsumer has an atomic set with mutiple fields and uses no synchro-
nization. While not interesting for violation detection, it validates that our ap-
proach is able to detect each of the problematic interleaving scenarios. Overall,
the initial results are encouraging for applying EMPIRE to larger programs. Fu-
ture work on EMPIRE includes a thread-escape analysis—determining the allo-
cation sites that allocate shared objects—which would allow EMPIRE to analyze
the escaping allocation sites using the default assumptions.

7 Related Work

Strong updates on an isolated non-summary object. The idea of isolating
a distinguished non-summary node that represents the memory location that will
be updated during a transition, so that a strong update can be performed on
it, has a long history in shape-analysis algorithms [11-13]. When these methods
also employ the allocation-site abstraction, each abstract memory configuration
will have some bounded number of abstract nodes per allocation site.

Like random-isolation abstraction, recency abstraction [14] uses no more than
two abstract blocks per allocation site ¥: a non-summary block MRAB[¢)], which
represents the most-recently-allocated block allocated at ¢, and a summary
block NMRABJ¢], which represents the non-most-recently-allocated blocks al-
located at 1. As the names indicate, recency abstraction is based on tracking a
temporal property of a block b: the is-the-most-recent-block-from-1(b) property.

With counter abstraction [15-17], numeric information is attached to sum-
mary objects to characterize the number of concrete objects represented. The
information on summary object u of abstract configuration S describes the num-
ber of concrete objects that are mapped to w in any concrete configuration that
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S represents. Counter abstraction has been used to analyze infinite-state systems
[15,16], as well as in shape analysis [17].

In contrast to all of the aforementioned work, random-isolation abstraction is

based on tracking the properties of a random individual, and generalizing from
the properties of the randomly chosen individual according to Random-Isolation
Principle 2.
Detection of concurrency-related bugs. Traditional work on error detection
for concurrent programs has focused on classical data races. Static approaches
for detecting data races include type systems, where the programmer indicates
proper synchronization via type annotations (see e.g., [18]), model checking (see
e.g., [19]), and static analysis (see e.g., [20]). Dynamic analyses for detecting data
races include those based on the lockset algorithm [21], on the happens-before
relation [22], or on a combination of the two [23]. A data race is a heuristic in-
dication that a concurrency bug may exist, and does not directly correspond to
a notion of program correctness. In our approach, we consider atomic-set serial-
izability as a correctness criterion, which captures the programmer’s intentions
for correct behavior directly.

High-level data races may take the form of view inconsistency [24], where
memory is read inconsistently, as well as stale-value errors [25], where a value
read from a shared variable is used beyond the synchronization scope in which
it was acquired. Our problematic interleaving scenarios capture these forms of
high-level data races, as well as several others, in one framework.

Several notions of serializability (or atomicity) and associated detection tools
have been presented, including [26-29]. These correctness criteria ignore relation-
ships that may exist between shared memory locations, and treat all locations
as forming one atomic set. Therefore, they may not accurately reflect the in-
tentions of the programmer for correct behavior. Atomic-set-serializability takes
such relationships into account and provides a finer-grained correctness criterion
for concurrent systems. For a detailed discussion and comparison of different
notions of serializability see [4].

Atomic-set serializality was proposed by Vaziri et al. [1]. That work focused
on inference of locks. A dynamic violation-detection tool was proposed in [4] to
find errors in legacy code. Our tool is a static counterpart with the benefit that
it (symbolically) considers multiple executions of a program, instead of just one
execution like the dynamic tool.
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