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Abstract. In this paper,we present an inexact primal-dual method with correction step

for a saddle point problem by introducing the notations of inexact extended proximal

operators with symmetric positive definit ematrix D. Relaxing requirement on primal-dual

step sizes, we prove the convergence of the proposed method. We also establish the O(1/N)

convergence rate of our method in the ergodic sense. Moreover, we apply our method

to solve TV-L1 image deblurring problems. Numerical simulation results illustrate the

efficiency of our method.
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1 Introduction

Let X and Y be two finite-dimensional real vector spaces equipped with an inner product 〈·, ·〉 and

a norm ‖ · ‖ =
√
〈·, ·〉. In this paper,we consider the following saddle point problem:

min
x∈X

max
y∈Y

L(x, y) = f(x) + 〈Ax, y〉 − g(y) (1.1)

where A is a bounded linear operator, f : X → (−∞,+∞] and h : Y → (−∞,+∞] are proper lower

semicontinuous (l.s.c) convex functions.

Recall that (x∗, y∗) is called the saddle point of (1.1), if

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗),∀x ∈ X, y ∈ Y (1.2)

Now we consider the primal problem

min
x∈X

f(x) + h(Ax) (1.3)
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together with its dual problem

max
y∈Y

f∗(−A∗y) + h∗(y) (1.4)

where h∗ denotes the Legendre-Fenchel conjugate of a convex l.s.c. function h, A∗ denotes the adjoint

of the bounded linear operator A.

If a primal-dual solution pair (x∗, y∗) of (1.3) and (1.4) exists, i.e.,

0 ∈ ∂f(x∗) +A∗y∗, 0 ∈ ∂h(Ax∗)− y∗,

then the problem (1.3) is equivalent to the following saddle-point formulation:

min
x∈X

max
y∈Y

f(x) + 〈Ax, y〉 − h∗(y). (1.5)

Hence, Problem (1.5) is a special case of Problem (1.1).

It is well known that many application problems can be formulated as the saddle point problem

(1.1) such as image restoration, magnetic resonance imaging and computer vision; see, for example,

[17, 19, 22, 27].

Two of the most popular approaches are first-order primal-dual methods [4, 9], in particular the

Primal-Dual Hybrid Gradient (PDHG) method [27], and Alternating Direction Method of Multipliers

(ADMM) method [2, 11]. For PDHG method, both a primal and a dual variable are updated in each

iteration and thus some difficulties that arise when working only on the primal or dual variable can

be avoided. In ADMM method, separating the minimization over the two primal variables into two

steps is precisely what allows for decomposition when f or g, or both, are separable. In [13], it was

showed that PDHG is not necessarily convergent even when the step sizes are fixed as tiny constants.

In [9], PDHG was interpreted as projected averaged gradient method, and its convergence was studied

by imposing additional restrictions ensuring that the step sizes λ and τ are small. In [4], a primal-dual

method with inertial step θ(θ ∈ [0, 1]) was proposed (denote by PDI) with convergence rate O(1/N)

in terms of primal-dual gap, and for θ = 1, the convergence of PDI was proved with the requirement

on step sizes τλ < 1/‖ATA‖. In [12], some prediction-correction contraction methods were presented

in which the convergence was guaranteed with relaxed step sizes satisfying λτ < 4/(1 + θ)2‖ATA‖2

for θ ∈ (−1, 1]. Further, a primal-dual method (named PDL) in the prediction-correction fashion was

proposed in [25] and the pairwise primal-dual stepsizes λi and τi were relaxed to λiτi < 1(i = 1, 2).

As first-order methods, however, they are sensitive to problem conditions, and hence might be

performed up to a certain precision, for example, due to the application of a proximal operator lacking

a closed-form solution. This problem may arise from examples studied in, for example, [3, 8, 10,

15]. An absolute error criterion was adopted in [7], where the subproblem errors are controlled by a

summable sequence of error tolerances. To simplify the choice of the sequences,a relative error criterion

was introduced in [16], where the coresponding parameters are required to be square summable. [18]

introduced four diferent types of inexact proxima, where all the controlled errors were required to be

summable. In [14], the inexact preconditioned PDHG method was studied by the selection of appropriate

preconditioners and the introduction of bounded relative error of the subproblem, where convergence

was established in case the error was neither summable nor square summable.

Motivated by the research works [18, 25], in this paper, we introduce three different types of inexact

extended proxima closely related to the extended proximal operator with the matrix D([6]). Applying
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these notions, we proposed an inexact primal-dual method with correction step for solving the saddle

point problem. Under some mild conditions, the convergence of the proposed method is proved, in

which we relax requirement on pairwise primal-dual stepsize , for example, compared with that in [25].

In [25], primal-dual stepsizes λi and τi(i = 1, 2) are required to satisfy λiτi < 1. In our method, the

sequences {λk} and {τk} are nondecreasing and bounded satisfying R − τkλkS−1 � 0, where R and S

are symmetric positive definite matrices. We also establish the O(1/N) convergence rate in the ergodic

sense. At the same time, we establish the convergence rates in case error tolerances {δn} and {εn} are

required to decrease like O(1/nα+ 1
2 ) for some α > 0; see Theorem 3.2. In the numerical experiments

part, we investigate the applications of our method in TV −L1 image deblurring. Firstly, we show that

the type-2 approximation of the extended proximal point can be computed by approximately minimizing

duality gap; see (4.10) in Section 4. Further, the duality gap is used as the stopping criterion of inner

loop, i.e., the second subproblem; see (4.11). In addition, we discuss the sensitivity of parameters in

Algorithm 1. Finally, we show the efficiency of our method in image deblurring compared with some

existing methods, for example, [4, 18, 25].

The rest of this paper is organized as follows. In Section 2, we introduce the concepts of inexact

extended proximal operators and present some auxiliary lemmas. In Section 3, we describe our method

and prove the convergence of our method. At the same time, we also analyze the cnvergence rate.

Numerical experiment results are reported in Section 4. Some conclusions are presented in Section 5.

2 Preliminaries

In this section, we shall introduce some definitions. Suppose that h be a convex function in Rn,

D ∈ Rn×n a symmetric positive definite matrix and τ > 0. For any D � 0 and given y ∈ Rn , denote

Gy(x) := h(x) +
1

2τ
‖x− y‖2D, ∀ x ∈ Rn, (2.1)

and define the extended proximal operator of h as

ProxDτh(y) := z = arg min
x∈X

Gy(x), (2.2)

where ‖x‖2D = 〈x,Dx〉 and D−1 denotes the inverse of D. Because D is symmetric positive definite,

ProxDτh(y) is unique(see Lemma 2.4).

Definition 2.1. Let ε ≥ 0. z ∈ X is said to be a type-0 approximation of the extended proximal point

ProxDτh(y) with precision ε if

z ≈ε0 ProxDτh(y)
def⇐⇒ ‖z − z̄‖D ≤

√
2τε

Next we recall the definition of ε− subdifferential of h at z, denoted by ∂εh(z):

∂εh(z) = {p ∈ X|h(x) ≥ h(z) + 〈p, x− z〉 − ε, ∀x ∈ X}.

In the following ,we give the definition of ε− subdifferential of Gy at z, denoted by ∂εGy(z):

∂εGy(z) := {p ∈ X|Gy(x) ≥ Gy(z) + 〈p, x− z〉 − ε,∀x ∈ X}.
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Definition 2.2. Let ε ≥ 0. z ∈ X is said to be a type-1 approximation of the extended proximal point

ProxDτh(y) with precision ε if

z ≈ε1 ProxDτh(y)
def⇐⇒ 0 ∈ ∂εGy(z)

Definition 2.3. Let ε ≥ 0. z ∈ X is said to be a type-2 approximation of the extended proximal point

ProxDτh(y) with precision ε if

z ≈ε2 ProxDτh(y)
def⇐⇒ 1

τ
D(y − z) ∈ ∂εh(z)

Remark 2.1. If D = I, where I is the identity matrix, then the inexact extended proximal operators

in Definitions 2.1-2.3 will reduce into the inexact proxima, for example, introduced in [18], respectively.

Thus, Definitions 2.1-2.3 are the generalization of the correcponding definitions in [18].

According to the above definition, we have the following lemmas.

Lemma 2.1. Suppose z ≈ε1 arg minx∈X{h(x)+ 1
2τ ||x−y||

2
D}, then z ∈ dom h and z ≈ε0 arg minX{h(x)+

1
2τ ||x− y||

2
D}.

Proof. According to Definition 2.2 and the definition of ∂εGy, we have

Gy(x) ≥ Gy(z)− ε, ∀x ∈ X. (2.3)

Setting x = z̄ in (2.3) and using (2.2), from (2.3) we have

‖z̄ − z‖2D ≤ 2τε+ 2τ [h(z̄)− h(z) + 〈1
τ
D(z − y), z̄ − z〉] (2.4)

which implies that z ∈ domf . According to the optimality condition of (2.2), we have

h(x) ≥ h(z̄) + 〈1
τ
D(y − z), x− z̄〉, ∀x ∈ X. (2.5)

Setting x = z in (2.5) and substituting the resulting inequality into (2.4), we get

||z̄ − z||D ≤
√

2τε.

In view of Definite 2.1, we obtain the conclusion.

Lemma 2.2. Suppose thatz ≈ε1 arg minx∈X{h(x) + 1
2τ ‖x − y‖

2
D},then there exists r ∈ X with‖r‖D ≤√

2τε such that
1

τ
D(y − z − r) ∈ ∂εh(z)

.

Proof. According to Definition 2.2, from (2.1) we have

h(x) ≥ h(z) + 〈x− z, 1

τ
D(y − z − x− z

2
)〉 − ε, ∀x ∈ X.

Set r = x−z
2 . By the definition of the ε− subdifferential of h, the conclusion holds.

Lemma 2.3. Suppose z ≈ε2 arg minx∈X{h(x)+ 1
2τ ‖x−y‖

2
D},then z ≈ε1 arg minx∈X{h(x)+ 1

2τ ‖x−y‖
2
D}
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Proof. According to Definition 2.3, from (2.1) we have

Gy(x) = h(x) +
1

2τ
‖x− y‖2D

≥ h(z) + 〈1
τ
D(y − z), x− z〉 − ε+

1

2τ
‖x− y‖2D

= h(z) +
1

2τ
‖z − y‖2D +

1

2τ
‖x− z‖2D − ε

= Gy(z)− ε+
1

2τ
‖x− z‖2D

≥ Gy(z)− ε,

where the first inequality follows from the definition of ∂εh(z) and the first equality follows from following

identity equality

‖a− b‖2D = ‖a− c‖2D + ‖b− c‖2D − 2〈D(a− c), b− c〉. (2.6)

Hence, 0 ∈ ∂εGy(z). By Definition 2.2, the conclusion holds.

The following lemma illustrate that the extended proximal operator (2.2) is well-defined.

Lemma 2.4.

‖ProxDτh(y1)− ProxDτh(y2)‖D ≤ ‖y1 − y2‖D.

Proof. Let z1 = ProxDτh(y1) and z2 = ProxDτh(y2). Since z1 = ProxDτh(y1), the optimality condition

implies that 1
τD(y1 − z1) ∈ ∂h(z1), and hence

h(x) ≥ h(z1) + 〈1
τ
D(y1 − z1), x− z1〉, ∀x ∈ X. (2.7)

Set x = z2 in (2.7) and get

h(z2) ≥ h(z1) + 〈1
τ
D(y1 − z1), z2 − z1〉. (2.8)

Similarly, we have

h(z1) ≥ h(z2) + 〈1
τ
D(y2 − z2), z1 − z2〉. (2.9)

Adding (2.8) and (2.9), and by a simple manipulation, we obtain

‖z1 − z2‖2D ≤ 〈D(y2 − y1), z2 − z1〉 ≤ ‖y2 − y1‖D‖z2 − z1‖D,

i.e.,

‖ProxDτh(y1)− ProxDτh(y1)‖D ≤ ‖y2 − y1‖D.

The following lemma is crucial in proving the convergence of Algorithm 1.

Lemma 2.5. Suppose that g : X 7→ R̄ is a convex function. For given z0, u, v ∈ X and τ, ε > 0. Let

z1 ≈ε2 arg min
z∈X
{g(z) +

1

2τ
||z − (z0 −D−1u)||2D}, (2.10)

z2 ≈ε1 arg min
z∈X
{g(z) +

1

2τ
||z − (z0 −D−1v)||2D}, (2.11)

then
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(i)

0 ≤ ||z1 − z2||D ≤
1

2
(
√

2τε+ ||u− v||D−1 +

√
||u− v||2D−1 + 10τε+ 2

√
2τε||u− v||D−1) (2.12)

(ii) ∀z ∈ X

g(z1)− g(z)+〈z1 − z,
1

τ
v〉 ≤ 1

2τ
(||z − z0||2D − ||z − z2||2D)

+
1

2τ
(||D−1(u− v)||2D − ||z0 − z1||2D) + 2ε+

√
2ε

τ
||z − z2||D (2.13)

Proof. (i)In view of Definition 2.3 and (2.10), we have

1

τ
D((z0 −D−1u)− z1) ∈ ∂εg(z1). (2.14)

By Lemma 2.2, there exists r ∈ X with||r||D ≤
√

2τε such that

1

τ
D((z0 −D−1v)− z2 − r) ∈ ∂εg(z2). (2.15)

From the definition of ε−subdifferential and (2.15), we have

g(z)− g(z2) ≥ 1

τ
〈D((z0 −D−1v)− z2 − r), z − z2〉 − ε,∀z ∈ X

i.e.,

〈D((z0 −D−1v)− z2), z2 − z〉 ≥ τ(g(z2)− g(z)− ε) + 〈Dr, z2 − z〉,∀z ∈ X. (2.16)

Taking z = z1 in (2.16), we have

〈D(z2 − z0 +D−1v), z1 − z2〉 ≥ τ(g(z2)− g(z1)− ε) + 〈Dr, z2 − z1〉. (2.17)

From (2.14), we have

〈D((z0 −D−1u)− z1), z1 − z〉τ(≥ g(z1)− g(z)− ε). (2.18)

Setting z = z2 in (2.18), we have

〈z2 − z1, D(z1 − z0 +D−1u)〉 ≥ τ(g(z1)− g(z2)− ε) (2.19)

Adding (2.17) and (2.19), and by a simple manipulation, we get

‖z1 − z2‖2D ≤ (
√

2τε+ ‖u− v‖D−1)‖z1 − z2‖D + 2τε (2.20)

Therefore,

0 ≤ ‖z1 − z2‖D ≤
1

2
(
√

2τε+ ‖u− v‖D−1 +

√
‖u− v‖2D−1 + 10τε+ 2

√
2τε‖u− v‖D−1)

(ii)Note that

1

2
‖z − z0‖2D −

1

2
‖z − z2‖2D

=
1

2
‖z2‖2D −

1

2
‖z0‖2D − 〈z2 − z0, Dz0〉

− 〈z − z2, v〉+ 〈z − z2, D(z2 − z0 +D−1v)〉

≥ 1

2
||z2||2D −

1

2
||z0||2D − 〈z2 − z0, Dz0〉 − 〈z1 − z2, v〉

+ 〈z1 − z, v〉+ τ(g(z2)− g(z)− ε) + 〈Dr, z2 − z〉,
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where the equality follows from (2.6) and the inequality follows from (2.16). Hence,

〈z1 − z, v〉 ≤
1

2
||z − z0||2D −

1

2
||z − z2||2D − ξ

− τ(g(z2)− g(z)− ε)− 〈Dr, z2 − z〉, (2.21)

where ξ = 1
2 ||z2||2D − 1

2 ||z0||2D − 〈z2 − z0, Dz0〉 − 〈z1 − z2, v〉.

Also,

ξ =
1

2
||z2||2D −

1

2
||z0||2D − 〈z2 − z0, Dz0〉 − 〈z1 − z2, v − u〉

+ 〈z2 − z1, D(z0 − z1)〉+ 〈z2 − z1, D(D−1u− z0 + z1)〉

≥ 1

2
||z2||2D −

1

2
||z0||2D − 〈z2 − z0, Dz0〉 − 〈z1 − z2, v − u〉

+ 〈z2 − z1, D(z0 − z1)〉+ τ(g(z1)− g(z2)− ε)

=
1

2
||z2 − z1||2D +

1

2
||z0 − z1||2D

− 〈z1 − z2, u− v〉+ τ(g(z1)− g(z2)− ε)

≥ 1

2
||z2 − z1||2D +

1

2
||z0 − z1||2D −

1

2
||z2 − z1||2D

− 1

2
||D−1(u− v)||2D + τ(g(z1)− g(z2)− ε)

=
1

2
||z0 − z1||2D −

1

2
||D−1(u− v)||2D + τ(g(z1)− g(z2)− ε), (2.22)

where the first inequality follows from (2.19) and the second one is due to the following inequality

〈Dp, q〉 ≤ 1

2
‖p‖D +

1

2
‖q‖D.

Combining (2.21) with (2.22), we have

< z1 − z, v > ≤
1

2
(||z − z0||2D − ||z − z2||2D) +

1

2
||D−1(u− v)||2D

− 1

2
||z0 − z1||2D + τ(g(z)− g(z1) + ε)− 〈Dr, z2 − z〉+ 2τε

≤ 1

2
(||z − z0||2D − ||z − z2||2D) +

1

2
||D−1(u− v)||2D

− 1

2
||z0 − z1||2D + τ(g(z)− g(z1) + ε) +

√
2τε||z − z2||D + 2τε,

where the second inequality follows from the Cauchy-Schwarz inequality.

Therefore, multiplying both sides of the above inequality by 1
τ yields

g(z1)− g(z)+ < z1 − z,
1

τ
v >≤ 1

2τ
(||z − z0||2D − ||z − z2||2D)

+
1

2τ
(||D−1(u− v)||2D − ||z0 − z1||2D) + 2ε+

√
2ε

τ
||z − z2||D.
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3 Main results

Now we present the inexact primal-dual method for solving (1.1).

Algorithm 1 Inexact Primal-Dual Method with Correction Step

Initialization: x0 ∈ X, ȳ0 ∈ Y, τ0, λ0 > 0.

Iteration:

yk+1 ≈
εk+1

2
2 arg max

y∈Y
L(xk, y)− 1

2τk
||y − ȳk||2S (3.1)

xk+1 ≈δk+1

2 arg min
x∈X

L(x, yk+1) +
1

2λk
||A(x− xk)||2R (3.2)

ȳk+1 ≈
εk+1

2
1 arg max

y∈Y
L(xk+1, y)− 1

2τk
||y − ȳk||2S (3.3)

Until meet stopping criterion.

Next we will analyze the convergence of Algorithm 1. Firstly, we prove two important lemmas

which will be used in the sequence.

Lemma 3.1. Let (yk+1, xk+1, ȳk+1) be obtained from Algorithm 1, then for any pair (x, y) ∈ Rn × Rn

we have

L(xk+1, y)− L(xk+1, yk+1) ≤ 1

2τk
(||y − ȳk||2S − ||y − ȳk||2S) +

√
εk+1

τk
||y − ȳk+1||S

+
τk
2
||A(xk+1 − xk)||2S−1 + 2εk+1 −

1

2τk
||ȳk − yk+1||2S . (3.4)

Proof. From Algorithm 1, it is very easy to deduce that the formulas (3.1) and (3.2) are equivalent to

the following ones

yk+1 ≈
εk+1

2
2 arg min

y∈Y
{g(y) +

1

2τk
‖y − yk − τkS−1Axk‖2S}

and

yk+1 ≈
εk+1

2
1 arg min

y∈Y
{g(y) +

1

2τk
‖y − yk − τkS−1Axk+1‖2S},

respectively.

Setting τ = τk, ε = εk+1

2 , D = S, z = y, z0 = ȳk, z1 = yk+1, z2 = ȳk+1, u = −τkAxk, v = −τkAxk+1

in Lemma 2.5(ii), we get

g(yk+1)− g(y) + 〈yk+1 − y,Axk+1〉 ≤ 1

2τk
(‖y − ȳk‖2S − ‖y − ȳk+1‖2S)

+
τk
2
‖A(xk − xk+1)‖2S−1 + 2εk+1

+

√
εk+1

τk
‖y − yk+1‖S −

1

2τk
‖ȳk − yk+1‖2S .
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Hence

L(xk+1, y)− L(xk+1, yk+1) = g(yk+1)− g(y)− 〈yk+1 − y,Axk+1〉

≤ 1

2τk
(‖y − ȳk‖2S − ‖y − ȳk+1‖2S) +

τk
2
‖A(xk − xk+1)‖2S−1 + 2εk+1

+

√
εk+1

τk
‖y − yk+1‖S −

1

2τk
‖ȳk − yk+1‖2S .

This completes the proof.

Lemma 3.2. Let (yk+1, xk+1, ȳk+1) be obtained from Algorithm 1, then for any x ∈ Rn we have

L(xk+1, yk+1)− L(x, yk+1) ≤ 1

2λk
[(‖x− xk‖2ATRA − ‖x− x

k+1‖2ATRA − ‖x
k+1 − xk‖2ATRA] + δk+1.

(3.5)

Proof. By Definition 2.3, the optimal condition of (3.2) yields

1

λk
ATRA(xk − xk+1) ∈ ∂δk+1

L(xk+1, yk+1).

In view of the definition of ε− subdifferential, we have

L(xk+1, yk+1)− L(x, yk+1) ≤ 1

λk
〈ATRA(xk − xk+1), xk+1 − x)〉+ δk+1. (3.6)

Setting a := xk, b := x, c := xk+1, D := ATRA in (2.6), we get

〈ATRA(xk − xk+1), xk+1 − x)〉 = −1

2
[‖xk − xk+1‖2ATRA + ‖x− xk+1‖2ATRA − ‖x− x

k‖2ATRA]. (3.7)

Combining (3.6) with (3.7), we know that (3.5) holds.

The following two lemmas play an important role in proving the convergence of Algorithm 1.

Lemma 3.3. ([21])Assume that the sequence {µN} is nonnegaive and satisfies the recursion

µ2
N ≤ TN +

N∑
n=1

σnµn

for all N ≥ 1, where {TN} is an increasing sequence, T0 ≥ µ2
0, and σn ≥ 0 for all n ≥ 0. Then for all

N ≥ 1

µN ≤
1

2

N∑
n=1

σn + (TN + (
1

2

N∑
n=1

σn)2)
1
2

Set

x̂N :=
1

N

N−1∑
k=0

xk+1 and ŷN :=
1

N

N−1∑
k=0

yk+1. (3.8)

Lemma 3.4. Let the sequence {(xk+1, yk+1, ȳk+1)} be obtained by Algorithm 1 and (x̂N , ŷN ) defined

by (3.8). Suppose that {τk} and {λk} are nondecreasing and R − τkλkS−1 � 0. Then for every saddle

point (x∗, y∗) ∈ X × Y of (1.1), we have

L(x̂N , y∗)− L(x∗, ŷN ) ≤ 1

2NτN
[

√
τN
τ0
||y∗ − ȳ0||S +

√
τN
λ0
||x∗ − x0||ATRA + 2AN +

√
2BN ]2, (3.9)

where AN :=
∑N−1
k=0 τN

√
εk+1

τk
and BN :=

∑N−1
k=0 τN (2εk+1 + δk+1).
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Proof. Adding (3.4) and (3.5) yields

L(xk+1, y)− L(x, yk+1) ≤ 1

2τk
(||y − ȳk||2S − ||y − ȳk+1||2S) +

1

2λk
(||x− xk||2ATRA − ||x− x

k+1||2ATRA)

+

√
εk+1

τk
||y − ȳk+1||S + 2εk+1 + δk+1 −

1

2λk
||A(xk − xk+1)||2R−τkλkS−1 −

1

2τk
||ȳk − yk+1||2S (3.10)

Since {τk} and {λk} are nondecreasing and R− τkλkS−1 � 0,

L(xk+1, y)− L(x, yk+1) ≤ 1

2τk
||y − ȳk||2S −

1

2τk+1
||y − ȳk+1||2S

+
1

2λk
||x− xk||2ATRA −

1

2λk+1
||x− xk+1||2ATRA

+

√
εk+1

τk
||y − ȳk+1||S + 2εk+1 + δk+1. (3.11)

Since L(x, y) and −L(x, y) are convex with respect to x and y respectively, using Jensen inequality and

(3.11), we have

N(L(x̂N , y)− L(x, ŷN )) ≤
N−1∑
k=0

L(xk+1, y)− L(x, yk+1)

≤ 1

2τ0
||y − ȳ0||2S −

1

2τN
||y − ȳN ||2S +

1

2λ0
||x− x0||2ATRA

− 1

2λN
||x− xN ||2ATRA +

N−1∑
k=0

√
εk+1

τk
||y − ȳk+1||S +

N−1∑
k=0

(2εk+1 + δk+1).

(3.12)

Setting x := x∗ and y := y∗ in (3.12) and using (1.2) we have

||y∗ − ȳN ||2S ≤
τN
τ0
||y∗ − ȳ0||2S +

τN
λ0
||x∗ − x0||2ATRA

+

N−1∑
k=0

τN

√
εk+1

τk
||y∗ − ȳk+1||S + 2

N−1∑
k=0

τN (2εk+1 + δk+1).

Set µN = ||y∗− ȳN ||S , TN = τN
τ0
||y∗− ȳ0||2S + τN

λ0
||x∗−x0||2ATRA + 2BN , σk = 2τN

√
εk+1

τk
in Lemma 3.3.

Obviously, T0 ≥ µ2
0 and σk ≥ 0. Thus,

||y∗ − ȳN ||S ≤ AN + (
τN
τ0
||y∗ − ȳ0||2S +

τN
λ0
||x∗ − x0||2ATRA + 2BN +A2

N )
1
2

Since AN , BN , τk and λk are nondecreasing, we have for all k ≤ N ,

||y∗ − ȳk||S ≤ Ak + (
τk
τ0
||y∗ − ȳ0||2S +

τk
λ0
||x∗ − x0||2ATRA + 2Bk +A2

k)
1
2

≤ AN + (
τN
τ0
||y∗ − ȳ0||2S +

τN
λ0
||x∗ − x0||2ATRA + 2BN +A2

N )
1
2

≤ 2AN +

√
τN
τ0
||y∗ − ȳ0||S +

√
τN
λ0
||x∗ − x0||ATRA +

√
2BN . (3.13)

Hence, setting x := x∗ and y =: y∗ in(3.12), and using (3.13) we have

N(L(x̂N , y∗)− L(x∗, ŷN )) ≤ 1

2τ0
||y∗ − ȳ0||2S +

1

2λ0
||x∗ − x0||2ATRA +

1

τN
BN

+
1

τN
AN (2AN +

√
τN
τ0
||y∗ − ȳ0||S +

√
τN
λ0
||x∗ − x0||ATRA +

√
2BN )

≤ 1

2τN
(

√
τN
τ0
||y∗ − ȳ0||S +

√
λN
τ0
||y∗ − ȳ0||ATRA + 2AN +

√
2BN )2,

which implies that (3.9) holds. This completes the proof.
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Remark 3.1. If, in addition, AN and BN are summable and {τk} is bounded above, then from (3.9)

we can establish the O(1/N) convergence rate of our method in the ergodic sense.

Theorem 3.1. Let {xk+1, yk+1, ȳk+1} be the sequence pair generated by Algorithm 1 and {x̂N , ŷN} be

defined by (3.8) in Theorem 3.4. Suppose that the assumptions of Theorem 3.4 hold and τk ≤ τ , λk ≤ λ
with R − τλS−1 � 0. If the partial sums AN and BN in Theorem 3.4 are summable and A is of

full column rank, then every weak cluster point (x̂, ŷ) of {x̂N , ŷN} is a saddle point of problem (1.1).

Moreover, if the dimension of X and Y is finite, then there exists a saddle point (x̂, ŷ) ∈ X × Y such

that xk → x̂ and yk → ŷ as k →∞.

Proof. Since AN and BN are summable,

(

√
τN
τ0
‖y∗ − ȳ0‖S +

√
λN
τ0
‖y∗ − ȳ0‖ATRA + 2AN +

√
2BN )2

≤ (

√
τ̄

τ0
‖y∗ − ȳ0‖S +

√
λ̄

τ0
‖y∗ − ȳ0‖ATRA + 2AN +

√
2BN )2 := C1 < +∞

From (3.13),we know that for all k ≤ N , ‖y∗ − ȳk‖S ≤ C2 < +∞. By the same argumentation as for

yk, from (3.12) we obtain ‖x∗−xk‖ATRA <∞ for all k ≤ N and hence {xk} is bounded, which implies

the boundedness of {x̂N}. Let x := x∗ and y = y∗ in (3.10) and then sum the resulting inequality from

k = 0 to N − 1 to obtain

1

2λ̄

N−1∑
k=0

‖xk+1 − xk‖2AT (R−τ̄ λ̄S−1)A +

N−1∑
k=0

1

2τ̄
‖ȳk − yk+1‖2S ≤

1

2τ0
‖y∗ − ȳ0‖2S −

1

2τN
‖y∗ − ȳN‖2S

+
1

2λ0
‖x∗ − x0‖2ATRA −

1

2λN
‖x∗ − xN‖2ATRA +

C2

τN
AN +

1

τN
BN := C3 < +∞ (3.14)

Letting N →∞ in (3.14), we have

xk − xk+1 → 0 and ȳk − yk+1 → 0 as k →∞. (3.15)

Hence, {ȳk − yk+1} is bounded. Thus,

‖y∗ − yk+1‖S ≤ ‖y∗ − ȳk‖S + ‖ȳk − yk+1‖S < +∞,

i.e.,{yk} is bounded, and hence {ŷN} is also bounded. Hence there exists a subsequence (x̂Ni , ŷNi)

weakly converging to a cluster point(x̂, ŷ). Since f and g are l.s.c.(thus also weakly l.s.c.), from (3.9)

we have

L(x̂, y∗)− L(x∗, ŷ) = lim
i→∞

L(x̂Ni , y∗)− L(x∗, ŷNi) ≤ lim
i→∞

C1

2τ̄Ni
= 0

which implies that (x̂, ŷ) is a saddle point of L(x, y).

Now suppose that the dimensions of X and Y are finite. Since the sequence pair (xk, yk) is

bounded, there exists a subsequence (xki , yki) strongly converging to a cluster point (x̂, ŷ). Since (x̂, ŷ)

is a saddle point of L(x, y), by replacing (x∗, y∗) with (x̂, ŷ) in (3.10), we know that (3.15) holds. Hence,

xki−1 − xki → 0 and ȳki−1 − yki → 0 as i→∞. Hence,

||xki−1 − x̂||ATRA ≤ ||xki−1 − xki ||ATRA + ||xki − x̂||ATRA → 0 as i→∞
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i.e., xki−1 → x̂. Let now xk+1 = H(xk) denote (3.20) in Algorithm 2 and xk+1 = Hδk+1
(xk) denote

(3.2). In view of the continuity of H , we have

||x̂−H(x̂)||ATRA = lim
i→∞

||xki−1 −H(xki−1)||ATRA

≤ lim
i→∞

(||xki−1 −Hδki
(xki−1)||ATRA + ||Hδki

(xki−1)−H(xki−1)||ATRA)

≤ lim
i→∞

(||xki−1 − xki ||ATRA +
√

2λ̄δki) = 0

where the last inequality follows from Lemma 2.3, Lemma 2.1 and Definition 2.1.

Let yk+1 = Γ(ȳk) and ȳk+1 = Ψ(ȳk) in Algorithm 1, and yk+1 = Γεk+1
(ȳk) and ȳk+1 = Ψεk+1

(ȳk)

in Algorithm 2. Hence

||ŷ − Γ ◦Ψ(ŷ)||S = lim
i→∞

‖yki − Γ ◦Ψ(yki−1)‖S

≤ lim
i→∞

(||yki − Γ ◦Ψεki
(ȳki−1)||S + ||Γ ◦Ψεki

(ȳki−1)− Γ ◦Ψ(yki−1)||S

≤ lim
i→∞

(||Γεki (ȳ
ki−1)− Γ(ȳki)||S + ||Ψεki

(ȳki−1)−Ψ(ȳki−1)||S

≤ lim
i→∞

(||Γεki (ȳ
ki−1)− Γ(ȳki−1)||S + ||Γ(ȳki−1)− Γ(ȳki)||S + +

√
2τ̄ εki)

≤ lim
i→∞

[(2
√

2τ̄ εki) + ||ȳki−1 − ȳki ||S ] = lim
i→∞

||ȳki−1 − ȳki ||S

≤ lim
i→∞

(||ȳki−1 − yki ||S + ||ȳki − yki ||S) ≤ lim
i→∞

||ȳki − yki ||S)

i.e.

||ŷ − Γ ◦Ψ(ŷ)||S ≤ lim
i→∞

||ȳki − yki ||S . (3.16)

In view of Lemma 2.5(i), we have

0 ≤ ||yk − ȳk||S ≤
1

2
(
√

2τ̄ εk + ||xk − xk−1||ATS−1A

+
√
||xk − xk−1||2

ATS−1A
+ 10τ̄ εk + 2

√
2τ̄ εk||xk − xk−1||ATS−1A) (3.17)

Since xki−1 − xki → 0(i→∞),taking k = ki and letting i→∞ in the above formula, we get

lim
k→∞

||yki − ȳki ||S = 0

Hence, from (3.16) we obtain ŷ = Γ ◦ Ψ(ŷ). Since x∗ = H(x∗),it follows that (x̂, ŷ) is a fixed point of

Algorithm 1 and hence a saddle point of problem (1.1).We now use (x, y) = (x̂, ŷ) in (3.11) and sum

from k = ki, ..., N − 1 to obtain

1

2λ̄
||x̂− xN ||2ATRA +

1

2τ̄
||ŷ − ȳN ||2S ≤

1

2τ1
||ŷ − ȳki ||2S +

1

2λ1
||x̂− xki ||2ATRA

+

N−1∑
k=ki

√
εk+1

τ1
||ŷ − ȳk+1||S +

N−1∑
k=ki

(2εk+1 + δk+1) (3.18)

Since εk → 0 and δk → 0 as k → ∞, the right hand size in (3.18) tends to zero for i → ∞, which

implies that also xN → x̂ and ȳN → ŷ for N → ∞. Since xN → x̂ as N → ∞, it is easy to see

that limN→∞ ‖xN − xN−1‖ATS−1A = 0. Taking k = N in(3.17) we have ‖yN − ȳN‖S → 0( N → ∞).

Therefore,

lim
N→∞

‖yN − ŷ‖S ≤ lim
N→∞

(‖yN − ȳN‖S + ‖ȳN − ŷ‖S) = 0

Thus,xN → x̂(N →∞). This completes the proof.
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Next we will establish convergence rates of our method, provided that {δn} and {εn} decrease like

O( 1

nα+1
2

). We first review the following lemma.

Lemma 3.5. ([18]) For ω > −1, let sN :=
∑N
n=1 n

ω. Then

sN = O(N1+ω)

Theorem 3.2. If α > 0 and δn = O( 1

nα+1
2

), εn = O( 1

nα+1
2

),then

L(xN , y∗)− L(x∗, yN ) =


O(

1

N
), α >

1

2

O(
ln2(N)

N
), α =

1

2

O(N−2α), α ∈ (0,
1

2
)

Proof. If α > 1
2 , then AN and BN in(3.9) are bounded. Hence,

L(xN , y∗)− L(x∗, yN ) = O(
1

k
).

If α = 1
2 , then BN is bounded and AN = O(ln(N)). Hence,

L(xN , y∗)− L(x∗, yN ) = O(
ln2(N)

N
).

If α ∈ (0, 1
2 ), from Lemma 3.5 we have

L(xN , y∗)− L(x∗, yN ) = O(N−2α).

Next we consider the two special cases of Algorithm 1.

If we take εk+1 = δk+1 ≡ 0 in Algorithm 1, then Algorithm 1 reduces to the following one:

Algorithm 2 Primal-Dual Method with Correction Step-A

Initialization: x0 ∈ X, ȳ0 ∈ Y, τ0, λ0 > 0.

Iteration:

yk+1 = arg max
y∈Y

L(xk, y)− 1

2τk
||y − ȳk||2S , (3.19)

xk+1 = arg min
x∈X

L(x, yk+1) +
1

2λk
||A(x− xk)||2R, (3.20)

ȳk+1 = arg max
y∈Y

L(xk+1, y)− 1

2τk
||y − ȳk||2S , (3.21)

Until meet stopping criterion.

If, in Algorithm 2, we take τk = λk = 1 and

R =

[
1
r1
I1 0

0 1
r2
I2

]
and S =

[
1
s1
I1 0

0 1
s2
I2

]

where ri, si > 0, i = 1, 2, Ii(i = 1, 2) are identity matrices, then Algorithm 2 reduces to the following

one, which is the PDL method in [25].

Remark 3.2. It is easy to see that, if risi < 1(i = 1, 2) as required in [25], then R − τ̄ λ̄S−1 � 0

naturally holds. Thus, our method relaxes the requirement on primal-dual step sizes in [25].

13



Algorithm 3 Primal-Dual Method with Correction Step-B

Initialization: x0 ∈ X, ȳ0 ∈ Y, τ0, λ0 > 0.

Iteration:

yk+1 = arg max
y∈Y

L(xk, y)− 1

2
||y − ȳk||2S , (3.22)

xk+1 = arg min
x∈X

L(x, yk+1) +
1

2
||A(x− xk)||2R, (3.23)

ȳk+1 = arg max
y∈Y

L(xk+1, y)− 1

2
||y − ȳk||2S , (3.24)

Until meet stopping criterion.

4 Numerical experiments

In this section, we study the numerical solution of the TV − L1 model for image deblurring

min
x∈X

F (x) = ||Kx− f ||1 + µ||Dx||1 (4.1)

where f ∈ Y is a given (noisy) image , K : X → Y is a known linear (blurring) operator, D : X → Y

denotes the gradient operator and µ is a regularization parameter. Now we introduce the variables

γ1, γ2, which satisfy γ1, γ2 > 0 and γ1 + γ2 = µ. Then,(4.1) can be written as

min
x∈X
||Kx− f ||1 + γ1||Dx||1 + γ2||Dx||1

Further, the above formula can be rewritten as [5]

min
x∈X

max
y∈Y

L(x, y) := γ1||Dx||1 + 〈Ax, y〉 − δC1
(u)− δCγ2 (v)− 〈f, u〉 (4.2)

where Cλ = {y ∈ Y | ‖y‖∞ ≤ λ}, y =

[
u

v

]
, and A =

[
K

γ2D

]
. Next we suppose that N (K)

⋂
N (D) =

{0}, where N (Q) represents the null space of the matrix Q, and this assumption has been used in many

references including similar types of problems, for example, in [24]. Under this assumption, A is of full

column rank.

For simplicity we set τk = λk = 1, R =

[
1
r1
I1 0

0 1
r2
I2

]
and S =

[
1
s1
I1 0

0 1
s2
I2

]
in Algorithm 1.

Setting εk+1 = 0, and we can compute yk+1 by the following formula:

uk+1 = PC1(ūk + s1(Kxk − f)),

vk+1 = PCγ2 (v̄k + s2γ2Dx
k),

where yk+1 = (uk+1, vk+1)T . Similarly, we can get ȳk+1 = (uk+1, vk+1) where uk+1 and vk+1 can be

obtained by replacing xk with xk+1 in uk+1 and vk+1, respectively.

Now we consider the computation of the following subproblem:

xk+1 ≈δk+1

2 arg min
x∈X

L(x, yk+1) +
1

2
‖A(x− xk)‖2R

≈δk+1

2 arg min
x∈X

γ1‖Dx‖1 + 〈Ax, yk+1〉+
1

2
‖A(x− xk)‖2R. (4.3)
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The above formula can be equivalently rewritten as

xk+1 ≈δk+1

2 arg min
x∈X

γ1‖Dx‖1 +
1

2
‖Bx− ξ‖2, (4.4)

where B =

[
1√
r1
K

γ2√
r2
D

]
and ξ =

[
1√
r1
Kxk −√r1u

k+1

γ2√
r2
Dxk −√r2v

k+1

]
. We note that BTB = 1

r1
KTK +

γ2
2

r2
DTD is

symmetrically positive definite because B is of full column rank. Therefore, there exists z ∈ X such

that Bz = ξ. Further, (4.3) can be rewritten equivalently as

xk+1 ≈
δk+1
γ1

2 arg min
x∈X
||Dx||1 +

1

2γ1
||x− z||2BTB (4.5)

Next we will show that the subproblem (4.5) can be computed by approximately minimizing duality

gap.

Setting H(x) := h(Dx) = ||Dx||1, ϕ(x) = 1
2γ1
||x−z||2BTB , we consider the folowing primal problem:

min
x∈X

h(Dx) + ϕ(x) := ||Dx||1 +
1

2γ1
||x− z||2BTB . (4.6)

together with its dual problem:

min
v∈Y

ϕ∗(−DT v) + h∗(v) =
1

2γ1
||γ1D

T v −BT ξ||2(BTB)−1 −
1

2γ1
||ξ||22 + δΩ(v) (4.7)

which Ω = {v|||v||∞ ≤ 1}. If v̄ is a solution of Problem (4.7), then

x̄ = (BTB)−1(BT ξ − γ1D
T v̄) (4.8)

is a solution of Problem (4.6). Since h is positively homogeneous, from Remark 1 of [23] we get

h∗(v) = H∗(DT v). Now we consider the dual gap

Ψ(x̄, v̄) = h(Dx̄) + ϕ(x̄) + ϕ∗(−DT v̄) + h∗(v̄)

= H(x̄) +H∗(DT v̄) + 〈−x̄, DT v̄〉

= sup
v∈Y
{〈v, x̄〉 −H∗(v)} − 〈x̄, DT v̄〉+H∗(DT v̄)

≥ H∗(DT v̄)−H∗(v) + 〈v −DT v̄, x̄〉, ∀ v ∈ Y. (4.9)

Thus, if Ψ(x̄, v̄) ≤ δ, where δ > 0 is some given tolerance, then x̄ ∈ ∂δH∗(DT v̄), which by Theorem 2.4.4

of [26] is equivalent to DT v̄ ∈ ∂δH(x̄), and hence from Definition 2.3 this implies x̄ ≈δ2 ProxB
TB

γ1H (z).

Therefore,

Ψ(x̄, v̄) ≤ δ ⇒ x̄ ≈δ2 ProxB
TB

γ1H (z), (4.10)

where x̄ and v̄ satisfy (4.8). Thus, we use FISTA method ([1]) to solve the dual problem (4.7) so as to

better evaluate the gap. In view of (4.10), we adopt the following inequality as the stopping criterion

of inner loop:

Ψ(xk+1, vk+1) ≤ δk+1, (4.11)
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where δk+1 = O(1/(k+ 1)α+ 1
2 (α > 0). In the following we will report the numerical experiment results.

The MATLAB codes are run on a PC (with CPU Intel i5-5200U) under MATLAB Version 8.5.0.197613

(R2015a) Service Pack 1. We report numerical results of the proposed methods. We test the images

cameraman.png(256 × 256) and man.png(1024 × 1024), as presented in Figures 1 and 2. At the same

time, we adopt the following stopping rule:

F (xk)− F (x∗)

F (x∗)
< 10−5,

where x∗ is a solution of the TV − L1 model (4.1).

Figure 1: Original cammeraman.png(256×256) Figure 2: Original man.png(1024×1024)

4.1 Sensitivity of parameters

In this section, we will analyze the sensitivity of parameters. In this test, average blur with hsize=9

was applied to the original image cameraman.png(see Figure 3) (256×256) by fspecial(average,9), and

20% salt-pepper noise was added in. According to Theorem 3.2, the convergence rat e of Algorithm

1 depends on the value of parameter α. At the same time, from (4.11) we know that the iteration

number of inner loop closely relates to the parameter α. Hence, we first study the sensitivity of α. In

the following experiment, we take µ = 0.05, s1 = 1, s2 = 2, r1 = 0.99
s1
, r2 = 0.99

s2
, γ1 = γ2 = 1

2µ. We

choose the 256× 256 cammeraman.png as the test picture and take α ∈ (0, 2.3). The iteration number

of outer loop is fixed as 100. In Figure 5,the ordinate denotes the iteration number of the inner loop

while the abscissa denotes the value of α. From Figure 5, we can see that, when α is not very large,

the iteration number of inner loop is very little; However, as α increases, the iteration number of inner

loop also increases rapidly. Similar results can also be found in [18].
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Figure 3: Cammeraman.png with noise Figure 4: Man.png with noise

Figure 5: Sensitivity of α

Next we investigate the sensitivity of parameters s1 and s2. We still take µ = 0.05, r1 = 0.99
s1
, r2 =

0.99
s2
, γ1 = γ2 = 1

2µ and fix α = 1. If s2 is fixed as 2, we take s1 ∈ (0.8, 2.5); If s1 is fixed as 1, we take

s2 ∈ (0.8, 2.3). The iteration number of outer loop is fixed as 100. In Figures 6 and 7, the ordinate

denotes the running time of Algorithm 1 while the abscissa denotes the value of s1 or s2. From Figures

6 and 7, we can see that, the running time decreases as s1 or s2 increases.

Figure 6: Sensitivity of s1 Figure 7: Sensitivity of s2
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Further, we consider the sensitivity of parameters γ1 and γ2 which satisfy γ1 + γ2 = µ. We take

α = 1, µ = 0.05 and fix the iteration number of outer loop as 200. In Figure 8, the ordinate denotes

the value of F (xk) − F (x∗) over F (x∗) while the abscissa denotes the value after the number of inner

iterations is taken log10. In addition, ”initr” denotes the number of total iterations of inner loop(i.e.,

the second subproblem). At the same time, we choose γ1 as four different values 1
2µ,

1
2.5µ,

1
3µ and 1

3.5µ

which correspond to four different curves in Figure 8, respectively. These curves indicate that, when

the value of γ1 or γ2 varies, the number of inner iterations changes remarkably. Hence, the CPU time

increases markedly as γ1 decreases. By testing Figure 3, the CPU time corresponding to the above four

choices of γ1 is 95.8s, 149.7s, 210.9s and 279.2s respectively.

Figure 8: Sensitivity of γ

Finally, we analyze the variation of Algorithm 1’s numerical performance with respect to various

choices of α when γ1 is fixed as 1
3µ. Besides, average blur with hsize=9 was applied to the original

image man.png(see Figure 4) (1024×1024) by fspecial(average,9), and 20% salt-pepper noise was added

in. In Table 1, CPU, ”iter-out” and ”iter-in” denote the CPU time in seconds,the iteraion number of

outer and inner loops, respectively. Testing Figures 3 and 4 yields the following results:

Table 1

Figure 3 Figure 4

α CPU iter-out iter-in time(s) iter-out iter-in

0.1 0.8438 10 18 26.0900 10 18

0.3 1.0625 10 34 35.2031 10 32

0.5 1.2500 9 35 40.4688 10 41

0.8 1.5625 10 51 48.3594 10 50

1 1.8281 11 63 58.3906 11 63

From Table 1 we can see that, as α increases, the CPU time and the number of inner iterations increase

while the number of outer iterations keeps invariant bascially.
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4.2 Image denoising

In this section, we apply our Algorithm 1 to image debluring of TV − L1 model (4.1). In the

following tables and figures, ”CP”, iCP, ”PDL” and ”iPDL” denote Algorithm 1 in [4], Algorithm (4.2)

in [18], Algorithm PDL in [25] and our Algorithm 1, respectively. In this experiment, we test Figures 3

and 4. We fixed the number of iterations as 200 and the penalty coefficient µ = 0.1. When the above

four Algorithms are implemented, their respective parameters are given in Table 2.

Table 2

CP τ = σ = 0.99√
8

iCP τ = σ = 0.99, α = 1

PDL s1 = 2, r1 = 0.99
s1
, s2 = 1, r2 = 0.99

s2

iPDL s1 = 2, r1 = 0.99
s1
, s2 = 1, r2 = 0.99

s2
, α = 1, γ1 = γ2 = 1

2µ

The restored images by the above four Algorithms are displayed in Figure 9. Obviously, our

algorithm and CP algorithm get better restoration quality compared with the iCP and PDL methods.

In our experiment, we find that, if we increase the number of iterations to 1000 or more, all four

algorithms can restore the image with almost the same quality, but our algorithm need fewer iterations

than other three ones.

Figure 9: Restored images

5 Conclusions

In this paper, we propose an inexact primal-dual method for the saddle point problem by applying

inexact extended proximal operators. We show the convergence of our Algorithm 1, provided that the

partial sums AN and BN are summable. The O(1/N) convergence rate in the ergodic sense is also

established. We also apply our method to solve TV-L1 image deblurring problems and verify their

efficiency numerically.

It is worth mentioning that our method have some existing algorithms as special cases by the

appropriate choices of parameters. Besides, our method also relaxes the requirement on primal-dual

step sizes, for example, in [25]. At present, however, we are not able to provide the accelerated versions

of our method , for example, under the assumption that f or g is strongly convex. Hence, this will be

the subject of future research.
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