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Abstract 
As additive manufacturing (AM) continues to mature, an efficient and effective method to identify parts 

which are eligible for AM as well as gaining insight on what values it may add to a product is needed. 

Prior methods are naturally developed and highly experience-dependent, which falls short for its 

objectiveness and transferability. In this paper, a decision support system (DSS) framework for 

automatically determining the candidacy of a part or assembly for AM applications is proposed based on 

machine learning (ML) and carefully selected candidacy criteria. With the goal of supporting efficient 

candidate screening in the early conceptual design stage, these criteria are further individually decoded 

to decisive parameters which can be extracted from digital models or resource planning databases. Over 

200 existing industrial examples are manually collected and labelled as training data; meanwhile, 

multiple regression algorithms are tested against each AM potential to find better predictive 

performance. The proposed DSS framework is implemented as a web application with integrated cloud-

based database and ML service, which allows advantages of easy maintenance, upgrade, and retraining 

of ML models. Two case studies of a hip implant and a throttle pedal are used as demonstrating 

examples. This preliminary work provides a promising solution for lowering the requirements of non-AM 

experts to find suitable AM candidates. 

Keywords: additive manufacturing, machine learning, candidate identification, conceptual design 

1. Introduction 
Additive manufacturing (AM) has the potential to change the way products are designed, produced, and 

distributed (Thompson et al. 2016). Though many organizations are interested in the idea of 

incorporating AM into their development process, they are at a natural disadvantage: AM is still in its 

infancy compared to conventional manufacturing (CM) methods and lacks the centuries of development 

and knowledge-sharing which leads to an in-depth understanding of how and when it may best be 

applied. The gap of knowledge vacancy has been identified by the Information and Communications 

Technology Council of Canada (ICTC) (2017) and other authorities (Wohlers Report 2018). The ICTC also 

found that only a small amount of companies has used or planned to use AM in the near future. Since 

AM is not a catch-all solution, educating a workforce on the new technology just to see if it might be of 

value bears a significant risk. Therefore, as AM continues to push its way into the production 

manufacturing space, there will inevitably be a lack of talents who are ready and able to deploy it. Those 

who are in a position to enable this change must first possess the knowledge on how to unlock its 

unique potentials.  

mailto:ying.zhang8@mail.mcgill.ca
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Identifying which parts/assemblies in a repository are suitable for AM is one of such top challenges 

because there is no clear formula which leads to a successful adoption of the technology. Success varies 

widely depending on how the needs of the company match up with the unique potentials of AM. Some 

restrictive rules have been developed which can help guide the decision-making process, such as 

maximum build volume and batch size (Doubrovski et al. 2011), but the trade-offs between these AM 

limitations and the geometric, functionality, economic, and societal benefits are less often discussed. To 

solve the problem of identifying part candidacy, a few methods including heuristic ones (Klahn et al. 

2014; Booth et al. 2017; Reiher et al. 2017) and computational ones (Yang et al. 2018; Yang et al. 2019c; 

Yao et al. 2017)  have been reported. These approaches are either highly expertise-dependent or only 

focused on specific AM potentials (e.g. part consolidation or lightweight). Moreover, as the scale of 

targeted part repositories (e.g. a complex system with thousands of parts or even more) increases, 

efficiency and computational cost is of significant concerns. Therefore, an automated method which can 

quickly identify potential candidates for AM applications and present insights on what values AM may 

add to a product is needed. Such an approach can serve as a first-level filter for novice AM users (e.g. 

product managers) to narrow down the scope of potential part candidates, and then AM expertise is 

sought for further examination.  

To achieve the above objectives, comprehensive literatures are first reviewed on the beneficial aspects 

of AM as well as the existing approaches of part candidacy identification (Section 2). Then a 

methodological framework to support the automation of identifying part candidacy is presented 

(Section 3). Implementation of the proposed framework and its validation are illustrated in Sections 4 

and 5 respectively. This paper ends up with discussions and future work.  

2. Literature review 
This section mainly reviews work on: 1) AM potential analysis, and 2) existing part candidacy 

identification methods. The first part will provide a comprehensive insight of potential advantages of 

adopting AM in product development, which helps to yield a set of decision criteria to justify the 

conditions of “AM suitability”. The second part summarizes the ongoing efforts of AM part candidate 

detection and comparison of its transferability. 

2.1 Dimensions of AM potentials and its breakdown 
AM potentials refer to the opportunistic aspects that encourage the adoptability of AM processes 

compared to conventional fabrication methods. Although the restrictive aspects of AM, such as material 

availability, overhang issues, and dimensional accuracy as reviewed in literatures (Laverne et al. 2015; 

Thompson et al. 2016), are also critical for the decision making of justifying AM’s suitability, this paper 

only focuses on the potential perspective that motivates the consideration of AM. This strategy can help 

to improve screening efficiency and avoid neglecting parts that fail manufacturing rules but may have 

big gains if redesigned for AM.  Moreover, given the diversity of AM processes and machines, the 

applicability of AM feasibility investigation at the early design stage is tedious and the feasibility changes 

from one process to another. Various efforts have been reported to classify the AM potentials. In 

general, the potentials cover three main perspectives: design + geometric complexity, economic 

advantages, and social and environmental benefits. The overall AM potential mind map is depicted in 

Figure 1. Design and geometric complexity mainly focus on functionality and performance improvement 

as well as expanded manufacturing capability due to AM adoption. The aspect of cost and time savings 

are distributed in categories of intertwined production and supply chain. Potential influences on 



3 
 

organizational management and ecology are also discussed. The breakdown of each AM-potential 

dimension is represented by the branches connected to the bold box respectively.  

Design + geometric complexity 

Design, here, refers to the potential to improve in terms of functionality and performance via AM, while 

geometric complexity refers to the potential to fabricate as is without altering the design. Conner et al. 

(2014) constructed a three-dimensional space with part complexity, level of customization and 

production volume being the axes and eight production scenarios were discussed. Numerical metrics 

were derived for each dimension of a part, and then parts are assessed and assigned to one of the 

production scenarios, which further indicates the selection of AM or CM. Klahn et al. (2014) identified 

four design potentials of AM as integrated design, individualization, lightweight design, and efficient 

design. A more expanded classification of design potentials was released by the ISO/ASTM 52910 

standards (2015) outlining six items: customization, lightweight, internal channel/structures, function 

integration, surface structures, and material options (e.g. hybrid materials). These works help to educate 

engineers the potential enhancement in terms of product functionality and performance to be gained 

when changing from CM to AM.  

Dimensions of AM 
potentials

Design

Functional 
integration

Surface 
structures

Internal 
channels or 
structures

Material 
options

Lightweighting

Customization

Geometric 
complexity

Informational 
markings

Draft angles

Non-standard 
dimensions

Deep holes or 
pockets

Holes 
intersecting 

cavities

Multiple 
setups 

required

Ribs or 
undercuts

Variable wall 
thickness

Organization 
management

Staff already 
trained on AM

Development 
deadline

# of emergency 
work orders

Production

Yield
Changeover 

time
Productivity 

per employee

Energy cost 
per unit

Throughput

Capacity 
utilization

Total cost per 
unit

Cycle time

# of parts to 
be tracked

Supply chain

Sustainability

Inventory 
(warehouse)

Packaging

Transportation

Weight 
(transport)

Energy 
consumption 

per unit

Decentralized 
manufacturing

Raw material 
required

Lots size

 

Figure 1 the mind map of dimensions of AM potentials. 

There is a significant difference between how CM and AM respond to geometric complexity. This 

disparity makes the complexity of a part a good indicator of which manufacturing method should be 

used (i.e. CM or AM). In CM context, geometric complexity normally is measured by difficulty-to-

manufacture features. Investigation of part features that are designed for CM boosts the appreciation of 

much expanded manufacturing capabilities of AM. As shown in Figure 1, such features of CM include but 

not limit to deep holes, large draft angle, cavities and undercuts. A geometric complexity factor was 
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particularly developed for evaluating the shape complexity of castings (Joshi and Ravi 2010). The factor 

was based on geometric parameters such as the number of cored features, volume and surface area of 

part, core volume, section thickness and draw distance. In contrast, with the help of AM, metrics of 

geometric complexity should no longer be bounded by these features. Parts with more organic shapes 

and hierarchical structures created by techniques such as topology optimization (Rozvany 2009) and 

cellular structures (Tang et al. 2015) require more effective metrics for AM applications. Based on the 

previous work (Joshi and Ravi 2010), Conner et al. (2014) proposed a weighted complexity factor with 

aggregation of part volume ratio, surface area ratio, and number of holes or slots. Other computational 

approaches also used the number of triangles in the STL file (Valentan et al. 2008) and convexity ratio 

(Fera et al. 2018) as a measure of geometric complexity.  

Economic considerations  

The potential reduction of production cost and development time is one of major benefits of AM. 

Economic analysis of whether AM can compete with CM not only needs to consider direct production 

cost but also the associated cost in the alternation of supply chain(Deppe et al. 2015). A set of metrics 

for evaluating productivity of conventional manufacturing system was established in (Huang et al. 2002) 

as shown in Figure 1. It covers a wide range of parameters including yield, throughput, lot size, etc. In 

AM field, Deppe et al. (2015) developed a specific cost evaluation model for aerospace components in 

the sector of Maintenance, Repair, and Overhaul. The established model fully investigated the 

influencing factors such as machine, material, part, and general costs of labor, maintenance, capacity, 

and depreciation. Compared to conventional production system, AM depicts small lot-size advantages. 

The absence of tooling, individual set-up procedures, and equipment changeover makes AM more 

favorable, and the lot size of 1 becomes economic (Tuck et al. 2008). The small lot size advantage 

further enables rapid iteration of new product development and enhances the communication efficiency 

within the development team. Combined with the design potentials of customization and improved 

functionality, economic lot size, incremental product launch, reduced production tools, rapid 

prototyping, and process concentration are concluded as value clusters to support AM decision making 

(Fontana et al. 2019).  

Another big change of the production philosophy brought by AM is the shortened supply chain. The 

possibility of consolidating assemblies into a single part as well as the inventory level significantly 

reshape the spare parts management and distribution strategy (Huang et al. 2013). The consequential 

effects include reduction in the need for warehousing, transportation, and packaging. For spare parts 

supply chain, the key performance indicators are the response time for an unpredictable demand, and 

the total 

costs for production, storage, and logistics of a spare part. Several researchers have investigated the use 

of AM in spare parts management (Hasan and Rennie 2008; Holmström et al. 2010; Thomas 2016; 

Knofius et al. 2019; Knofius et al. 2016). The advantages of increased responsiveness and robustness in a 

discontinuous supply chain by AM has been outlined by these authors. Repair and remanufacturing can 

also be highly advantageous from a cost and lead time perspective, as little backup inventory is required 

and replacement parts can be built at any time (Zhang et al. 2018) 

Social and environmental benefits 

Sustainability advantages of AM can be concluded as less manufacturing waste, higher material 

efficiency, reduced energy consumption, and subsequent reduction in the transportation and inventory 
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waste. On the social sustainability aspect, the social issues concerning AM are the work condition and 

worker’s health (Huang et al. 2013). Potential health benefits may be gained by avoiding long-term 

exposure to harsh and hazardous work environment. Another social benefit comes from the change of 

consumption patterns. In contrast with the passive customer behavior, the easy access of CAD software 

and 3D printers enables a new concept of “prosumer” who consumes and produces a product. Matos et 

al. (2019) further explored the AM social impacts of intellectual properties, work, and education and 

skills. Particularly, the social impacts on skills and education requirements are discussed because the 

immaturity and knowledge gaps of this new technology makes AM not well integrated with the 

education and engineering training. With special interests of analyzing the impacts of advanced 

manufacturing technology on organizational structure, Ghani and his colleagues (2002) enumerated the 

characteristics of a typical organization and concluded the need for proactive planning to facilitate 

changes to maximize productivity to take advantages of new technology. On the environmental potency 

of AM processes and materials, various aspects have been discussed including lightweight benefits 

(Huang et al. 2015; Tang et al. 2016a), part consolidation (Tang et al. 2016b; Yang et al. 2019a), energy 

efficiency (Baumers et al. 2017; Watson and Taminger 2015), raw material (Kellens et al. 2017), 

decentralization (Bogers et al. 2016), hybrid manufacturing (Caligiana et al. 2017), and process selection 

(Watson and Taminger 2015; Paris et al. 2016; Priarone and Ingarao 2017). 

2.2 Part candidacy identification methods 
Identification of suitable parts and applications for AM is one of the challenges for its wider adoption in 

industry. Some early efforts tried to provide guidence of selecting the pilot study projects and help the 

practitioners to gain valuable experience. Among which, one research stream follows the path of 

manfuacturability evaluation. These research works emphasized on using process constraints, such as 

material availablility, volume size, tolerencing, and geometric complexity, as the filtering criteria of AM 

eligibility based on the current design. Representative literature includes  manufacturing process 

selection (Lovatt and Shercliff 1998), geometry-based manfucturability evaluation (Tedia and Williams 

2016), and DfAM worksheet (Booth et al. 2017). However, these filtering criteria are overly rigid and 

eliminate the opportunities for AM redesign and added value. For instance, AM-enabled new design 

may drastically differ from the current design; therefore, the constraints of volume limitation become 

less important.  

To encourage more active learning and application of AM, this paper focus mostly on the opportunistic 

aspects so that potential candidates will not be missed in the first round of screening in the part 

repository while improving the screening efficiency. Related work in this stream is compared against the 

rules of candidacy criteria, comprehensiveness (i.e. single potential V.S. multiple potentials), AM 

expertise requirements, and implementation method as summarized in Table 1. Overall, none of these 

research has provided an automatic solution for novice AM users in exploring multiple AM potentials. 

Prior studies with higher AM comprehensivenss generally required good knowledge of AM to interpret 

the heuristic questions. More detailed discussions follow after the table.  

Table 1 summary of part candidacy identification methods 

 
Candidacy Criteria Comprehensiveness AM expertise Implementation 

Constraint Potential Single Multiple Novice Skilled Heuristic Computation 

Merkt et al. (2012)         
Klahn et al. (2014)         
Materialise (2014)         
Lindemann et al. (2015)       *   
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Leutenecker-Twelsiek et al. 
(2017) 

        

Reiher et al. (2017)         
Senvol LLC (2017)         
Yao et al. (2017)         
Yang et al. (2018)         
Yang et al. (2019c; 2018)         

* The first stage requires AM neutral knowledge, while the second stage needs AM experts to evaluate the response. 

Merkt and his colleagues (2012) are amongst the first ones to draw attention to the problem of part 

candidacy identification. They proposed an Integrated Technology Evaluation Model (ITEM) in which the 

part candidacy via Selective Laser Melting (SLM) is established through a four-stage evaluation. It covers 

product process analysis, economic analysis, economic potential analysis, and technology potential 

analysis. However, detailed metrics for AM potentials were not discussed except geometric complexity. 

Lindemann et al. (2015) and Reiher et al. (2017) created a Trade-off Methodology (TOM) matrix to 

compile a shortlist of potential candidates through two stages. The TOM is filled out first by a company 

employee and then by an AM expert to evaluate the employee's responses and apply weightings to each 

criterion that covers domain-specific interests (e.g. buy-to-fly ratio).  As pointed out by their recent work 

(Kruse et al. 2017), a significant amount subjectivity may occur by the types of questions and weighting 

scheme of Likert scale. Leutenecker-Twelsiek et al. (2017) etablished an Experience Transfer Model 

(ETM) to transfer AM experience relating to part candidate identification and design through steps of 

theoretical education, implementation, and reflection. AM eligibility was assessed based on their 

previous work (Klahn et al. 2014) which needed inputs of part information and expected AM design 

benefits. The latter requires pre-acquired AM knowledge through educational workshops, and the 

heuristic nature introduces bias and uncertainty.  

Different from the heuristic methods, some researchers sought for computational ways to identify part 

candidates concerning reduction of AM expertise requirement and more importantly, efficiency 

improvement. The first tool was developed by Materialise (i.e. one of the main OEMs in AM field) 

named as 3D Print Barometer (Materialise 2014). As shown in Figure 2, it takes minimum part 

information such as size, geometric features, project budget, volume size, and purpose. Then, an 

analytic score of AM necessity is produced. The limited functions fail to provide what AM potential a 

part prosseses and the predicted result requires AM expertise for further analysis. A more recent and 

comprehensive work was reported by Yao et al. (2017). In their work,  a non-exclusive list of AM design 

feature (e.g. honeycomb structure and integrated rotational joint) and a triplet descriptor 

                                 of each AM design feature were established and numerically coded. 

Upon which, existing industrial examples were analyzed in terms of its implemented AM design features, 

and they were used for training. The triplet descriptor was applied for the targeted application, and then 

a hybrid machine learning algorithm combining classification and clustering was proposed for 

recommending possible AM design features in a specific part design. This design requirements-rooted 

approach shows promise in identifying applicable AM-specific design features (e.g. lattice) but lacks 

considerations of other AM potentials. Moreover, intensive user inputs limit its flexibility in highly 

complex systems.  
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Figure 2  3D printing Barometer (Materialise 2014). 

Beyond the work on miscellaneous AM potentials, some progress on identification of single potential is 

also reported. Such work is focused on supply chain benefits (Senvol 2017) and part consolidation (Yang 

et al. 2019c; Yang and Zhao 2018; Yang et al. 2018). Particularly, the literature (Yang et al. 2019c) 

incorporated the consideration of modularization in finding part consolidation candidates with 

reasonable computational cost, which made it deployable at the system level rather than simple 

assemblies.  

Overall, prior methods on part candidacy identification may differ in strategies, but mostly show 

deficiency in comprehensiveness, efficiency, and objectiveness. Therefore, a fast decision support 

system that requires the least user inputs and minimum AM expertise but computationally produces 

reliable recommendation of AM eligibility, is demanding in the task planning and conceptual stage of 

product redesign.  

3. The methodological framework of the proposed DSS 
The proposed methodological framework is intended to develop a fast decision support system (DSS) to 

fill the gap of automated identification of AM part candidacy. The proposed DSS framework is shown in 

Figure 3. Overall, it is comprised of three main sections - candidacy criteria, data acquisition, and 

decision model, as marked in sequence. The candidacy criteria are to establish a set of conditions based 

on which AM eligibility can be justified. As reviewed in Section 2.1, AM potentials cover such a wide 

range from economic analysis to design potentials that having all criteria to be analyzed in the same 

time is not cost-efficient. As such, two “filtering principles” are set to down sampling the candidacy 

criteria.  

 Principle of efficiency: how can the data that is used for justifying the AM candidacy be easily 

accessible? 

 Principle of objectiveness: can the candidacy criterion be objectively measured with minimum 

biased information? 
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Figure 3 The proposed framework of the decision support system for AM part candidacy identification. 

With these two principles being the guideline, AM candidacy criteria obtained from CM metrics, AM 

metrics and publications are down-sampled and parametrized in Section 3.1. The second branch of the 

DSS framework is to extract useful information (i.e. parameters) from diversified historical data 

including non-AM applications (e.g. for CNC milling), successful AM applications and failed AM instances. 

Each instance is evaluated against the candidacy criteria by AM experts and labelled with which AM 

potentials possess. As the number of labelled instances increases, the database can provide more 

concrete support for decision models in the next step. Details can be found at Section 3.2. The last part 

is how to construct decision models referring to existing instances and predict the AM candidacy of a 

targeted application. In this paper, machine learning algorithms are utilized because it is a promising 

solution to the problem of subjectivity in part selection, as it can eliminate the need of experts on 

individual basis and accelerate the decision process in case of massive information intake (see Section 

3.3). The output of the DSS will return a list of potentials at a percentage scale. In the end, the targeted 

instance is fed into the labelled database to further improve the prediction accuracy.  

3.1 The parameterized candidacy criteria  
Comprehensive AM candidacy evaluation of a part requires assessment of both potential design 

improvement and process limitations. However, this paper mainly aims at establishing a fast-screening 

tool to narrow down the candidate pool; therefore, only criteria that meet the principles of efficiency 

and objectiveness are reserved. As such, manufacturability examination of a part is excluded at this early 

shortlisting stage. These criteria are categorized as geometric analysis, model analysis, economic 

analysis, and design potential analysis as shown in Table 2. Detailed discussions were reported in our 

previous work (Page et al. 2019). It should be noted that this criteria list is nonexclusive, and other 

criteria satisfying these two principles can be appended in future work. Further, these criteria are 

parametrized to determine the decisive factors of “being potential”. Taking geometric analysis for 

example, traditional feature-based complexity metrics either require massive human interpretation or 

become problematic in case of compound features (Babic et al. 2008). Feature-less computational 

complexity assessment based on ratios of volume/surface, surface/bounding box (BB) volume, and 
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volume/BB volume is highly favored (Valentan et al. 2008). Model analysis is particularly applied for part 

consolidation potentials by taking the information of the number of components, fasteners, and 

assembly interfaces. This information reflects the complexity of assembly, and the higher complexity 

indicates more needs of part consolidation. The sources of the parameters are identified as user, 

computer-aided design (CAD) model, and Enterprise Resource Planning (ERP) systems from which 

decisive information can be automatically extracted.  

Table 2 Selected candidacy criteria and its key parameters.  

Candidacy criteria Decisive parameters # Units Source 

Geometric analysis 

Ratio of part volume to part surface area DP1  CAD 

Ratio of part surface area to bounding box volume DP2  CAD 

Ratio of part volume to bounding box volume DP3  CAD 

 

Model analysis 

Number of components DP4  CAD 

Number of fasteners DP5  User 

Number of assembly interfaces DP6  User 

 

Economic analysis 

Manufacturing cost DP7 $/part ERP 

Batch size DP8 # of parts ERP 

Lead time DP9 days ERP 

Inventory costs DP10 $ ERP 

Imports/exports cost DP11 $ ERP 

 

Design potential analysis 

Does the part contain internal channels/structures? DP12 Y/N User 

Does the part have any surface markings? DP13 Y/N User 

Are there similar parts with similar modifications? DP14 Y/N User 

Does the part require human body compliance? DP15 Y/N User 

3.2 Data acquisition and coding mechanism 
Existing applications of both AM parts and CM parts are sought to increase data diversity.  A greater 

variety of instances with differing manufacturing processes, sizes, shapes, complexities, etc., will lead to 

more success in analyzing future parts. These data are primarily extracted from reported literature and 

open-source repositories such as GrabCAD. Although data mining methods may be applied to augment 

the database and accelerate the data acquisition process, some preliminary test showed that publicly 

accessible data differ in a wide range and lead to poor quality. The extracted poor-quality data led to 

meaningless results. As such, the exemplified database is manually constructed to validate the proposed 

DSS framework. The database currently holds approximately 200 instances.  Amongst all the decisive 

parameters, economic analysis is replaced by using an instant quoting plugin – Xometry (2017), offered 

by an online manufacturing service provider whose business covers manufacturing processes from 3D 

printing to CNC machining. The plugin is used for estimating lead time and costs with a 5% margin. If the 

costing tools led to very different estimations, that instance was scrapped. 

Expert input regarding the AM potential assessment for each instance is required. To secure data 

integrity, two AM experts who have more than 3-year experience of product design and AM-related 

industrial projects work together, and a consensus must be reached with regard to each type of AM 

potentials. Figure 4 presents a labelled instance with input parameters and identified AM potentials. 

Each potential is graded by a binary system. It should be admitted that individual bias still exists at its 

current status; however, real industrial data acquired from its own ERP system should compensate its 

reliability and form robust decisions.  



10 
 

(a) Gearbox assembly 

(b) Decisive parameters and identified potentials  
Figure 4 an example of labeled instance with input parameters and identified AM potentials. 

3.3 Decision model 
The decision model aims at predicting AM potentials with machine learning (ML) assistance to improve 
subjectivity as well as efficiency. Different from the traditional way of examining a part whether it meets 
a special threshold (e.g. lot size of 1000 parts) of an explicit criterion, machine learning helps to identify 
hidden patterns and produce a probability estimation for further reference. Machine learning, as a 
promising tool, has been successfully applied in traditional manufacturing processes such as production 
planning (Rodríguez et al. 2019), flexible manufacturing system control (Chaturved et al. 1992) and 
monitoring (Yang 2016), cutting parameters prediction (Jurkovic et al. 2018), and material identification 
(Penumuru et al. 2019) and  various AM-related fields, such as manufacturability prediction (Lu 2016), 
process optimization (Aoyagi et al. 2019), material property estimation (Hamel et al. 2019), dimensional 
accuracy analysis (Francis and Bian 2019). However, the combination of machine learning with AM 
candidacy prediction is rarely investigated. In this section, three main research questions are discussed: 
1) small sample problem, 2) selection of suitable ML algorithms, and 3) how the ML model is trained.  

3.3.1 Small dataset problem 
The difficulty of obtaining numerous training samples is often the case in design fields. This situation is 

because knowledge as an intangible asset is hard to extract and quantify. The most valuable knowledge 

is often not easy to identify or share as it is stored within the minds of experts through years of 

experience (Dalkir 2013). This form of knowledge is also referred as tacit knowledge in contrast with 

explicit knowledge. The other facet of the small sample size comes from the limited understanding of 

AM and the need of intellectual property protection. As such, feature selection (Raudys and Jain 1991) 

and domain knowledge (Hartmann et al. 2017) have been identified as the most critical points in 

preparing data for machine learning especially for small sample sizes. The process of applying domain 

knowledge allows for a deeper understanding of what facets of the input data led to the output decision, 
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and information-rich features will lead to a more successful model as there will be less noise from 

unnecessary features which causes errors. Corresponding to the AM candidacy identification problem, 

the domain knowledge and features are equivalent to the candidacy criteria and decisive parameters in 

this application.  

3.3.2 ML model comparison and analysis 
Determining the right algorithm is of great importance when applying machine learning, especially in 

small-sample learning where the computational requirements are typically less demanding. Regression 

and classification are the main techniques in a supervised learning model. Regression denotes that the 

output of the model will be continuous values such as print time or component cost, and it has been 

applied to a broad range of AM process optimization problems like bin packing, nesting, and scheduling 

(Dvorak et al. 2018). Choosing regression over classification allows the user to see the potential on a 

percentage scale rather than just receiving a boolean decision. Since machine learning algorithms are 

not one-for-all solution when it comes to different data and performance is highly dependent on the 

unique algorithm/dataset combination (Hastie et al. 2005), it is necessary to determine the best ML 

algorithm for each application. Popular ML libraries such as Scikit learn (Pedregosa et al. 2011) and 

Tensorflow (2020) provide good platforms for preliminary suitability test. In this application, Scikit learn 

is chosen over Tensorflow because the former provides easy ways to build standard ML models while 

the latter is widely used for deep learning applications with large amount of labeled data such as sound, 

images, and text (Géron 2019; Patel 2015).  

The initial test of ML algorithms was performed using Python and scikit learn (Pedregosa et al. 2011). 

Five common regression algorithms are preliminarily tested for each AM potential including linear 

regression, bayesian linear regression, neural network regression, boosted decision tree regression, and 

decision forest regression. The root-mean-square error (RMSE) is used as the error evaluation metric for 

the tested ML algorithms because it represents the average distance from the regression line to each 

individual training instance. Given the training set of 200, 10% of the samples were set aside for cross 

validation. The comparison result is summarized in Table 3. From the RMSE of each ML model trained 

for each AM potential, the Boosted Decision Tree Regression (BDTR) algorithm outperforms all the 

others for the given training samples. This is because BDTR shows strength to extract complex 

relationships and operates well on small-sample datasets (Roe et al. 2005; Coadou 2013; Xia et al. 2017). 

Therefore, BDTR is selected as the principle ML algorithm for predicting the AM candidacy. Meanwhile, 

it is found the RMSEs of other regression algorithms are higher than expected due to the coding 

mechanism of the labelled data. Current labeling scheme only asks for yes/no with regard to AM 

potentials to reduce manual inputs and confusion. Therefore, AM potential of each instance will only be 

put 0 or 1, which makes the model more likely to produce rounded scores instead of the accurate scale. 

This leads to a higher RMSE when training the models because instances that have a true score of say a 

0.67 were labelled as a 1.0; thus, if the training model scored a 0.7, it would have an error of 0.3 as 

opposed to 0.03. This problem will decrease as the training set is populated with more instances 

labelled on a percentage scale. 

Table 3 Error comparison of ML models.  

 
Root Mean Square Error of Machine Learning Algorithms 

Economic Lightweight Part consolidation Internal structures Customization 

Boosted Decision Tree Regression 0.259907 0.115436 0.140231 0.159223 0.099288 

Neural Network Regression 0.568563 0.483725 0.256403 0.470125 0.201107 

Linear Regression 0.361987 0.407623 0.163127 0.342522 0.139623 
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Decision Forest Regression 0.367457 0.20334 0.142428 0.241523 0.147326 

Bayesian Linear Regression 0.452348 0.501598 0.160878 0.295722 0.107149 

3.3.3 Training the models and prediction 
Training of the BDTR model is as follows. First of all, BDTR works in a fashion to create ensemble of 

regression trees using boosting which means that each tree is dependent on prior trees. The algorithm 

learns by fitting the residual of the trees that preceded it. Thus, boosting in a decision tree ensemble 

tends to improve accuracy with small risk of less coverage. BDTR has the advantages of handling 

different types of predictor variables and accommodating missing data; thus, there is no need for prior 

data transformation or elimination of outliers. It can also fit complex nonlinear relationships, and 

automatically handle interaction effects between predictors (Elith et al. 2008). The training and 

prediction experiment of BDTR model is conducted by using Microsoft Azure studio (2014b), which 

offers a well-established visual drag-and-drop graphic interface to build and deploy predictive analytic 

solutions.  

The flows of training are depicted in Figures 5. The training flow starts with importing training data from 

an SQL database as described in Section 3.2. Next, missing data is cleaned using probabilistic primary 

component analysis, which ‘replaces the missing values by using a linear model that analyzes the 

correlations between the columns and estimates a low-dimensional approximation of the data, from 

which the full data is reconstructed ’ (Azure 2014a). Applying SQL transformation is to single out the 

decisive parameters by column for its corresponding candidacy criterion to avoid overwhelming the 

learning model with unnecessary information (e.g. cost for lightweight potential) and improve result 

accuracy. Each sub-dataset by column is further split into training and validation sets. Then, these 

datasets are fed into the hyper-parameter tuning module which trains the model from the training set, 

then tests it on the validation set by calling the BDTR algorithm as shown in Figure 5. Finally, once each 

model has been optimized, it can be saved and exported as a trained model and be used in the 

prediction analysis. In Microsoft Azure studio, the new input data is edited to be a format compatible 

with the type of trained models, and the predicted result will be presented in a numeric form.   

Import data

Clean missing data

Apply SQL transformation 
(Economic)

Split data Split data Split data Split data Split data

Tune model 
hyperparameters

Tune model 
hyperparameters

Tune model 
hyperparameters

Tune model 
hyperparameters

Tune model 
hyperparameters

Boosted Decision Tree 
regression

Apply SQL transformation 
(Lightweight)

Apply SQL transformation 
(Part Consolidation)

Apply SQL transformation 
(Internal Channels)

Apply SQL transformation 
(Customization)

 
Figure 5  the graphic view of training procedure of Boosted Decision Tree regression in Microsoft Azure studio. 

4. Cloud-based tool implementation  
The proposed DSS framework is implemented as a cloud-based tool so that it can be easily accessed and 

allow for instant update regarding training samples and trained models. The developed tool is available 

at the website ((ADML) 2019b), and the open-source code is also available at GitHub ((ADML) 2019a). 

The architecture and user interface of the tool are introduced in the following sections.  
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4.1 Architecture 
The tool is designed to be compatible across platforms to facilitate easy access and encourage wider 

applications. A variety of state-of-the-art technologies were used to support the functionalities as well 

as easy maintenance. The communication between these technologies are presented in Figure 6, which 

contributes to the main architecture of the tool. Since multiple third-party services are utilized in the 

development of this application, PHP (Hypertext Preprocessor) is used as the liaison for communication 

between these APIs (Application Programming Interface) as it allows API keys to remain hidden and 

avoid the same access restrictions as HTTP (HyperText Transfer Protocol). In this tool, three main 

services are called: Autodesk Forge, Microsoft Azure and AJAX (Asynchronous JavaScript And XML) 

request. Autodesk Forge is mainly used for CAD format conversion (e.g. SolidWorks file to STL), 

metadata extraction by using Model Derivative API, and remote storage of CAD models. Microsoft Azure 

services including training database management and machine learning, are integrated via APIs. Lastly, 

user interfaces of the web application are developed by using the React JavaScript library (Facebook 

OpenSouce 2019) to create a multi-state application on a single web page. AJAX calls enable client-

server communication without the need of refreshing the webpage.  

 
Figure 6 The architecture of implementation of the DSS framework. 

4.2 User interfaces 
Following the workflow of 1) load CAD model, 2) new data acquisition, and 3) candidacy prediction, the 

main user interfaces are presented in Figure 7. The developed web application is able to load common 

CAD files and automatically extract geometric information of volume, surface area, and number of 

components. Then, users are requested to fill missing data of model information (e.g. number of 

interfaces), model features (e.g. whether exist internal channels), and economic considerations (e.g. 

lead time). It should be advised that some of these manual inputs can be replaced by connecting to an 

ERP system in future iterations. With these inputs, the tool produces candidacy scores for each potential 

(See Figure 7 c). To learn about the specific AM potential, tutorials can be accessed by hovering above 

the item (e.g. lightweight bar in Figure 7d). These tutorials will help the novice AM users to develop a 

better understanding of the potential gains by using AM, as echoed by prior research (Yang et al. 2019b). 

With a further goal of improving the accuracy of the tool, it provides a feedback loop for the user to 

decide whether the new instance is valuable for expanding the training dataset; otherwise, the item will 

be discarded.  
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(a) Load CAD model (b) Data acquisition 

(c) Candidacy prediction (d) Lightweighting potential tutorials  

Figure 7 A collection of snapshots of the developed tool. 

5. Case study 
Two examples of a hip implant (Ryan et al. 2006) and a throttle pedal (Yang et al. 2019c) are presented 

to demonstrate the effectiveness and usefulness of the proposed DSS framework and the developed 

cloud-based tool. These case studies were chosen because their AM potentials have been already 

studied in literatures, which cross validates the predicted results of the tool. The details of the examples 

are summarized in Table 4. The hip implant model is downloaded from GrabCAD (Fuentes 2012) and 

cost-related data is estimated from publicly available data on the internet. The predicted potentials of 

the hip implant are shown in Figure 8a. From the result, it is expected to have high potentials of 

economics (100%), customization (99%) and light-weighting (98%) and low potentials of part 

consolidation (24%) and having internal channels (0%). The predicted trends of each potential generally 

agreed with the work reported by Fraunhofer IWU (Schnabel et al. 2017) where MUGETO implant used 

lattice structures to reduce weight. The economic benefits mainly derived from the advantages of low 

lots size, while one-of-its-kind characteristic and anatomy compliance highlight the customization 

potential. As for part consolidation potential, the number of parts and interfaces is not sufficient; 

therefore, consolidation verification will need further examination by using a specialized tool as 

developed by Yang et al. (2018).  
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The throttle pedal model is also available at GrabCAD (Miessner 2015) and the cost-related data is 

estimated from publicly available data. The predicted potentials are depicted in Figure 8b. The throttle 

pedal is claimed to have high potentials of part consolidation (100%) and light weight (76%), and it 

scores low in terms of economics (28%), customization (0%), and internal channels (0%). The result 

generally agreed with the work of Yang et al. (2018).  

In conclusion, it is interesting to observe how the developed DSS tool helps to predict the AM candidacy 

potential without AM expertise inputs.  The tested examples proved that the tool would be a promising 

solution to lower the requirements of AM knowledge for finding suitable candidates at early design 

stage in industrial applications. It should be advised that the predicted scores only indicate the 

possibility of having a specific potential rather than a definite answer because manufacturing constraints 

need to be considered in the next step.  

Table 4 Details of the tested examples. 

Name Figures 
Volume (   ) 

Area (   ) 

BD box (   ) 

# Components 
# Fasteners 
# Interfaces 

Cost 
Quantity 
Lead time 
Inventory 

Import/export 

Markings 
Channels 

Similar parts 
Size variance 

Human custom fit 

Hip implant 

 

55910.32 
12367.67 

166.38*106.46*39.97 

2 
0 
1 

2000 
1 
1 
0 
0 

0 
0 
0 
0 
1 

Throttle pedal 

 

210367.17 
112685.27 

156.22*218.77*56.48 

41 
17 
15 

350 
10000 

1 
2 
0 

0 
0 
0 
0 
0 

 

(a) Potential prediction of hip implant (b) Potential prediction of throttle pedal   
Figure 8 AM candidacy prediction of the hip implant and the throttle pedal. 
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6. Conclusions  
Identification of part candidates for AM applications is one of the challenges for its wider industrial 

deployment. Existing methods are not suitable as they are either too complex and rely too heavily on 

the user who already has expertise in AM, or they are too simple to provide the user with any real 

insight. This paper is specially focused on providing an efficient and automated solution for screening of 

parts for AM potentials at early design stage. A decision support system framework is proposed with 

carefully selected candidacy criteria and machine learning-assisted workflow which helps to predict AM 

candidacy of parts. The presented framework is implemented as a cloud-based tool to serve as an 

accessible platform of training database management, machine learning service, and AM knowledge 

dissemination. The open architecture makes the maintenance, upgrade, and retraining machine learning 

models easy to manage. Two case studies of a hip implant and a throttle pedal are presented to 

demonstrate the workflow and effectiveness of identifying various AM potentials. This preliminary work 

has proven the potential of employing machine learning methods to identify part candidates for AM 

applications in the early conceptual re-design stage.  

7. Limitations and future work 
It should be acknowledged that current prototype is in its infancy state and helps to establish the 

pipelines for a ML-assisted decision tool for AM candidacy detection. There are several directions should 

be further explored before being deployable in industry.  

First of all, the number of instances and the diversity of AM/CM parts are still low, but the cost of data 

acquisition is relatively high. Other factors such as intellectual protection and data security further 

increase the difficulties. A commonly established data-sharing framework is highly recommended across 

different industries and labs to enrich data diversity, which in turn could increase the prediction 

accuracy of trained model. Taking the trained model of “lightweight” as an example, dataset size effect 

was investigated at the scale of 50%, 60%, 70%, 80%, and 90% of overall raw data (i.e. 200 instances), 

the Rooted Mean Square Error of each dataset was 0.352, 0.289, 0.253, 0.155, and 0.115 respectively. 

Similar approach of examining dataset size effect was adopted in the literature (Li et al. 2019). Therefore, 

the authors hold strong belief that the predictive performance of the trained model will improve as 

more data feed in. In this experiment, an interesting finding was also observed that the developed tool 

failed to identify the internal channel potential for the hip implant as the MUGETO implant design 

(Schnabel et al. 2017)  demonstrated. In their project, internal channels were added to the new hip 

implant for medicine deposition. This deficiency of the current tool highlights the necessity of expanding 

the diversity of instances and potentially including functions of labelled data as one learning feature as 

well so that certain new functions can be integrated to the new design. In addition, current data was 

retrieved from various industries ranging from aerospace, sports, automobile, and medicine. However, 

the economics model is highly sensitive to the specific field. As such, a more accurate ML model should 

be customized by taking data from the collaborative company’s ERP system in the future.  

Second, the AM potential of material options was originally included in the training model. However, 

preliminary tests with various machine learning algorithms found that this potential could not be 

accurately determined based on current built-in training samples. These samples did not contain enough 

information regarding the material properties. To prevent the complication of the criteria through 

adding material-specific questions which led to little improvement in the results due to the insufficient 
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data, the specific material options potential was removed. It is possible that in the future more 

complete data will be available and another iteration of the DSS will be able to support material options 

for AM.  

Third, the decisive parameters of part consolidation potential in this paper include the number of 

components, interfaces, and fasteners. Although it is able to find a chunk of components, it is difficult to 

more precisely locate the parts to be consolidated. A promising solution is to trace the product hierarchy. 

As shown in Figure 9, if the first level of an assembly (e.g. an engine) is found to have minimum part 

consolidation potential, the searching process continues to the next level. Candidacy evaluation repeats 

until the nearest child demonstrates part consolidation potential. Repeat the same procedure for other 

branches until all branches are exhausted. However, tracing of product hierarchy requires access to the 

ERP system of the company. The accessibility of other data such as lead time and cost also requires 

permission of the ERP system. 

 

Figure 9 The screening strategy of identification of subassemblies for part consolidation potential. 

Fourth, current candidacy criteria are determined to fulfill the principles of efficiency and objectiveness, 

and they concentrate on the opportunistic aspects of employing AM technology. Although the need of 

simultaneous consideration of restrictive rules is not encouraged at the very first round of screening, 

certain manufacturing constraints can be integrated directly thereafter to further gauge the AM 

candidacy. Other future work may also include changing the labeling system from 0/1 to Likert scales to 

show more insights of each potential by a percentage scale. Lastly, Although Boosted Decision Tree 

algorithm works well for current scales of training samples, as more data kicks in, further optimization of 

machine learning algorithms will be demanded. 
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