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Abstract Empirical results show that Anderson acceleration (AA) can be a pow-
erful mechanism to improve the asymptotic linear convergence speed of the Alter-
nating Direction Method of Multipliers (ADMM) when ADMM by itself converges
linearly. However, theoretical results to quantify this improvement do not exist yet.
In this paper we explain and quantify this improvement in linear asymptotic con-
vergence speed for the special case of a stationary version of AA applied to ADMM.
We do so by considering the spectral properties of the Jacobians of ADMM and the
stationary version of AA evaluated at the fixed point, where the coefficients of the
stationary AA method are computed such that its asymptotic linear convergence
factor is optimal. The optimal linear convergence factors of this stationary AA-
ADMM method are computed analytically or by optimization, based on previous
work on optimal stationary AA acceleration. Using this spectral picture and those
analytical results, our approach provides new insight into how and by how much
the stationary AA method can improve the asymptotic linear convergence factor
of ADMM. Numerical results also indicate that the optimal linear convergence
factor of the stationary AA methods gives a useful estimate for the asymptotic
linear convergence speed of the non-stationary AA method that is used in practice.
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1 Introduction

In this paper, we consider the constrained optimization problem

min
x,z

f(x, z) = f1(x) + f2(z),

s.t. Ax + Bz = b,
(1)

where x ∈ Rn1 , z ∈ Rn2 are optimization variables, b ∈ Rnb is a known vector
of data, f1 : Rn1 → R, f2 : Rn2 → R are the objective functions, and A ∈
Rnb×n1 , B ∈ Rnb×n2 are linear operators. Many optimization problems in data
science and machine learning can be cast into this form.

We consider the well-known Alternating Direction Method of Multipliers (ADMM)
[3] for solving problem (1), and we apply Anderson acceleration (AA) [1] to ac-
celerate the convergence of ADMM. In particular, we consider problems where
ADMM by itself would converge linearly with a linear asymptotic convergence
factor ρADMM , and we are interested in explaining and quantifying how and by
how much the combined AA-ADMM method would improve the asymptotic con-
vergence compared to ρADMM . In recent papers it has indeed been observed nu-
merically that AA may speed up the convergence of ADMM and related methods
substantially [10,18,26], but there are no known convergence bounds for AA with
finite window size that would allow quantification of this improvement in linear
asymptotic convergence speed.

Since the analysis of convergence acceleration by AA with finite window size
has so far proven intractable, we investigate in this paper the simplified case of
convergence acceleration of ADMM by a stationary version of AA (sAA), where
the sAA coefficients are determined in a way that optimizes the asymptotic linear
convergence factor of the stationary sAA-ADMM method, given the spectral prop-
erties of the Jacobian of the ADMM update at the fixed point. We will demonstrate
how the spectral properties of the ADMM and optimal sAA-ADMM Jacobians can
be used to explain how and by how much the sAA nonlinear convergence acceler-
ation method can accelerate the asymptotic convergence of ADMM. We use the
theoretical results that were introduced in [6] for analyzing convergence accel-
eration by stationary versions of AA and the closely related nonlinear GMRES
(NGMRES) method, which were applied in [6] to the acceleration of the Alter-
nating Least Squares (ALS) method to compute canonical tensor decompositions.
AA (in its NGMRES form) was first applied to accelerate the convergence of ALS
for the nonconvex canonical tensor decomposition problem in 2012 [5]. We use the
theoretical results from [6] on optimal sAA coefficients to compute the optimal
sAA-ADMM asymptotic convergence factor, ρ∗sAA−ADMM . We will also report on
numerical tests indicating that the optimal stationary ρ∗sAA−ADMM factors pro-
vide a useful estimate for the improved asymptotic linear convergence speed of
applying the non-stationary AA method that is used in practice to ADMM.

1.1 Alternating Direction Method of Multipliers

Extensive research has shown that ADMM is an effective tool for solving (1),
and can be competitive with the best known methods for some problems [3], in
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particular also when accelerated by AA [10,18,26]. To present ADMM for solving
(1), we first need to define the augmented Lagrangian

Lρ(x, z,y) = f1(x) + f2(z) + yT (Ax + Bz− b) +
ρ

2
||Ax + Bz− b||22, (2)

where y is the Lagrange multiplier, and ρ > 0 is a penalty parameter. ADMM
then solves the original problem by performing alternating minimization of the
augmented Lagrangian with respect to variables x and z and computes the sub-
problems 

xk+1 = argminxLρ(x, zk,yk),

zk+1 = argminzLρ(xk+1, z,yk),

yk+1 = yk + ρ(Axk+1 + Bzk+1 − b),

given initial approximations z0 and y0. It is often more convenient to write the
augmented Lagrangian (2) in an equivalent scaled form by replacing 1

ρy with u

Lρ(x, z,u) = f1(x) + f2(z) +
ρ

2
||Ax + Bz− b + u||22 −

ρ

2
||u||22. (3)

Then the ADMM steps become
xk+1 = argminxf1(x) + ρ

2 ||Ax + Bzk − b + uk||22,
zk+1 = argminzf2(z) + ρ

2 ||Axk+1 + Bz− b + uk||22,
uk+1 = uk + Axk+1 + Bzk+1 − b,

(4)

given initial approximations z0 and u0.
The optimality conditions for problem (1) using ADMM are the primal feasi-

bility

Ax∗ + Bz∗ − b = 0, (5)

and dual feasibility

0 ∈ ∂f1(x∗) + ATy∗, (6)

0 ∈ ∂f2(z∗) + BTy∗, (7)

where x∗, z∗,y∗ are the optimal solutions. It turns out that zk+1 and yk+1 always
satisfy dual feasibility (7), and the optimization step for xk+1 implies [3]

ρATB(zk+1 − zk) ∈ ∂f1(xk+1) +ATyk+1.

This means that
rpk+1 := Axk+1 + Bzk+1 − b

can be used as the primal residual at iteration k + 1, and

rdk+1 := ρATB(zk+1 − zk)

can be used as the dual residual at iteration k + 1. These two residuals converge
to zero as ADMM proceeds [3].

Although there are abundant results on the application of ADMM, studies on
ADMM convergence rates are few until recently. When the objective functions f1
and f2 are convex (not requiring strong convexity, and possibly nonsmooth), the
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work in [4, 13, 14] has shown an O(1/k) convergence rate under some additional
assumptions. The work in [2, 4, 7, 15, 17, 20] shows linear convergence of ADMM
under strong convexity and rank conditions. More specifically, results in [17] show
that when f is strongly convex and the composite constraint matrix [A B] is row
independent, then ADMM converges linearly to the unique minimizer. More recent
work in [2,7] shows that when at least one of the component functions is strongly
convex and has a Lipschitz-continuous gradient, and under certain rank conditions
on the constraint matrices, some linear convergence results can be obtained for
a subset of primal and dual variables in the ADMM algorithm. The often slow
convergence of ADMM is one of the reasons that ADMM was not well-known
until recently when large-scale distributed optimization became necessary.

1.2 Acceleration methods for ADMM

Results on accelerated versions of ADMM are even fewer. The most widely used
acceleration technique is simple overrelaxation, which reliably reduces the total
iteration count by a small factor [11]. A GMRES-accelerated ADMM is discussed
in [27] for a quadratic objective, for which the ADMM iteration is linear. In some
sense, our paper is a nonlinear extension of the approach in [27] since AA is a
nonlinear generalization of GMRES [6,25]: we consider nonlinear convergence ac-
celeration by AA of general nonlinear ADMM iterations that converge linearly,
and [27] considers linear convergence acceleration by GMRES of specific linear
ADMM iterations. For the case of Nesterov acceleration, which is a version of
Anderson acceleration with window size one [6,19], the only papers providing con-
vergence rates for not necessarily differentiable convex functions are [8, 9, 12, 16],
among which [12,16] show that under strong convexity assumptions Nesterov accel-
eration of ADMM has an optimal global convergence bound of O(1/k2) in terms of
the primal and dual residual norms. In [9] a dynamical system perspective was pro-
posed for understanding ADMM and accelerated ADMM applied to the problem
(1) with the constraint z = Ax. Using a nonsmooth Lyapunov analysis technique,
they proved a convergence rate of O(1/k) for ADMM, and a convergence rate of
O(1/k2) for accelerated ADMM, under the assumption that f1 and f2 are both
proper, lower semicontinuous and convex, and A has full column rank. Following
this work, more convergence rates of dynamical systems related to relaxed and
accelerated variants of ADMM are given in [8].

Work using Anderson acceleration (AA) applied to ADMM and related meth-
ods can be found in [10, 16, 22, 23, 26], but no convergence rates are given that
quantify convergence improvement. In this paper, we investigate acceleration of
ADMM by the stationary version of AA (sAA) that was first introduced in [6] for
the case that ADMM converges linearly, and we determine optimal linear asymp-
totic convergence factors for the accelerated sAA-ADMM algorithm, quantifying
the convergence improvement relative to the linear asymptotic convergence factor
of ADMM used by itself. We also provide numerical results indicating that these
optimal sAA convergence factors give a useful estimate of the asymptotic conver-
gence improvement provided by the non-stationary AA method that is used in
practice.
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1.2.1 Anderson acceleration for fixed-point iterations

Consider fixed-point iteration (FPI)

xk+1 = q(xk), (8)

where q : Rn → Rn is the iteration function. The method of Anderson acceleration
tries to improve convergence by taking

xk+1 = q(xk) +

mk−1∑
i=0

β
(k)
i (q(xk−i)− q(xk−i−1)) . (9)

where mk = min{m, k} with some predefined window size m ≥ 0, and the coeffi-

cients β
(k)
i are computed from optimization problem

{β(k)
i } = argmin

{βi}
||r(xk) +

mk−1∑
i=0

βi (r(xk−i)− r(xk−i−1)) ||2, (10)

where r(xk) = xk − q(xk) is the residual of FPI (8) in iteration k. We refer to
Anderson acceleration with window size m as AA(m).

It has been shown that Anderson acceleration is, in the linear case, essentially
equivalent to the GMRES method for solving linear systems when m = k [25].
When m = 0, the un-accelerated FPI is recovered. The convergence of Anderson
acceleration is not guaranteed. The work in [24] shows that for linear problems,
if the FPI is a contraction, global convergence can be proved. But for nonlinear
problems, only local convergence can be shown under certain conditions. Global
convergence properties can be improved by adding a safeguarding step to the
algorithm [6, 10, 19, 26]. However, we do not need a safeguarding step for the
numerical tests with linear asymptotic convergence that we consider in this paper.

In [6], a stationary variant of AA is considered, which we call sAA, and is given
by

xk+1 = q(xk) +

mk−1∑
i=0

βi (q(xk−i)− q(xk−i−1)) , (11)

where the βi are fixed for all iterations. We refer to sAA with window size m
as sAA(m). In [6], the constant sAA coefficients βi in (11) are computed such
that the asymptotic linear convergence factor of the sAA method is optimal, given
knowledge of q′(x) evaluated in the fixed point x∗ (see Section 2 for details). We
use this approach in this paper to quantify the optimal asymptotic convergence
speed of sAA-ADMM compared to ρADMM , and the spectral properties of q′(x∗)
provide insight into how sAA effectively accelerates ADMM, as will be discussed
in Section 3.

1.2.2 Anderson acceleration applied to ADMM (AA-ADMM)

When we use AA to accelerate ADMM, we can treat one iterate of ADMM as a
FPI, that is, the ADMM iteration of (4) can be seen as a FPI

(zk+1,uk+1) = q(zk,uk), (12)
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given initial approximations z0, u0. Notice that xk+1 is only dependent on zk
and uk and can be recovered from them anytime during the iteration, thus it is
included implicitly and can be eliminated when ADMM is seen as a FPI [26].
Moreover, if B is a nonsingular square matrix, since

∇f2(zk+1) + ρBT (Axk+1 + Bzk+1 − b + uk) = 0,

from the step of the zk+1 update, we get

uk +Axk+1 + Bzk+1 − b = −1

ρ
B−T∇f2(zk+1),

and thus

uk+1 = −1

ρ
B−T∇f2(zk+1).

Then, we can further simplify ADMM as a FPI of variable z only [26], i.e.,

zk+1 = q(zk). (13)

The other two variables xk+1 and uk+1 can be recovered from zk. These sim-
plifications are not necessary, but they help avoid computational overhead and
simplify implementation.

The rest of this paper is structured as follows. In Section 2 we discuss the
detailed theoretical results on stationary AA from [6] that will be used in this
paper to analyze the convergence acceleration of ADMM by sAA in Section 3.
Section 3 will also numerically compare acceleration of ADMM by stationary and
non-stationary AA. Conclusions are formulated in Section 4.

2 Optimal asymptotic convergence speed of stationary AA applied to
ADMM

As we mentioned earlier, there is a lack of mathematical understanding of the
improved asymptotic convergence speed of AA with finite window size applied to
FPI (8). In this section, we discuss the theory from [6] that quantifies how the
stationary version of AA can optimally accelerate the asymptotic convergence of a
linearly converging FPI. We summarize the results from [6] with small extensions
in a form that is convenient for the purposes of this paper. This theory focuses on
the analysis of sAA with window size m = 1, and it assumes that the fixed-point
iteration operator q(·) is differentiable at the fixed point x∗, and that the FPI
converges root-linearly with linear convergence factor ρ that is the spectral radius
of q′(x∗).

We will apply this theory in this paper to quantify the improved asymptotic
convergence speed of the stationary version of AA applied to ADMM, compared
to ρADMM , in the case that ADMM by itself converges linearly. We will make
the assumption that the ADMM iteration operator q(·) is differentiable at x∗. It
is worth mentioning that for the analysis we pursue, we only need to assume the
differentiability of q(·) in a neighborhood of the solution, and q(·) does not need
to be smooth elsewhere. In fact, the objective function f(x, z) in (1) may not be
differentiable at the solution, but this does not necessarily preclude the ADMM
iteration operator q(x) from being differentiable at the solution. We elaborate on
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this in Appendix A, and this means that our approach of analyzing sAA-ADMM
convergence based on the spectral properties of q′(x∗) may be applied to both
differentiable and non-differentiable objectives f(x, z) in (1), as long as q(·) is
differentiable in a neighborhood of the solution and the asymptotic convergence
of ADMM by itself is linear.

The results in [6] consider sAA with m = 1 applied to FPI (8):

xk+1 = α0q(xk) + α1q(xk−1) = (1 + β)q(xk)− βq(xk−1), (14)

where β remains fixed at all iterations. Note that, for m = 1, this is a stationary
version of Nesterov’s accelerated gradient descent method if q(x) is a gradient
descent update.

To study the convergence behaviour and find the optimal choice of β, we in-
troduce

Xk =

[
xk

xk−1

]
and write sAA iteration (14) as

Xk+1 =

[
xk+1

xk

]
=

[
(1 + β)q(xk)− βq(xk−1)

xk

]
= Ψ(Xk).

Ostrowski’s theorem [21, Theorem 10.1.3] implies that, when Ψ has a fixed point
X∗ and is F-differentiable at X∗, and the spectral radius of Ψ′ at X∗ satisfies
ρ(Ψ′) < 1, then X∗ is a point of attraction of the iteration Xk+1 = Ψ(Xk), where

Ψ′(X∗) =

[
(1 + β)q′(x∗) −βq′(x∗)

I O

]
.

In addition, if ρ(Ψ′) > 0, the iteration will have a root-linear convergence factor
that is given by ρ(Ψ′) [21, Theorem 10.1.4]. We are interested in finding the
optimal asymptotic convergence factor ρ∗sAA(1) of sAA(1) over all possible choices
of β:

ρ∗sAA(1) = min
β
ρsAA(1)(β).

By the properties of the Schur complement, we have that

|λI−Ψ′(X∗)| =
∣∣∣∣λI− (1 + β)q′(x∗) βq′(x∗)

−I λI

∣∣∣∣
=
∣∣λ (λI− (1 + β)q′(x∗)) + βq′(x∗)

∣∣ = |λ2I− (1 + β)λq′(x∗) + βq′(x∗)| = 0

where λ is any eigenvalue of Ψ′(X∗) and |M| means the determinant of matrix
M. Denote the eigenvalues of q′(x∗) by µ, then we have

λ2 − (1 + β)µλ+ βµ = 0. (15)

Hence, all the eigenvalues of Ψ′(X∗) are contained in the set

{λ : λ2 − (1 + β)µλ+ βµ = 0, µ ∈ σ(q′(x∗))},

where σ(M) means the spectrum of matrix M. To determine the optimal β, we
only need to find

β∗ = arg min
β∈R

max{|λ| : λ2 − (1 + β)µλ+ βµ = 0, µ ∈ σ(q′(x∗))}.
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To compute β∗, we define, for any fixed µ,

Sµ(β) = max{|λ| : λ2 − (1 + β)µλ+ βµ = 0}.

We first assume that the spectrum of q′(x∗) is real. Then the following conclusions
hold:

Proposition 1 Assume µ ∈ R. Any complex eigenvalues λ of Ψ′(x∗) lie on a

circle of radius
∣∣∣ β
1+β

∣∣∣ centered at ( β
1+β , 0) in the complex plane.

Proof From the relation of λ and µ in (15), if the roots are complex, i.e. (1 +
β)2µ2 − 4βµ < 0, then

λ, λ̄ =
(1 + β)µ

2
± i
√

4βµ− (1 + β)2µ2

2
.

Hence, we get
λλ̄ = βµ, λ+ λ̄ = (1 + β)µ.

Since

λλ̄− β

1 + β
(λ+ λ̄) +

(
β

1 + β

)2

=

(
β

1 + β

)2

,

we have ∣∣∣∣λ− β

1 + β

∣∣∣∣2 =

(
β

1 + β

)2

.

This finishes the proof.

Proposition 2 [6, Lemmas 3.1,3.2] When 0 < µ < 1, minβ Sµ(β) = 1−
√

1− µ,

and the optimum is achieved at β∗µ =
1−
√

1− µ
1 +
√

1− µ
.

When µ ≥ 1, minβ Sµ(β) =
√
µ, and the optimum is achieved at β∗µ = −1.

When µ < 0, minβ Sµ(β) =
√

1− µ − 1, and the optimum is achieved at

β∗µ =
1−
√

1− µ
1 +
√

1− µ
.

From this proposition and the monotonicity of minβ Sµ(β) over µ [6], still
for the case the spectrum of q′(x∗) is real, we can easily derive the following
proposition where we denote

σmax = max(σ(q′(x∗))), σmin = min(σ(q′(x∗))).

Proposition 3 (Extension of [6, Theorem 3.4].) When σ(q′(x∗)) ⊂ [0, 1), the
optimal weight is

β∗ =
1−
√

1− σmax

1 +
√

1− σmax
,

and the optimal convergence factor is ρ∗sAA(1) = 1−
√

1− σmax.

When σ(q′(x∗)) ⊂ (−1, 0], the optimal weight is

β∗ =
1−
√

1− σmin

1 +
√

1− σmin
,

and the optimal convergence factor is ρ∗sAA(1) =
√

1− σmin − 1.

When σ(q′(x∗)) ⊂ (−1, 1) and σmaxσmin < 0, we consider three cases. Define

β+ =
1−
√

1− σmax

1 +
√

1− σmax
, β− =

1−
√

1− σmin

1 +
√

1− σmin
.
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(a) If σmax = |σmin|, then the optimal weight is β∗ = 0 and ρ∗sAA(1) = σmax.
(b) If σmax > |σmin|, there are two subcases:

(b1) If
−(1 + β+)σmin +

√
(1 + β+)2σ2

min − 4β+σmin

2
≤ 1−

√
1− σmax, then

β∗ = β+, ρ∗sAA(1) = 1−
√

1− σmax.

(b2) If
−(1 + β+)σmin +

√
(1 + β+)2σ2

min − 4β+σmin

2
> 1 −

√
1− σmax, then

the optimal β∗ is obtained by solving

−(1 + β)σmin +
√

(1 + β)2σ2
min − 4βσmin

2
=

(1 + β)σmax +
√

(1 + β)2σ2
max − 4βσmax

2
,

which gives

β∗ =
(m+ −

√
m2

+ − 4)2

4
, where m+ =

σmax − σmin√
−2σmaxσmin(σmax + σmin)

,

and the corresponding optimal convergence factor is

ρ∗sAA(1) =
(1 + β∗)σmax +

√
(1 + β∗)2σ2

max − 4β∗σmax

2
> 1−

√
1− σmax.

(c) If σmax < |σmin|, there are two subcases:

(c1) If
(1 + β−)σmax +

√
(1 + β−)2σ2

max − 4β−σmax

2
≤
√

1− σmin − 1, then

β∗ = β−, ρ∗sAA(1) =
√

1− σmin − 1.

(c2) If
(1 + β−)σmax +

√
(1 + β−)2σ2

max − 4β−σmax

2
>
√

1− σmin − 1, then

the optimal β∗ is obtained by solving

−(1 + β)σmin +
√

(1 + β)2σ2
min − 4βσmin

2
=

(1 + β)σmax +
√

(1 + β)2σ2
max − 4βσmax

2
,

which gives

β∗ = −
(
√
m2
− + 4−m−)2

4
, where m− =

σmax − σmin√
2σmaxσmin(σmax + σmin)

,

and the corresponding optimal convergence factor is

ρ∗sAA(1) =
(1 + β∗)σmax +

√
(1 + β∗)2σ2

max − 4β∗σmax

2
>
√

1− σmin − 1.

Remark 1 The result for σmaxσmin < 0 is an extension of Theorem 3.4 in [6], and
follows directly from the proof there. This case does not occur in the test problems
we consider in this paper, but we include it for completeness since it may arise in
other applications.

If the spectrum of q′(x∗) is complex, the following result can be used:
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Proposition 4 [6] Let the spectral radius of q′(x∗) be ρ∗q′ and assume ρ∗q′ < 1.
If there exists a real eigenvalue µ of q′(x∗) such that ρ∗q′ = µ, then the optimal
asymptotic convergence rate of sAA(1), ρ∗sAA(1), is bounded below by

ρ∗sAA(1) ≥ 1−
√

1− ρ∗q′ ,

and if the equality holds,

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
.

Propositions 3 and 4 allow us to compute the optimal sAA(1) coefficient β∗ and
the optimal asymptotic convergence factor, ρ∗sAA, (or a lower bound) when q′(x∗)
is known. Also, [6] explains how optimal sAA weights and convergence factors
ρ∗sAA can be determined for sAA with m ≥ 2 by optimization, since analytical
results are not known in this case. For example, for the case when m = 2, the
sAA(2) iteration is

xk+1 = (1 + β1 + β2)q(xk)− β1q(xk−1)− β2q(xk−2). (16)

We compute the optimal β∗1 and β∗2 from

{β∗1 , β∗2} = arg min
β1,β2∈R

max
λ
{|λ| : λ3−(1+β1+β2)µλ2+β1µλ+β2µ = 0, µ ∈ σ(q′(x∗))},

which can be solved, for example, by brute-force search.

3 Acceleration of ADMM by optimal stationary AA and comparison
with non-stationary AA

In this section we present results analyzing how the optimal convergence factor of
the stationary AA method with window size m = 1, as computed from Proposi-
tion 3 and Proposition 4, improves the ADMM convergence speed. We also consider
acceleration by stationary AA with window sizes m = 2 and m = 3, where the
optimal sAA coefficients are determined by optimization. We consider a variety
of ADMM examples that include linear and nonlinear cases, smooth and non-
smooth cases, and cases with real and complex Jacobian spectrum. We investigate
the spectra of the ADMM and optimal sAA-ADMM Jacobians to explain the con-
vergence acceleration and compare numerically with the asymptotic convergence
speed of ADMM accelerated by non-stationary AA with finite window size.

In all numerical experiments, we use a zero initial guess unless stated otherwise,
and no parameter tuning is applied. For the sAA(2) iteration (16), we approximate
the optimal β∗1 and β∗2 using brute-force search in the range of [−1, 1] with step
size 0.05. Similarly, we also include some simulation results for sAA(3), using a
brute-force search technique to approximate the optimal β’s. Since this approach
is expensive for m = 3, we only report results for a selection of our test problems.
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3.1 Ridge regression (see, e.g., [3]; linear and smooth problem)

3.1.1 Problem description

The l2-regularized least squares problem, also called ridge regression, is a common
technique in machine learning that reduces model complexity and prevents over-
fitting. The optimization problem is

min
x

1

2
||Ax− b||22 + λ||x||22,

where (A,b) ∈ Rm×n × Rm is the training set, and λ > 0 is a regularization
parameter.

To use the ADMM method, we write this problem as

min
x,z

1

2
||Ax− b||22 + λ||z||22, (17)

s.t. x− z = 0.

The scaled augmented Lagrangian is

Lρ(x, z,u) =
1

2
||Ax− b||22 + λ||z||22 +

ρ

2
||x− z + u||22 −

ρ

2
||u||22.

The ADMM steps for this problem are:
xk+1 = argminx

1
2 ||Ax− b||22 + ρ

2 ||x− zk + uk||22,
zk+1 = argminzλ||z||22 + ρ

2 ||xk+1 + uk − z||22,
uk+1 = uk + xk+1 − zk+1,

which gives 
xk+1 = (ATA + ρI)−1

(
ATb + ρ(zk − uk)

)
zk+1 = ρ

2λ+ρ (xk+1 + uk)

uk+1 = uk + xk+1 − zk+1.

Since uk+1 can be explicitly obtained from zk+1,

uk+1 =
2λ

ρ
zk+1,

we can write one iteration of ADMM as a fixed-point update of variable z, z̄k+1 =
q(zk), where

q(zk) =

[
ρ(ρ− 2λ)

ρ+ 2λ
(ATA + ρI)−1 +

2λ

ρ+ 2λ
I

]
zk +

ρ

ρ+ 2λ
(ATA + ρI)−1ATb

= Mzk + b̂.

Problem (17) has the closed-form exact solution

x∗ = z∗ = (ATA + 2λI)−1ATb,

and solving it by ADMM is not of practical interest. Still, convergence acceleration
of ADMM for this problem is interesting for our purposes, since it illustrates our
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Fig. 1 Ridge regression. (top) Comparison of error reduction using ADMM, AA(m)-ADMM
and sAA(m)-ADMM. (bottom) Spectrum of q′ of ADMM, Ψ′ of sAA(1)-ADMM, and Ψ′2 and
Ψ′3 of sAA(2)-ADMM and sAA(3)-ADMM.

approach and results in the most simple linear and smooth setting, and will be fol-
lowed by increasingly complex nonlinear and non-smooth problems in our further
examples. The ADMM update is simply a stationary linear iteration. Therefore,
q′ = M is independent of z. To determine the optimal sAA acceleration, we can
analyze the spectrum of matrix M to pick the optimal β∗.

3.1.2 Parameters for test problem

We implement our algorithms on a randomly generated sparse matrix of size m×
n = 150× 300 with density 0.001 sampled from the standard normal distribution.
The b vector is sampled from the standard normal distribution. The regularization
parameter is chosen as λ = 1, and we pick the penalty parameter ρ = 10.
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3.1.3 Convergence results

We obtain convergence plots for the error ‖z − z∗‖2 as shown in Figure 1 (top).
We see that ADMM converges linearly. The convergence factor of ADMM is sub-
stantially improved by the AA-based methods. AA(2) and AA(3) converge slightly
faster than AA(1), and sAA(1) converges with similar asymptotic speed.

The convergence improvement of the AA-ADMM methods over ADMM can be
understood in terms of spectral properties as follows. Figure 1 (bottom) shows the
spectrum of the ADMM iteration matrix M, σ(M) ∈ (0, 1). The spectrum is real
since M is symmetric, and the spectral radius ρ∗q′ = 0.833. Therefore, according
to Proposition 3, the optimal β for sAA(1) is

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.420.

The corresponding optimal sAA(1) linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.592 < 0.833.

The approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.70, β∗2 = −0.10,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.516.

Similarly, for sAA(3), we obtain

β∗1 = 0.955, β∗2 = −0.250, β∗3 = 0.028,

with sAA(3) linear convergence factor

ρ∗sAA(3)−ADMM = ρ(Ψ′3) = 0.4837 < ρ(Ψ′2) < ρ(Ψ′) < ρ∗q′ .

Figure 1 (bottom) also shows the spectrum of the sAA(1)-ADMM iteration
matrix, Ψ′, and of the sAA(2)-ADMM and sAA(3)-ADMM iteration matrices, Ψ′2
and Ψ′3. The acceleration methods spread the ADMM spectrum out in the complex
plane in a way that strongly reduces the asymptotic convergence factor: e.g., ρ(Ψ′)
is much smaller than ρ∗q′ . Note that stationary iterative method (14) maps part
of the nonnegative real spectrum of q′(x∗) to a circle, according to Proposition 1.
As seen in Figure 1 (top), the optimal sAA(1)-ADMM factor, ρ∗sAA(1)−ADMM ,
provides a useful prediction of the convergence factors of the AA-ADMM methods.
The convergence speed of sAA(1)-ADMM matches the theoretical prediction of
ρ∗sAA(1)−ADMM .
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3.2 Regularized logistic regression (see, e.g., [3]; nonlinear and smooth problem)

3.2.1 Problem description

We consider a simple logistic regression model in this section. The objective func-
tion of the regularized logistic regression model is

min
x

1

m

m∑
i=1

log(1 + exp(−yi(aTi w + c)) + λ||x||22,

where

A =

aT1
...

aTm

 ∈ Rm×n,

are m data samples, y1, · · · , ym are the corresponding labels, and

x =

[
c
w

]
, w ∈ Rn, c ∈ R,

are the linear combination coefficients and bias to be optimized. To apply ADMM,
we write this problem as

min
x,z

1

m

m∑
i=1

log(1 + exp(−yi(aTi w + c))) + λ||z||22,

s.t. x− z = 0.

This gives the augmented Lagrangian

L(x, z,u, ρ) =
1

m

m∑
i=1

log(1+exp(−yi(aTi w+c)))+λ||z||22+
ρ

2
||x−z+u||22−

ρ

2
||u||22.

Hence, we get the ADMM steps
xk+1 = argminx

1
m

∑m
i=1 log(1 + exp(−yi(aTi w + c))) + ρ

2 ||x− zk + uk||22,
zk+1 = argminzλ||z||22 + ρ

2 ||xk+1 − z + uk||22,
uk+1 = uk + xk+1 − zk+1.

To solve for xk+1, we use Newton’s method.

3.2.2 Parameters for the test problem

For this problem, we applied our algorithms to the Madelon data set from the UCI
machine learning repository1. To reduce the amount of computation, we only used
a portion of the features and examples. The regularization parameter is λ = 2,
and the augmented Lagrangian penalty parameter is ρ = 10.

1 https://archive.ics.uci.edu/ml/datasets/Madelon
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Fig. 2 l2-regularized logistic regression. (top) Comparison of error reduction using ADMM,
AA(m)-ADMM and sAA(m)-ADMM. (bottom) Spectrum of q′ of ADMM, Ψ′ of sAA(1)-
ADMM, and Ψ′2 and Ψ′3 of sAA(2)-ADMM and sAA(3)-ADMM.

3.2.3 Convergence results

Since the FPI representation of ADMM for solving the regularized logistic regres-
sion problem is nonlinear, we are now not able to find an explicit expression for
zk+1 = q(zk) like before. To determine the spectrum of q′(z∗), we use the first-
order finite difference method with step size h = 1× 10−4 to approximate q′(z∗)
at the approximate true solution solved to 10−16 accuracy.

Figure 2 (top) compares the error norm reduction when using ADMM, AA(m)-
ADMM and sAA(m)-ADMM. The convergence acceleration seen in the figure can
be explained based on the spectra in Figure 2 (bottom). The spectrum of q′(z∗)
has asymptotic convergence factor ρ∗q′ = 0.714. We can choose the optimal β∗ the
same way as in the ridge regression problem:

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.303.
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The corresponding optimal sAA(1)-ADMM linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.465 < (ρ∗q′)
2.

The approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.65, β∗2 = −0.10,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.450.

Similarly, for sAA(3), we obtain

β∗1 = 0.61, β∗2 = −0.115, β∗3 = 0.009,

with sAA(3) linear convergence factor

ρ∗sAA(3)−ADMM = ρ(Ψ′3) = 0.364.

Figure 2 (top) shows that ρ∗sAA(m)−ADMM is a useful prediction for the conver-
gence factors of the AA-accelerated ADMM methods.

3.3 Total variation (see, e.g., [3]; nonlinear and nonsmooth problem, complex
spectrum)

3.3.1 Problem description

The total variation model is a widely used method for applications like image
denoising. The optimization problem is

min
x

1

2
||y − x||22 + α||Dx||21,

where x ∈ Rn is the variable, y ∈ Rn is the problem data (e.g. image pixel values),
α > 0 is a smoothing parameter, and D ∈ R(n−1)×n is the difference operator

D =


−1 1
−1 1

. . .
. . .

−1 1

 .
To use ADMM, we write this problem as

min
x,z

1

2
||y − x||22 + α||z||21,

s.t. Dx− z = 0.

The augmented Lagrangian is

Lρ(x, z,u) =
1

2
||y − x||22 + α||z||21 +

ρ

2
||Dx− z + u||22 −

ρ

2
||u||22.
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The ADMM steps for this problem are:
xk+1 = argminx

1
2 ||y − x||22 + ρ

2 ||Dx− zk + uk||22,
zk+1 = argminzα||z||21 + ρ

2 ||Dxk+1 + uk − z||22,
uk+1 = uk + Dxk+1 − zk+1,

where xk+1 is the proximal operator of the l2 norm which can be evaluated from
a least squares problem as before,

xk+1 = argminx

∣∣∣∣∣∣∣∣[ D
1√
ρI

]
x−

[
zk − uk

1√
ρy

]∣∣∣∣∣∣∣∣2
2

,

and zk+1 is just the proximal operator of the l1-norm,

zk+1 = proxα
ρ
||·||1(Dxk+1 + uk).

3.3.2 Parameters for the test problem

We test our algorithms on randomly generated data y of size 1000 sampled from
the standard normal distribution. The smoothing parameter is α = 0.001 · ||y||∞.
For the penalty parameter, we use ρ = 10.

3.3.3 Convergence results

We use the first-order finite difference method with step size h = 1 × 10−5 to
approximate q′(z∗,u∗) at the approximate true solution solved to 10−16 accuracy.

Figure 3 (top) compares the error norm reduction when using ADMM, AA(m)-
ADMM and sAA(m)-ADMM. The convergence acceleration seen in the figure can
be explained based on the spectra in Figure 3 (bottom). The spectrum of q′(z∗,u∗)
has asymptotic convergence factor ρ∗q′ = 0.976. The spectrum has some complex
eigenvalues. We choose β∗ according to Proposition 4,

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.730.

The corresponding lower bound on the optimal sAA(1)-ADMM linear conver-
gence factor is

ρ∗sAA(1)−ADMM ≤ 1−
√

1− ρ∗q′ = 0.844.

The spectral radius of the numerically computed Ψ ′ using β∗ is given by

ρsAA(1)−ADMM (β∗) = ρ(Ψ′(β∗)) = 0.844 < (ρ∗q′)
2,

which is numerically equal to the lower bound. It is interesting to note that it was
observed numerically in [6] that, for the case of sAA(1) acceleration of Alternating
Least Squares for canonical tensor decomposition, for which q′(x∗) has a complex
spectrum, the lower bound in Proposition 4 is always achieved.

Finally, the approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.95, β∗2 = −0.10,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.832.
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Fig. 3 Total variation. (top) Comparison of error reduction using ADMM, AA(m)-ADMM
and sAA(m)-ADMM. (bottom) Spectrum of ADMM iteration matrix q′ and sAA(1)-ADMM
iteration matrix Ψ′.

3.4 Lasso problem (see, e.g., [3]; nonlinear and nonsmooth problem, complex
spectrum)

3.4.1 Problem description

l1-regularized linear regression is also called the lasso problem:

min
x

1

2
||Ax− b||22 + λ||x||1,

where A ∈ Rm×n and b ∈ Rm are given data, λ > 0 is a scalar regularization pa-
rameter, and x ∈ Rn is the optimization variable. In typical applications, there are
many more features than training examples, and the goal is to find a parsimonious
model for the data [3].
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To apply ADMM, we solve the following constrained problem

min
x,z

1

2
||Ax− b||22 + λ||z||1,

s.t. x− z = 0.

The scaled augmented Lagrangian is

Lρ(x, z,u) =
1

2
||Ax− b||22 + λ||z||1 +

ρ

2
||x− z + u||22 −

ρ

2
||u||22.

Therefore, we get the ADMM steps
xk+1 = argminx

1
2 ||Ax− b||22 + ρ

2 ||x− zk + uk||22
zk+1 = argminzλ||z||1 + ρ

2 ||xk+1 − z + uk||22
uk+1 = uk + xk+1 − zk+1,

which gives 
xk+1 = (ATA + ρI)−1

(
ATb + ρ(zk − uk)

)
zk+1 = prox λ

ρ
||·||1(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1,

where xk+1 can be solved efficiently as a least squares problem like in ridge regres-
sion. Since the update of zk+1 is nonsmooth, uk+1 cannot be expressed explicitly
as a function of zk+1, and we will treat one ADMM iteration as a FPI about both
variables z and u in order to apply Anderson acceleration.

3.4.2 Parameters for the test problem

We test our algorithms on a randomly generate sparse matrix of size m×n = 150×
300 with density 0.001 and 0.01 respectively, sampled from the uniform distribution
on [0,1). The b vector is sampled from the standard normal distribution. The
regularization parameter λ = 1, and we pick the penalty parameter ρ = 10.

3.4.3 Convergence results

Since now the FPI is about variables z and u, we will accelerate the stacked
variable [z; u]. The error norm during the iteration is evaluated as

ek =
√
||zk − z∗||22 + ||uk − u∗||22.

We use the first-order finite difference method with step size h = 0.001 to approx-
imate q′(z∗,u∗) at the approximate true solution solved to 10−16 accuracy.

Figure 4 (top) compares the error norm reduction when using ADMM, AA(m)-
ADMM and sAA(m)-ADMM for the case when the data matrix density is 0.001.
The convergence acceleration seen in the figure can be explained based on the
spectra in Figure 4 (bottom). The spectrum of q′(z∗) has asymptotic convergence
factor ρ∗q′ = 0.938. We can choose the optimal β∗ the same way as in the ridge
regression problem,

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.601.
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Fig. 4 Lasso problem (density = 0.001). (top) comparison of error reduction using ADMM,
sAA(m)-ADMM and AA(m)-ADMM. (bottom) Spectrum of q′ of ADMM, Ψ′ of sAA(1)-
ADMM, and Ψ′2 of sAA(2)-ADMM.

The corresponding optimal sAA(1)-ADMM linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.751 < (ρ∗q′)
2.

The approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.85, β∗2 = −0.10,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.737.
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Fig. 5 Lasso problem (density = 0.01). (top) Comparison of error reduction using ADMM,
sAA(m)-ADMM and AA(m)-ADMM. (bottom) Spectrum of ADMM iteration matrix q′ and
sAA(1)-ADMM iteration matrix Ψ′.

3.4.4 q′(x) with complex eigenvalues

Note that in the lasso test of Figure 4, the eigenvalues of q′(x∗) happen to be
all real. However, this is not the case if we increase the sparsity density of data
matrix A. For example, for a density of 0.01, q′(z∗) has a few complex eigenvalues
as shown in Figure 5 (bottom), where ρ∗q′ = 0.996. For this case, numerical results
comparing the convergence of different algorithms are shown in Figure 5 (top).
The value of β∗ we use is chosen according to Proposition 4,

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.884.

The corresponding sAA(1)-ADMM linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.938 < (ρ∗q′)
2.
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It is interesting to consider the situation when q′(x∗) has complex eigenvalues
with large imaginary part. Let µ+ be the largest nonnegative real eigenvalue of
q′(x∗). It is easy to show that, if the equality ρ∗sAA(1) = 1 −

√
1− ρ∗q′ holds

in Proposition 4 with ρ∗q′ = µ+ and β∗ =
1−
√

1−ρ∗
q′

1+
√

1−ρ∗
q′

, then the rightmost point

of the circle of Proposition 1 is the image of µ+ under the mapping from µ to λ
defined by (15), and this point determines ρ(Ψ′) = ρ∗sAA(1). According to Corollary
S.1 in the supplementary materials of [6], this also holds when ρ∗q′ > µ+ and

ρ∗sAA(1) = 1 −
√

1− µ+, with β∗ =
1−
√

1−µ+

1+
√

1−µ+

. In these cases, the spectral radius

of Ψ′ for sAA(1) with optimal weight is determined by the mapped eigenvalue
of µ+, which is the rightmost point of the circle, and the complex eigenvalues
of q′(x∗) do not influence ρ(Ψ′). However, when q′(x∗) has complex eigenvalues
with large imaginary part, these eigenvalues may be mapped to eigenvalues λ of Ψ′

that are sufficiently far outside the circle of Proposition 1 to determine the spectral
radius of Ψ′. In this case, we cannot determine the optimal β∗ and ρ∗sAA(1) by the
expressions (with equality) in Proposition 4 or Corollary S.1 in the supplementary
materials of [6]. We now give an example demonstrating this. We consider the
lasso example with density = 0.06. Figure 6 (bottom) plots the distribution of

eigenvalues for both q′(z∗,u∗) and Ψ′, where we have used β =
1−
√

1−ρ∗
q′

1+
√

1−ρ∗
q′

in

sAA(1)-ADMM. We can see that the largest eigenvalues of Ψ′ induced by complex
eigenvalues of q′ (those that are not lying on the circle) have a larger modulus
(=0.944) than the largest-size eigenvalue induced by the real eigenvalues of q′,
which is of size 1 −

√
1− ρ∗q′ = 0.848 (since for this example it still holds that

ρ∗q′ = µ+). Hence, complex eigenvalues of q′ dominate the spectrum of Ψ′ and
the equality in Proposition 4 does not hold, since it requires that the largest-
size eigenvalue of Ψ′ comes from real eigenvalues of q′. This observation matches
with the numerical results shown in Figure 6 (top), where the convergence of the
sAA(1) algorithm using β = (1 −

√
1− ρ∗q′)/(1 +

√
1− ρ∗q′) from Proposition 4

does not match the convergence factor 1 −
√

1− ρ∗q′ that would correspond to
Proposition 4 if equality were to hold. (Note that for the previous test with density
0.01 we do get a close match (see Figure 5 (top)).) We note that in a case like
the one from Figure 6, sAA(1) may generate divergent results when using β =
(1−

√
1− ρ∗q′)/(1+

√
1− ρ∗q′) since this is not the correct optimal β∗. Finding the

optimal coefficient β∗ for sAA(1) in this scenario is an open question that needs
more investigation.

3.5 Nonnegative least squares (see, e.g., [10]; nonlinear problem with inequality
constraint)

3.5.1 Problem description

The nonnegative least squares problem is

min
x
||Fx− g||22, s.t. x ≥ 0,

where x ∈ Rn is the variable, and F ∈ Rm×n and g ∈ Rm are problem data. We
can integrate the nonnegativity constraint into the objective function and rewrite
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Fig. 6 Lasso problem (density = 0.06). (top) Comparison of error reduction using ADMM,
sAA(m)-ADMM and AA(m)-ADMM. (bottom) Spectrum of ADMM iteration matrix q′ and
sAA(1)-ADMM iteration matrix Ψ′.

the problem as

min
x,z
||Fx− g||22 + IRn+(z),

s.t. x− z = 0,

where IRn+ is the indicator function defined as

IRn+(z) =

{
0, z ≥ 0

+∞, otherwise.

The scaled augmented Lagrangian of this problem is

Lρ(x, z,u) = ||Fx− g||22 + IRn+(z) +
ρ

2
||x− z + u||22 −

ρ

2
||u||22.
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Fig. 7 Nonnegative least squares. (top) Comparison of error reduction using ADMM, sAA(m)-
ADMM and AA(m)-ADMM. (bottom) Spectrum of q′ of ADMM, Ψ′ of sAA(1)-ADMM, and
Ψ′2 of sAA(2)-ADMM.

The ADMM steps on this problem are:


xk+1 = argminx||Fx− g||22 + ρ

2 ||x− zk + uk||22
zk+1 = argminzIRn+(z) + ρ

2 ||xk+1 + uk − z||22
uk+1 = uk + xk+1 − zk+1

where the first step for xk+1 is the proximal operator of the l2-norm. The second
step is just the proximal operator of the indicator function, which is equivalent to
the projection operator

zk+1 =
1

ρ
ΠRn+(xk+1 + uk).
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3.5.2 Parameters for the test problem

We test our algorithms on a randomly generated sparse matrix of size m × n =
150 × 300 with density 0.001, sampled from the standard normal distribution.
The g vector is sampled from the standard normal distribution. The augmented
Lagrangian penalty parameter is ρ = 2.

3.5.3 Convergence results

We use the first-order finite difference method with step size h = 0.001 to approx-
imate q′(z∗,u∗) at the approximate true solution solved to 10−16 accuracy.

Figure 7 (top) compares the error norm reduction when using ADMM, AA(m)-
ADMM and sAA(m)-ADMM. The convergence acceleration seen in the figure can
be explained based on the spectra in Figure 7 (bottom). The spectrum of q′(z∗,u∗)
has asymptotic convergence factor ρ∗q′ = 0.806. We can choose the optimal β∗ the
same way as in the ridge regression problem

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.389.

The corresponding optimal sAA(1)-ADMM linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.560 < (ρ∗q′)
2.

The approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.70, β∗2 = −0.10,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.516.

3.6 Constrained logistic regression (see, e.g., [18]; nonlinear problem with box
constraint)

3.6.1 Problem description

The constrained regularized logistic regression adds a constraint on ||x||∞ to the
regularized logistic regression problem that we have already discussed:

min
x

1

m

m∑
i=1

log(1 + exp(−yi(aTi w + c))) + λ||x||22,

s.t. ||x||∞ ≤ 1.

To apply ADMM, we rewrite this problem as

min
x,z

1

m

m∑
i=1

log(1 + exp(−yi(aTi w + c))) + λ||x||22 + IΩ(z),

s.t. x− z = 0,
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where Ω = {x : ||x||∞ ≤ 1}. This gives the augmented Lagrangian

Lρ(x, z,u) =
1

m

m∑
i=1

log(1+exp(−yi(aTi w+c)))+λ||x||22+IΩ(z)+
ρ

2
||x−z+u||22−

ρ

2
||u||22.

Hence, we get the ADMM steps
xk+1 = argminx

1
m

∑m
i=1 log(1 + exp(−yi(aTi w + c))) + λ||x||22 + ρ

2 ||x− zk + uk||22
zk+1 = argminzIΩ(z) + ρ

2 ||xk+1 − z + uk||22
uk+1 = uk + xk+1 − zk+1.

Like before, we use Newton’s method to solve for xk+1. For zk+1, since the prox-
imal operation of an indicator function is just a projection, we have

zk+1 =
1

ρ
ΠΩ(xk+1 + uk),

which is

[zk+1]j =


1
ρ , [xk+1 + uk]j ∈ [1,∞)
1
ρ [xk+1 + uk]j , [xk+1 + uk]j ∈ (−1, 1)

− 1
ρ , [xk+1 + uk]j ∈ (−∞,−1].

3.6.2 Parameters for the test problem

We use the same sample data from the Madelon data set as in Section 3.2. The
regularization and penalty parameters are λ = 2 and ρ = 10 respectively, as in
Section 3.2.

3.6.3 Convergence results

We use the first-order finite difference method with step size h = 0.001 to approx-
imate q′(z∗,u∗) at the approximate true solution solved to 10−16 accuracy.

Figure 8 (top) compares the error norm reduction when using ADMM, AA(m)-
ADMM and sAA(m)-ADMM. The convergence acceleration seen in the figure can
be explained based on the spectra in Figure 8 (bottom). The spectrum of q′(z∗,u∗)
has asymptotic convergence factor ρ∗q′ = 0.900. We can choose the optimal β∗ the
same way as in the ridge regression problem

β∗ =
1−

√
1− ρ∗q′

1 +
√

1− ρ∗q′
= 0.519.

The corresponding optimal sAA(1)-ADMM linear convergence factor is

ρ∗sAA(1)−ADMM = ρ(Ψ′) = 1−
√

1− ρ∗q′ = 0.684 < (ρ∗q′)
2.

The approximately optimal β∗1 and β∗2 for sAA(2) are

β∗1 = 0.90, β∗2 = −0.15,

with sAA(2) linear convergence factor

ρ∗sAA(2)−ADMM = ρ(Ψ′2) = 0.612.
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Fig. 8 Constrained regularized logistic regression. (top) Comparison of error reduction using
ADMM, sAA(m)-ADMM and AA(m)-ADMM. (bottom) Spectrum of ADMM iteration matrix
q′∗ and sAA(1)-ADMM iteration matrix Ψ′∗.

4 Conclusions

This paper has discussed a strategy for computing the optimal asymptotic con-
vergence factor of stationary Anderson acceleration applied to ADMM, for the
case where ADMM by itself converges linearly. Based on the spectra of q′(x∗))
and sAA(m)-ADMM we have provided new insight into how the acceleration is
achieved. This approach, based on theoretical results from [6], finds numerically
that convergence factors of the stationary form of Anderson acceleration with co-
efficients that are chosen to make the convergence factors optimal, provide a useful
prediction for the asymptotic convergence speed of non-stationary AA with finite
window size, which is the method used in practice. As discussed in [6], this is
intuitively reasonable: the nonstationary AA does not use these globally optimal
stationary coefficients, but rather performs a local optimization of the coefficients
in every step k by solving least squares problem (10). As x approaches x∗ in the
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asymptotic regime and q′(x) approaches q′(x∗), it is not unreasonable to expect

the convergence behavior of AA with locally-optimal β
(k)
i weights to be similar

to the behavior of sAA with weights that are, based on q′(x∗), globally optimal
in obtaining the best asymptotic convergence rate. This is indeed what we have
observed numerically in this paper for AA applied to ADMM.

The case of sAA with m = 1 is easy to analyze and directly leads to the
simple analytical prediction formulas of Proposition 3 and Proposition 4 for the
optimal convergence factors ρ∗sAA(1), see [6]. While our numerical results show
that ρ∗sAA(1)−ADMM is a useful prediction for ρAA(m)−ADMM also when m > 1,
it is clear that computing ρ∗sAA(m)−ADMM for m > 1 is also of interest. As we
have illustrated, for m ≥ 2 the optimal ρ∗sAA(m)−ADMM can be obtained by
optimization [6], but the lack of analytical results is an interesting avenue for
further research, for example, on how the optimal ρ∗sAA(m)−ADMM depends on
m.

The similarity in asymptotic convergence behavior between AA and optimal
sAA allows us to understand the acceleration power of AA in terms of how it
reshapes convergence spectra in our numerical tests, in ways that are very similar
to how GMRES for linear systems accelerates convergence depending on the spec-
tral and eigenspace properties of the GMRES preconditioner (see [6] for a detailed
discussion of this analogy).

The similarity between AA and optimal sAA convergence factors also provides
a prediction for convergence acceleration by AA, which is especially useful since the
quest for linear asymptotic convergence bounds for AA with finite window size has
been elusive, due to the AA coefficients changing in every iteration. This similarity
may also inspire theoretical approaches for finding asymptotic convergence factor
bounds for AA with finite window size.

Of course, besides providing useful insight, our approach for estimating AA
convergence factors is not really practical, since ρ(q′(x∗)) needs to be known or
computed to compute the optimal ρ∗sAA(1)−ADMM . However, if an upper bound

for ρ(q′(x∗)) is known, then an upper bound for the optimal sAA(1)-ADMM
convergence factor, ρ∗sAA(1)−ADMM , can directly be obtained from the formulas
in Proposition 3 and Proposition 4. In preconditioned GMRES for linear systems,
depending on the problem, such upper bounds for ρ(q′(x∗)) can often be derived
[6]. They may, for example, depend on problem parameters or problem sizes, and
for many linear problems GMRES preconditioners have been found that provably
lead to favorable convergence bounds independent from, or only weakly dependent
on, parameters that characterize the difficulty or conditioning of the problem.
Similarly, it may be of practical use to pursue this for various ADMM applications,
since it may lead to convergence factor bound predictions for AA applied to ADMM
with favorable dependence on problem parameters.
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Appendices
A Derivative of q(x) for l1-regularized problems

We mentioned in the main text that although the l1-regularized least squares
problem is nonsmooth, the FPI representation q(·) of ADMM can be differentiable
at the true solution z∗. To see this, consider the following simple scalar example

min
x∈R

f(x) :=
1

2
x2 + |x|.

Clearly, the objective function is non-differentiable at x = 0 and the optimum is
also achieved at x = 0. The equivalent split form is

min
x,z

1

2
x2 + |z|,

s.t. x− z = 0.

From the ADMM update
xk+1 = ρ

1+ρ (zk − uk),

zk+1 = prox 1
ρ
|·|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1,

we can get the FPI representation (zk+1, uk+1) = q(zk, uk), where

[
zk+1

uk+1

]
=



[
ρ

1+ρ
1

1+ρ

0 0

][
zk

uk

]
+

[
− 1
ρ

1
ρ

]
if ρ

1+ρzk + 1
1+ρuk >

1
ρ ,

[
0 0
ρ

1+ρ
1

1+ρ

][
zk

uk

]
if
∣∣∣ ρ
1+ρzk + 1

1+ρuk

∣∣∣ ≤ 1
ρ ,

[
ρ

1+ρ
1

1+ρ

0 0

][
zk

uk

]
+

[
1
ρ

− 1
ρ

]
if ρ

1+ρzk + 1
1+ρuk < −

1
ρ ,

which is a nonsmooth function. Hence, we have

q′ (z, u) =



[
ρ

1+ρ
1

1+ρ

0 0

]
if ρ

1+ρz + 1
1+ρu >

1
ρ ,

[
0 0
ρ

1+ρ
1

1+ρ

]
if
∣∣∣ ρ
1+ρz + 1

1+ρu
∣∣∣ ≤ 1

ρ ,

[
ρ

1+ρ
1

1+ρ

0 0

]
if ρ

1+ρz + 1
1+ρu < −

1
ρ .
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Because the optimal solution is z∗ = u∗ = 0, we see that q′(z∗, u∗) exists and

q′
(
z∗, u∗

)
=

[
0 0
ρ

1+ρ
1

1+ρ

]
.

From this example, we can see that even when the objective function is nonsmooth,
the FPI representation of ADMM for solving the problem can still be differentiable
at the optimal solution. In this example this is the case as long as ρ

1+ρz
∗+ 1

1+ρu
∗±

1
ρ 6= 0, where ρ

1+ρz + 1
1+ρu ±

1
ρ is obtained from the proximal operation of the

z-update at its nondifferentiable point z = 0. We see that the soft-thresholding
operation spreads out the nondifferentiable point at z = 0 in the original problem
to two lines in the z, u plane. From the optimality conditions

x∗ − z∗ = 0, x∗ + ρu∗ = 0,

we can get

z∗ + ρu∗ = 0.

Therefore, only when

z∗ = ± 1

1− ρ , u∗ = ∓ 1

ρ(1− ρ)
,

is q(·) not differentiable at the true solution, but the true solution is x∗ = z∗ = 0
in this example.

We can generalize this observation to multi-dimensional problems. For exam-
ple, for the total variation problem of Section 3.3, we get

[
zk+1

uk+1

]
=



[
ρDRDT I− ρDRDT

0 0

][
zk

uk

]
+

[
DRy − α

ρ 1
α
ρ 1

]
if Dxk+1 + uk >

α
ρ 1,

[
0 0

ρDRDT I− ρDRDT

][
zk

uk

]
+

[
0

DRy

]
if |Dxk+1 + uk| ≤ α

ρ 1,

[
ρDRDT I− ρDRDT

0 0

][
zk

uk

]
+

[
DRy + α

ρ 1

−αρ 1

]
if Dxk+1 + uk < −αρ 1,

where R = (I + ρDTD)−1. Hence, we have

q′
([

zk+1

uk+1

])
=



[
ρDRDT I− ρDRDT

0 0

]
if |Dxk+1 + uk| > α

ρ 1,

[
0 0

ρDRDT I− ρDRDT

]
if |Dxk+1 + uk| ≤ α

ρ 1.

When the conditions on Dxk+1 and uk do not fall completely into one category,
we have to interpret the above expressions component-wise like in our analysis for
the scalar example.
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Similarly, for the lasso problem of Section 3.4 we get

[
zk+1

uk+1

]
=



[
ρR I− ρR
0 0

][
zk

uk

]
+

[
RATb− λ

ρ1
λ
ρ1

]
if xk+1 + uk >

α
ρ 1,

[
0 0

ρR I− ρR

][
zk

uk

]
+

[
0

RATb

]
if |xk+1 + uk| ≤ α

ρ 1,

[
ρR I− ρR
0 0

][
zk

uk

]
+

[
RATb + λ

ρ1

−λρ1

]
if xk+1 + uk < −αρ 1,

where R = (ATA + ρI)−1, and

q′
([

zk+1

uk+1

])
=



[
ρR I− ρR
0 0

]
if |xk+1 + uk| > λ

ρ1,

[
0 0

ρR I− ρR

]
if |xk+1 + uk| ≤ λ

ρ1.

For these multi-dimensional problems with nonsmooth objective function, we
find that the Jacobian of the ADMM iteration function, q′(x), exists at the solu-
tion x∗, which is consistent with the observed linear convergence of ADMM with
convergence factor ρ(q′(x∗)).
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