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Reconstruction: From an Image Surface Perspective

Qiuxiang Zhong · Ryan Wen Liu · Yuping Duan∗

Received: date / Accepted: date

Abstract In this paper, we propose a new variational model for image reconstruction by minimizing
the L1 norm of the Weingarten map of image surface (x, y, f(x, y)) for a given image f : Ω → R. We
analytically prove that the Weingarten map minimization model can not only keep the greyscale intensity
contrasts of images, but also preserve edges and corners of objects. The alternating direction method of
multiplier (ADMM) based algorithm is developed, where one subproblem needs to be solved by gradient
descent. In what follows, we derive a hybrid nonlinear first and second order regularization from the
Weingarten map, and present an efficient ADMM-based algorithm by regarding the nonlinear weights as
known. By comparing with several state-of-the-art methods on synthetic and real image reconstruction
problems, it confirms that the proposed models can well preserve image contrasts and features, especially
the spatially adapted first and second order regularization economizing much computational cost.

Keywords Image reconstruction · image surface · Weingarten map · spatially adaptive regularization
parameter · contrast-preserving

1 Introduction

Image restoration has attracted extensive attention in the fields of image processing and computer vi-
sion, where variational formulations are particularly effective in high-quality recovery. Let Ω be an open
bounded subset of Rn with Lipschitz continuous boundary, f : Ω → R be a given image defined on the
domain Ω, and u : Ω → R be the latent clean image. Rudin, Osher and Fatemi [39] proposed the total
variation (TV) regularization for image restoration as the following constrained minimization problem

min
u

∫
Ω

|∇u|dx, with

∫
Ω

udx =

∫
Ω

fdx and

∫
Ω

(u− f)2 = σ2, (1)

where the constraints correspond to the assumption that the noise is of zero mean and standard deviation
σ, and | · | denotes the Euclidean norm of the gradient vector for each pixel x ∈ Ω. Chambolle and Lions
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[10] linked the constrained minimization problem (1) and the following minimization problem

min
u

∫
Ω

|∇u|dx+
1

2λ

∫
Ω

(u− f)2dx, (2)

where λ ≡ const > 0 represents the Lagrange multiplier associated with the constraints. Indeed, an
alternative way to express the TV model (2) for image reconstruction is given as

min
u

α

∫
Ω

|∇u|dx+
1

2

∫
Ω

(u− f)2dx, (3)

where α = λ > 0 is the regularization parameter. The Lagrange multiplier λ in (2) and the regularization
parameter α in (3) are used to control the trade-off between the data fidelity and regularization, the
best value of which can be estimated by Morozov’s discrepancy principle [44] or in a bilevel optimization
framework [29]. Although the TV regularization can help to remove the noises and preserve sharp edges,
it also possesses some unfavorable properties to u, e.g., staircase effect and contrast reduction [35,41,51].

Because images are comprised of multiple objects at different scales, it is more reasonable to use spa-
tially varying variables instead of constant values. Bertalmı́o et al. [4] proposed a variant TV restoration
model using a set of {λi}ri=1 with each one corresponding to a region set {Ωi}ri=1 of the image, where
{Ωi}ri=1 can be obtained by simple segmentation algorithms. Almansa et al. [1] further developed the idea
in [4] by using local variance estimation for obtaining λ(x) : Ω→ R without involving the segmentation
in the process. Gilboa et al. [23] designed a pyramidal structure-texture decomposition of images, which
isolated the noise and then estimated the spatially varying constraints based on local variance measures.
Dong et al. [19] improved the local variance estimator for λ(x) and update it automatically in a multi-
scale TV scheme for removing Gaussian-distributed noise. Chung et al. [17] used a bilevel optimization
approach in function space for the choice of spatially dependent regularization parameter for (2). In the
case of impulsive noise, Hintermüller and Rincon-Camacho [28] proposed to develop the TVL1 model
with spatially adapted regularization parameters based on local expected absolute value estimation for
enhancing the image details and preserving the image edge. Another branch of these methods pursues
a spatially varying α(x) : Ω → R for (3), which are also known as weighted TV. Strong and Chan [41]
considered α(x) as a spatially adapted weight in TV regularization to remove smaller-scaled noise while
leaving lager-scaled features essentially intact. Yuan et al. [48] proposed a spatially weighted TV model in
multi-frame super-resolution reconstruction for efficiently reducing the staircase effect and preserving the
edge information. Langer [30] realized the automated parameter selection of (3) based on the discrepancy
principle. Recently, Hintermüller et al. [26,27] computed the spatially adaptive weights for (3) using a
bilevel optimization approach.

Although spatially varying λ(x) or α(x) in the Rudin-Osher-Fetami model (2) and (3) can improve
the reconstruction quality, they can not eliminate the staircase effect in the relatively large piecewise
linear regions. Thus, high order variational models are proposed and studied in the last two decades.
Lysaker et al. [33,34] proposed the noise removal model using the high order regularization term, that is

min
u

∫
Ω

|∇2u|F dx+
1

2λ

∫
Ω

(u− f)2dx, (4)

where ∇2u is the Hessian of u and |∇2u|F =
√
|uxx|2 + |uxy|2 + |uyx|2 + |uyy|2 is the Frobenius norm

defined on each pixel x ∈ Ω. The optimality condition of (4) gives a fourth-order partial differential
equation, which has been further studied both theoretically and numerically in [25,14,46,37]. Papafitsoros
and Schönlieb [37] suggested the following combined first and second order variational model

min
u

α

∫
Ω

|∇u|dx+ β

∫
Ω

|∇2u|F dx+
1

2

∫
Ω

(u− f)2dx, (5)

where α and β are positive constants. The idea of the model (5) is to regularize the reconstructed image
with a fairly large weight α in the first order term to preserve the jumps and a not too large weight β
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for the second order term to eliminate the staircase effect without introducing any serious blur. Another
important high order TV model was proposed by Bredies et al. [6], the so-called total generalized variation
(TGV), which can integrate to incorporate smoothness from the first up to the k-th derivatives.

In addition, geometric attributes of curves and surfaces also provide high order regularization for
image processing tasks. The well-known Euler’s elastica model [40,42,47,18] minimizes the total elastica
of all level curves in images, which reads

min
u

∫
Ω

(
a+ b

(
∇ · ∇u
|∇u|

)2
)
|∇u|dx+

1

2λ

∫
Ω

(u− f)2dx. (6)

Due to the strong priors for the continuity of edges provided by Euler’s elastica, it has been used as
the regularization for various shape and image processing tasks [12], such as image inpainting, shape
completion, and shown to be able to achieve better restoration results than the TV regularization.

By considering the associated image surface or graph of f in Rn+1, the noise removal problem becomes
the task of finding an approximate piecewise smooth surface [32]. Then it is straightforward to employ
the geometric invariants, e.g., mean curvature and Gaussian curvature, as the regularization term for
image surface processing. Zhu and Chan [51] proposed the following mean curvature minimization model
for image denoising

min
u

∫
Ω

∣∣∣∣∇ · ∇u√
1 + |∇u|2

∣∣∣∣dx+
1

2λ

∫
Ω

(u− f)2dx, (7)

where | · | is actually the absolute value norm, also equivalent to Euclidean norm of one-dimensional
vectors. The L1 norm of mean curvature is shown to be a desirable regularization for image denoising,
which can not only preserve image contrast and corners of objects, but also remove the staircase effect.
The Gaussian curvature has also been used as the regularization term for image denoising problems [8]

min
u

∫
Ω

|det ∇2u|
(1 + |∇u|2)2

dx+
1

2λ

∫
Ω

(u− f)2dx, (8)

where ∇2u is the Hessian of function u and det ∇2u denotes the determinant of Hessian. It is proven to
be with the same geometric properties as mean curvature model (7). However, due to the highly nonlin-
earity of the model (7) and (8), the minimizations of curvature regularized models are quite challenging.
Although ADMM-based algorithms have been developed for the Euler’s elastica model (6) and mean
curvature model (7), multiple artificial variables are introduced resulting in more parameters need to be
selected manually [42,52]. The case of Gaussian curvature model (8) is even more complicated, which
was solved by a two-step method based on the vector filed smoothing and gray level interpolation [8].
By estimating the curvatures explicitly, Zhong, Yin and Duan [50] proposed to minimize certain func-
tions of Gaussian/mean curvature over the image surface, which are solved as a weighted image surface
minimization problem with high efficiency.

In this work, we first introduce the Weingarten map or shape operator of the image surface as the
regularization for image reconstruction. We theoretically show that the Weingarten map regularizer can
provide good geometric properties including keeping image contrast and preserving edges and corners
of objects. The Weingarten map minimization model is solved by the ADMM-based algorithm, where
the original nontrivial problem is decomposed into three subproblems. Although two subproblems can
be handled with Fast Fourier Transform (FFT) and the closed form solution, the remaining one needs
to be solved by gradient descent due to its high nonlinearity. Therefore, to further improve the com-
putational efficiency, we reformulate the Weingarten map into a hybrid nonlinear first and second order
regularization. By regarding the nonlinear weights as known, an efficient numerical algorithm is developed
based on the proximal ADMM, where all variables can be solved by either FFT or shrinkage operation.
Numerous experiments on image denoising, deblurring and inpainting are conducted to demonstrate the
effectiveness and efficiency of the proposed models by comparing with other well established high order
methods.
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The rest of the paper is organized as follows. In Sect. 2, we introduce the Weingarten map minimization
model and verify its geometric properties in preserving image contrast, edges and corners of objects. Sect.
3 is devoted to developing the numerical algorithm for the Weingarten map minimization model. We
derive a hybrid nonlinear first and second order regularization from the proposed Weingarten map and
discuss its numerical solution in Sect. 4. Sect. 5 implements the comprehensive numerical experiments to
demonstrate the effectiveness and superiority of the proposed method. We summarize our specific work
with a conclusion in Sect. 6.

Notations

Let Ω be a domain in Rn and p be a positive real number. We denote Lp(Ω) as the class of all measurable
functions f : Ω→ R such that

Lp(Ω) = {f
∣∣ ∫

Ω

|f(x)|pdx <∞, 1 ≤ p ≤ ∞},

We also define the norm as ‖f‖p = (
∫

Ω
|f(x)|pdx)

1
p with 1 ≤ p <∞ and ‖f‖∞ = sup

x∈Ω
|f(x)|. If p = 2, we

denote V = L2(Ω). The inner product of two functions f, g ∈ V is given by 〈f, g〉V =
∫

Ω
f(x)g(x)dx, and

the norm ‖f‖V =
√
〈f, f〉V . We let Q1 = V × V . Then for p = (p1, p2) ∈ Q1 and q = (q1, q2) ∈ Q1, there

are

〈p, q〉Q1 = 〈p1, q1〉V + 〈p2, q2〉V ,

and

‖p‖Q1
=
√
〈p, p〉Q1

.

Suppose Q2 = V × V × V × V . Given v =

(
v11 v12

v21 v22

)
∈ Q2, w =

(
w11 w12

w21 w22

)
∈ Q2, we also define the

inner product and norm accordingly

〈v, w〉Q2
= 〈v11, w11〉V + 〈v12, w12〉V + 〈v21, w21〉V + 〈v22, w22〉V ,

and

‖v‖Q2
=
√
〈v, v〉Q2

.

To conclude this section, we would like to mention the deviations in the following sections may lack rigor-
ous mathematical foundations. To the best of knowledge, the proper functional frameworks to formulate
the curvature minimization problems (6), (7) and (8), have not been identified yet, which have to be a
subspace of L2(Ω). The situation is the same for our Weingarten map minimization problem. Therefore,
we will say no more about the proper choice of the functional space for the proposed model.

2 The Weingarten map minimization model

2.1 Description of our model

Consider the level set function φ(x, y, z) = z−u(x, y), the zero level set of which corresponds to the image
surface S = (x, y, u(x, y)) ⊂ R3. The unit normal for points on the zero level set {(x, y, z) : φ(x, y, z) = 0}
is defined as (cf. equation (1.2) in [36])

Nu =
∇φ
|∇φ|

=
(∇u,−1)√
1 + |∇u|2

. (9)
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The established mean curvature model (7) is derived by minimizing the L1 norm of the divergence of the
unit normal. Indeed, by directly minimizing the L1 norm of the first component of unit normal vector,
we have

min
u

∫
Ω

∣∣∣∣ ∇u√
1 + |∇u|2

∣∣∣∣dx, (10)

which is a nonlinear first order regularization with the denominator measuring the surface area. The
Weingarten map of image surface can be achieved by pursuing the gradient, i.e.,

Wu = ∇
(

∇u√
1 + |∇u|2

)
= ∇ 1√

1 + |∇u|2
⊗∇u+

1√
1 + |∇u|2

∇2u, (11)

where a⊗ b = abT , a, b ∈ Rn, represents the Euclidean outer product. Moreover, the matrix form of (11)
can be given as

Wu =


(1+u2

y)uxx−uxuyuxy
(1+u2

x+u2
y)3/2

(1+u2
x)uxy−uxuyuxx

(1+u2
x+u2

y)3/2

(1+u2
y)uxy−uxuyuyy

(1+u2
x+u2

y)3/2

(1+u2
x)uyy−uxuyuxy

(1+u2
x+u2

y)3/2

 ,
which can be formally defined for each point p ∈ S as a linear self-conjugate map

Wp := TpS → TpS

with TpS denoting the tangent space of p. Particularly, the Weingarten map has very good geometric
properties, which can be also interpolated as the combination of the first fundamental form I and the
second fundamental form II of the image surface, i.e., Wp = I−1II. According to the differential geometry
theory, the eigenvalues of Wp are the two principal curvatures κ1, κ2 and it follows that

Definition 2.1 Let S ⊂ R3 be an oriented surface and Wp be its Weingarten map at a point p ∈ S.
Then the mean curvature and Gaussian curvature of point p can be defined by

Hp :=
1

2
(κ1 + κ2) =

1

2
trace(Wp) and Kp := κ1κ2 = det(Wp).

Inspired by the success of the mean curvature and Gaussian curvature for image denoising, we propose
to minimize the L1 norm of the Weingarten map, that is to consider the following energy functional

E(u) =

∫
Ω

∣∣∣∣∇ 1√
1 + |∇u|2

⊗∇u+
1√

1 + |∇u|2
∇2u

∣∣∣∣
F

dx+
1

2λ

∫
Ω

(u− f)2dx. (12)

2.2 Geometric properties of our model

It is well-known that edges and contrasts are important features for signals and images. Thus, an ideal
model for image reconstruction should be able to preserve not only neat edges, but also the contrasts
of the edges, i.e., the size of the discontinuities. As discussed in [41,45], TV regularization suffers from
a contrast reduction (see Fig. 1(a)), and only nonconvex and nonsmooth regularization can preserve
the image contrast (see Fig. 1(b)). In this subsection, we develop a preliminarily analytical study on the
Weingarten map minimization model (12) to verify its contrast-preserving and edge-preserving properties.

Let f be a piecewise constant function defined on a rectangle Ω = (−2R, 2R)× (−2R, 2R) composed
of a series of open disks B(0, Ri) ∈ R2 centered at origin with radius Ri, for i = 1, . . . , n. To identify the
subdomains Ωi, i = 1, . . . , n, as displayed in Fig. 2(a), we define a piecewise constant level set function

φ(x) = i, for x ∈ Ωi, i = 1, . . . , n,
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Fig. 1 Illustration of contrast preservation. (a) Contrast-reducing: the size of discontinuity at Ri after the regularization
is reduced, i.e., δi > δi+1; (b) Contrast-preserving: the size of discontinuity at Ri after the regularization is invariant, i.e.,
δi = δi+1; (c) Contrast-enhancing: the size of discontinuity at Ri after the regularization is increased, i.e., δi < δi+1.

where Ω1 = B(0, R1), and Ωi = B(0, Ri)\B(0, Ri−1) for i = 2, . . . , n. Associated with such a piecewise
constant level set function, the characteristic functions of the subdomains are given as

χi =
1

αi

n∏
j=1,j 6=i

(φ− j), αi =

n∏
k=1,k 6=i

(i− k),

for which we have χi(x) = 1 for x ∈ Ωi and χi(x) = 0 elsewhere. We further define f =
∑n
i=1 hiχi(x, y)

with hi > 0 for i = 1, . . . , n. Since f is radial symmetric, it can be obtained by rotating the function of
one variable f̂(x) =

∑n
i=1 hiχi[0,2R](x) around the vertical axis. As shown in Fig. 2(b), we approximate

f̂ by a sequence of smooth functions {un}. Then we can calculate the integral
∫

Ω
|Wun

|dxdy and define∫
Ω
|Wf |F dxdy to be limn→+∞

∫
Ω
|Wun

|F dxdy.

Lemma 2.2 Assume f =
∑n
i=1 hiχi(x, y) be a piecewise constant image defined on a rectangle Ω =

(−2R, 2R) × (−2R, 2R), where χi is the characteristic function of the subdomain Ωi and hi > 0 for
i = 1, . . . , n. Note that the subdomains {Ωi}ni=1 are defined by the open disks B(0, Ri), i = 1, . . . , n,
centered as the origin such that Ω1 = B(0, R1) and Ωi = B(0, Ri)\B(0, Ri−1) for i = 2, . . . , n. Then we
obtain ∫

Ω

|Wf |F dxdy =
n∑
i=1

4πRi. (13)

Proof Referring to the Lemma 2.1 in [51], we define a sequence of smooth functions {un} of one variable
and rotate their graphs around the vertical axis to generate smooth radial symmetric surfaces, which are
used to approximate the surface of f . Specially, we consider rotating the curves of a sequence of smooth
functions {un} in the set S defined as

S =
{
u ∈ C2[0, 2R] : u′′(x) ≤ 0, for x ∈ (Ri−1, Ri), u

′′(x) ≥ 0, for x ∈ (Ri, Ri+1);

∃ ε > 0, Ri−1 < Ri − ε < Ri < Ri + ε < Ri+1, R0 = 0, Rn+1 = 2R, such that

u(x) = f̂(x) if x ∈ (Ri−1, Ri − ε], u(x) = f̂(x) if x ∈ [Ri + ε,Ri+1), ∀ 1 ≤ i ≤ n;

u(0) = f̂(0), u(2R) = 0; u′(Ri) < −
2hi
Ri

}
.

If u ∈ S, rotating u yields an image surface z = u(r) with r =
√
x2 + y2. From S, we can select

a sequence of smooth functions to approach the function f̂ , then obtain a sequence of smooth radial
symmetric functions to approximate the target function f .
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(a) (b)

Fig. 2 (a): the piecewise constant function f defined on Ω = (−2R, 2R) × (−2R, 2R); and (b): the generatrix function u
that creates the approximation function by rotating around the vertical axis, where T denotes the tangent line of u at point
(Ri, u(Ri)) in the subdomain (Ri − ε,Ri + ε).

For the radial symmetric surface z = u(r) = u(
√
x2 + y2), we have

ux = u′
x

r
, uy = u′

y

r
, uxx = u′′

x2

r2
+ u′

y2

r3
, uyy = u′′

y2

r2
+ u′

x2

r3
, uxy = u′′

xy

r2
− u′xy

r3
.

Therefore, the Weingarten map of a surface z = u(r) takes the following form

Wu = ∇ 1√
1 + |∇u|2

⊗∇u+
1√

1 + |∇u|2
∇2u

=


u′′ x

2

r2
+u′ y

2

r3
(1+(u′)2)

(1+(u′)2)3/2

u′′ xy
r2
−u′ xy

r3
(1+(u′)2)

(1+(u′)2)3/2

u′′ xy
r2
−u′ xy

r3
(1+(u′)2)

(1+(u′)2)3/2

u′′ y
2

r2
+u′ x

2

r3
(1+(u′)2)

(1+(u′)2)3/2

 .

Furthermore, the Weingarten map regularization can be written as follows

|Wu|F =

√( u′′

(
√

1 + (u′)2)3

)2

+
( u′

r
√

1 + (u′)2

)2

. (14)

Correspondingly, we obtain the following result∫
Ω

|Wu|F dxdy =

∫ 2π

0

dθ

∫ 2R

0

r|Wu|F dr

= 2π

∫ 2R

0

r

√( u′′

(
√

1 + (u′)2)3

)2

+
( u′

r
√

1 + (u′)2

)2

dr. (15)

If u ∈ S, one can see that u′′ ≤ 0 and u′ ≤ 0 for r ∈ (Ri − ε,Ri), we obtain

∣∣∣ u′′

(
√

1 + (u′)2)3
− u′

r
√

1 + (u′)2

∣∣∣ ≤ |Wu|F ≤
∣∣∣ u′′

(
√

1 + (u′)2)3
+

u′

r
√

1 + (u′)2

∣∣∣.
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Note that u′′

(
√

1+(u′)2)3
=
[

u′√
1+(u′)2

]′
and u′′

(
√

1+(u′)2)3
+ u′

r
√

1+(u′)2
= 1

r

[
r u′√

1+(u′)2

]′
, one gets

∫ Ri

Ri−ε
r
∣∣∣ u′′

(
√

1 + (u′)2)3
− u′

r
√

1 + (u′)2

∣∣∣dr ≥ ∫ Ri

Ri−ε
r
∣∣∣ u′′

(
√

1 + (u′)2)3

∣∣∣dr − ∫ Ri

Ri−ε

∣∣∣ u′√
1 + (u′)2

∣∣∣dr
= −

∫ Ri

Ri−ε
r
[ u′√

1 + (u′)2

]′
dr +

∫ Ri

Ri−ε

u′√
1 + (u′)2

dr

= −
(
Ri

u′(Ri)√
1 + (u′(Ri))2

− (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2

)
+ 2

∫ Ri

Ri−ε

u′√
1 + (u′)2

dr,

and∫ Ri

Ri−ε
r
∣∣∣ u′′

(
√

1 + (u′)2)3
+

u′

r
√

1 + (u′)2

∣∣∣dr =

∫ Ri

Ri−ε

∣∣∣[r u′√
1 + (u′)2

]′∣∣∣dr = −
∫ Ri

Ri−ε

[
r

u′√
1 + (u′)2

]′
dr

= −
(
Ri

u′(Ri)√
1 + (u′(Ri))2

− (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2

)
.

Thus we have

−
(
Ri

u′(Ri)√
1 + (u′(Ri))2

− (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2

)
+ 2

∫ Ri

Ri−ε

u′√
1 + (u′)2

dr (16)

≤
∫ Ri

Ri−ε
r|Wu|F dr ≤ −

(
Ri

u′(Ri)√
1 + (u′(Ri))2

− (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2

)
.

When r ∈ (Ri, Ri + ε), u′′ ≥ 0 and u′ ≤ 0, we get∣∣∣ u′′

(
√

1 + (u′)2)3
+

u′

r
√

1 + (u′)2

∣∣∣ ≤ |Wu|F ≤
∣∣∣ u′′

(
√

1 + (u′)2)3
− u′

r
√

1 + (u′)2

∣∣∣,
where∫ Ri+ε

Ri

r
∣∣∣ u′′

(
√

1 + (u′)2)3
+

u′

r
√

1 + (u′)2

∣∣∣dr ≥ ∫ Ri+ε

Ri

r
[ u′√

1 + (u′)2

]′
dr +

∫ Ri+ε

Ri

u′√
1 + (u′)2

dr

= (Ri + ε)
u′(Ri + ε)√

1 + (u′(Ri + ε))2
−Ri

u′(Ri)√
1 + (u′(Ri))2

,

and ∫ Ri+ε

Ri

r
∣∣∣ u′′

(
√

1 + (u′)2)3
− u′

r
√

1 + (u′)2

∣∣∣dr =

∫ Ri+ε

Ri

r
[ u′√

1 + (u′)2

]′
dr −

∫ Ri+ε

Ri

u′√
1 + (u′)2

dr

= (Ri + ε)
u′(Ri+ε)√

1 + (u′(Ri+ε))2
−Ri

u′(Ri)√
1 + (u′(Ri))2

− 2

∫ Ri+ε

Ri

u′√
1 + (u′)2

dr.

It follows that

(Ri + ε)
u′(Ri + ε)√

1 + (u′(Ri + ε))2
−Ri

u′(Ri)√
1 + (u′(Ri))2

≤
∫ Ri+ε

Ri

r|Wu|F dr (17)

≤ (Ri + ε)
u′(Ri + ε)√

1 + (u′(Ri + ε))2
−Ri

u′(Ri)√
1 + (u′(Ri))2

− 2

∫ Ri+ε

Ri

u′√
1 + (u′)2

dr.
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When r ∈ [0, R1 − ε], [Rn + ε, 2R] and [Ri + ε,Ri+1 − ε], i = 1, . . . , n − 1, there is u′ = u′′ = 0. Thus,
based on (15), by adding the formulas (16) and (17), we obtain the following inequalities

2π

n∑
i=1

(
− 2Ri

u′(Ri)√
1 + (u′(Ri))2

+ (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2
+ (Ri + ε)

u′(Ri + ε)√
1 + (u′(Ri + ε))2

+ 2

∫ Ri

Ri−ε

u′√
1 + (u′)2

dr
)
≤
∫

Ω

|Wu|F dxdy ≤ 2π

n∑
i=1

(
− 2Ri

u′(Ri)√
1 + (u′(Ri))2

+ (Ri − ε)
u′(Ri − ε)√

1 + (u′(Ri − ε))2
+ (Ri + ε)

u′(Ri + ε)√
1 + (u′(Ri + ε))2

− 2

∫ Ri+ε

Ri

u′√
1 + (u′)2

dr
)
. (18)

Considering {un} ∈ S is any sequence of functions that pointwise converge to f̂ , it is easy to obtain
that u′n(Ri) → −∞ and u′n(r) → 0 with r 6= Ri when n → +∞. In addition, through the dominated
convergence theorem, we have

lim
n→+∞

(Ri − ε)
u′n(Ri − ε)√

1 + (u′n(Ri − ε))2
= lim
n→+∞

(Ri + ε)
u′n(Ri + ε)√

1 + (u′n(Ri + ε))2
(19)

= lim
n→+∞

∫ Ri

Ri−ε

u′n√
1 + (u′n)2

dr = lim
n→+∞

∫ Ri+ε

Ri

u′n√
1 + (u′n)2

dr = 0.

Moreover, according to the inequalities (18), there is

lim
n→+∞

∫
Ω

|Wun |F dxdy =

∫
Ω

|Wf |F dxdy =

n∑
i=1

4πRi. �

Remark 1 The integral of Weingarten map is similar to mean curvature [51], both of which do not rely
on image intensities. It describes an important characteristic of the Weingarten map regularizer, which
motivates the following theorem showing the model (12) with properties of edge and contrast preservation.

Remark 2 For a broad class of f = hχA(x, y) with A ⊂ Ω being an arbitrary open set with C2 boundary,
one can easily obtain∫

Ω

|∇f |dxdy = sup
p∈C1

c (Ω,Rn)
‖p‖∞≤1

∫
Ω

fdivpdxdy = sup
p∈C1

c (Ω,Rn)
‖p‖∞≤1

∫
∂A

fp · νdH1 = hPer(A,Ω),

where ν is the exterior normal to ∂A, H1 is the one-dimensional Hausdorff measure, and Per(A,Ω)
denotes the perimeter of A inside Ω. As can be seen, the integral of total variation is related to the
intensity h [9]. Likewise, we show the integral of Weingarten map is independent of image intensity. More
details can be found in Appendix A. Besides, we also extend the discussion to the multiphase piecewise
constant function defined on Ω with C2 boundary; see Appendix B for details.

Based on Lemma 2.2, we can further prove that f =
∑n
i=1 hiχi(x, y) is a minimizer of the proposed

model (12) as long as λ being small enough, which means our model can preserve image contrast and
edges for image restoration.

Theorem 2.3 Let f =
∑n
i=1 hiχi(x, y) be a piecewise constant image defined on a rectangle Ω =

(−2R, 2R) × (−2R, 2R). Then there exists a constant C such that if λ < C, f attains the infimum
of the proposed model (12) inside the function set S, that is E(f) = infu∈SE(u).
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Proof As shown in Fig. 2(b), we can draw the tangent line T (r) = u(Ri) + u′(Ri)(r − Ri) to any u ∈ S

at the point (Ri, u(Ri)) in the subdomain (Ri− ε,Ri + ε). Suppose the tangent line intersects f̂ at point
(rin, hi) and (rout, hi+1), then we get rin = Ri+(hi−u(Ri))/u

′(Ri) and rout = Ri+(hi+1−u(Ri))/u
′(Ri)

with rin ∈ (Ri−ε,Ri) and rout ∈ (Ri, Ri+ε), respectively. Moreover, there is f̂(r)−u(r) ≥ f̂(r)−T (r) > 0

if r ∈ (rin, Ri), and u(r)− f̂(r) ≥ T (r)− f̂(r) > 0 if r ∈ (Ri, rout). Thus we obtain∫
Ω

(u− f)2dxdy =

n∑
i=1

(∫ 2π

0

dθ

∫ Ri+ε

Ri−ε
(u(r)− f̂(r))2rdr

)
≥

n∑
i=1

2π
[ ∫ Ri

rin

(f̂(r)− u(r))2rdr +

∫ rout

Ri

(f̂(r)− u(r))2rdr
]

≥
n∑
i=1

2π
[ ∫ Ri

rin

(hi − T (r))2rdr +

∫ rout

Ri

(hi+1 − T (r))2rdr
]
. (20)

It is easy to calculate the following integrals∫ Ri

rin

(hi − T (r))2rdr =

∫ Ri

rin

(hi − u(Ri)− u′(Ri)(r −Ri))2rdr

= − 1

3u′(Ri)

(
r[hi − u(Ri)− u′(Ri)(r −Ri)]3|r=Ri

r=rin −
∫ Ri

rin

(hi − u(Ri)− u′(Ri)(r −Ri))3dr
)

= − 1

3u′(Ri)

(
Ri(hi − u(Ri))

3 +
1

4u′(Ri)
[hi − u(Ri)− u′(Ri)(r −Ri)]4|r=Ri

r=rin

)
= − 1

3u′(Ri)
Ri(hi − u(Ri))

3 − 1

12(u′(Ri))2
(hi − u(Ri))

4,

and ∫ rout

Ri

(hi+1 − T (r))2rdr =
1

3u′(Ri)
Ri(hi+1 − u(Ri))

3 +
1

12(u′(Ri))2
(hi+1 − u(Ri))

4.

Then it follows that∫ Ri

rin

(hi − T (r))2rdr +

∫ rout

Ri

(hi+1 − T (r))2rdr

=
1

3u′(Ri)
Ri[(hi+1 − u(Ri))

3 − (hi − u(Ri))
3] +

1

12(u′(Ri))2
[(hi+1 − u(Ri))

4 − (hi − u(Ri))
4]

≥ 1

3u′(Ri)
Ri

(hi+1 − hi)3

4
− 1

12(u′(Ri))2
(hi − hi+1)4 = − (hi − hi+1)3

12u′(Ri)

(
Ri +

hi − hi+1

u′(Ri)

)
.

Since u ∈ S, u′(Ri) < − 2hi

Ri
, then Ri + hi−hi+1

u′(Ri)
> (hi+hi+1)Ri

2hi
. Thus, we obtain∫

Ω

(u− f)2dxdy ≥
n∑
i=1

−π(hi − hi+1)3(hi + hi+1)

12hiu′(Ri)
Ri. (21)

Based on the formulas (18) and (21), we have

E(u) =

∫
Ω

|Wu|F dxdy +
1

2λ

∫
Ω

(u− f)2dxdy

>

n∑
i=1

(
− 4πRi

u′(Ri)√
1 + (u′(Ri))2

− π(hi − hi+1)3(hi + hi+1)

24hiλu′(Ri)
Ri

)
=

n∑
i=1

(
4πRi

(−u′(Ri))√
1 + (−u′(Ri))2

+
π(hi − hi+1)3(hi + hi+1)

24hiλ(−u′(Ri))
Ri

)
. (22)



SA-TV-TV2 Regularization for Image Reconstruction 11

For each term in (22), by defining ` = −u′(Ri), c1 = 4πRi and c2 = π(hi−hi+1)3(hi+hi+1)Ri

24hi
, we consider

the function η(`) = c1`√
1+`2

+ c2
λ` defined on [2hi

Ri
,+∞). Then there is

η′(`) =
c1

(1 + `2)3/2
− c2
λ`2
≤ c1
`3

(1− c2
λc1

`).

If λ < ci = c2
c1

2hi

Ri
, η′(`) < 0 for any ` ∈ [ 2hi

Ri
,+∞). One can see that lim`→+∞ η(`) = 4πRi, which means

η(`) will strictly decrease to 4πRi on [ 2hi

Ri
,+∞).

Suppose C = min{ci | ci = (hi−hi+1)3(hi+hi+1)
48Ri

, i = 1, . . . , n}. When λ < C in the model (12),

E(u) >
∑n
i=1 4πRi = E(f) for any smooth function u ∈ S. Moreover, for any small ε > 0, one can easily

find a smooth function u ∈ S satisfying E(u) − ε < E(f) < E(u). Thus, we obtain E(f) = infu∈SE(u).
This demonstrates that the proposed model can keep the image contrast when λ is small enough. �

Remark 3 This theorem indicates that the proposed model (12) can keep the image contrast once λ is
small enough. In contrast, according to [41], the Rudin-Osher-Fetami model will lose image contrast no
matter how small λ is.

Remark 4 The theorem also indicates that our proposed model (12), similar to the Rudin-Osher-Fetami
model, can keep sharp edges, which is another important property for image denoising.

The image patches can be categorized into homogeneous regions, edges, corners and T-junctions [15].
Thus, we turn to discuss whether our model can keep corners of objects. Considering a particular image
f = hχΓ(x, y) defined on a rectangle Ω = (−R,R) × (−R,R) with Γ = (0, R) × (0, R), we calculate the
integral

∫
Ω
|Wf |F dxdy to prove the Weingarten map can preserve corners through the following lemma.

Lemma 2.4 Let f = hχΓ(x, y) be a sharp image defined on Ω = (−R,R) × (−R,R) with Γ = (0, R) ×
(0, R). Then we obtain ∫

Ω

|Wf |F dxdy = 4R. (23)

Proof Similarly, we introduce a sequence of smooth functions {un} to approximate f . First, we consider
a function set P defined as follows

P =
{
ρ ∈ C2(R) :ρ(x) = 0 if x < −1, ρ(x) = 1 if x > 1;

ρ′′ ≥ 0 in (−1, 0), ρ′′ ≤ 0 in (0, 1); and 1 ≤ ρ′(0) ≤ 2
}

and define ζρ,ε(x, y) in terms of ρ through

ζρ,ε(x, y) =


hρ(

2y

ε
), (x, y) ∈ [ε, R)× (−R,R),

hρ(
2x

ε
), (x, y) ∈ (−R, ε)× [ε, R),

hρ(2− 2r

ε
), (x, y) ∈ (−R, ε)× (−R, ε),

(24)

with r =
√

(x− ε)2 + (y − ε)2. Moreover, with the function ζρ,ε, we define a function set Q by

Q =
{
ζρ,ε : ρ ∈ P, ε ∈ (0,

R

2
)
}
.

Let u ∈ Q, then there exists ρ ∈ P and a small enough ε such that u = ζρ,ε. Thus we can construct a
convenient sequence of smooth functions {un} to approximate the surface of f . The constructed surface
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z = ζρ,ε(x, y) will be sufficiently sharp around the edges {x = 0, y ∈ [ε, R)}, {y = 0, x ∈ [ε, R)} and the
corner (0, 0).

In particular, we can calculate the Weingarten map on image surface z = ζρ,ε(x, y) as follows

Wu =



( 2h
ε ρ
′( 2y
ε )√

1 + [ 2h
ε ρ
′( 2y
ε )]2

)
y
, (x, y) ∈ [ε, R)× (−R,R),

( 2h
ε ρ
′( 2x
ε )√

1 + [ 2h
ε ρ
′( 2x
ε )]2

)
x
, (x, y) ∈ (−R, ε)× [ε, R),

√√√√( −2h
ε ρ′(2− 2r

ε )√
1 + [−2h

ε ρ′(2− 2r
ε )]2

)2

r
+
( −2h

ε ρ′(2− 2r
ε )

r
√

1 + [−2h
ε ρ′(2− 2r

ε )]2

)2

, (x, y) ∈ (−R, ε)× (−R, ε),

(25)

where A% = dA
d% .

Due to ρ′′ ≥ 0 for (x, y) ∈ [ε, R)× (−R, 0) and ρ′′ ≤ 0 for (x, y) ∈ [ε, R)× (0, R), it follows that∫
[ε,R)×(−R,R)

|Wu|F dxdy =

∫ R

ε

[ ∫ 0

−R
Wudy −

∫ R

0

Wudy
]
dx =

2h
ε ρ
′(0)√

1 + [ 2h
ε ρ
′(0)]2

2(R− ε).

And ρ′′ ≥ 0 for (x, y) ∈ (−R, 0)× [ε, R) and ρ′′ ≤ 0 for (x, y) ∈ (0, ε)× [ε, R), thus∫
(−R,ε)×[ε,R)

|Wu|F dxdy =
2h
ε ρ
′(0)√

1 + [ 2h
ε ρ
′(0)]2

2(R− ε).

Similar to the inequalities (18), one obtains

2h
ε ρ
′(0)√

1 + [ 2h
ε ρ
′(0)]2

πε− π
∫ ε

0

2h
ε ρ
′(2− 2r

ε )√
1 + [ 2h

ε ρ
′(2− 2r

ε )]2
dr ≤

∫
(−R,ε)×(−R,ε)

|Wu|F dxdy

≤
2h
ε ρ
′(0)√

1 + [ 2h
ε ρ
′(0)]2

πε+ π

∫ R

ε

2h
ε ρ
′(2− 2r

ε )√
1 + [ 2h

ε ρ
′(2− 2r

ε )]2
dr.

Let {un = ζρn,εn} ⊂ Q being any sequence of functions that approximate f = hχΓ(x, y). It is obvious
that 2h

εn
ρ′n(0)→∞ as n→∞. Then we obtain

lim
n→∞

∫
Ω

|Wun
|F dxdy = lim

n→∞

{∫
[εn,R)×(−R,R)

|Wun
|F dxdy +

∫
(−R,εn)×[εn,R)

|Wun
|F dxdy

+

∫
(−R,εn)×(−R,εn)

|Wun
|F dxdy

}
= 4R.

Therefore, we have
∫

Ω
|Wf |F dxdy = limn→∞

∫
Ω
|Wun |F dxdy = 4R, that completes the proof. �

This lemma also illustrates that the integral
∫

Ω
|Wf |F dxdy does not rely on the image intensity h.

Then, we show our model (12) can preserve the corner of the image f = hχΓ(x, y) followed the same
procedure as before.

Theorem 2.5 Let f = hχΓ(x, y) be an image defined on a rectangle Ω = (−R,R) × (−R,R) with
Γ = (0, R) × (0, R). Then there exists a constant C such that if λ < C, f attains the infimum of the
proposed model (12), i.e., E(f) = infu∈QE(u).
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Proof Based on Lemma 2.4 and Theorem 2.4 in [51], we have

E(u) =

∫
Ω

∣∣∣∣∇ 1√
1 + |∇u|2

⊗∇u+
1√

1 + |∇u|2
∇2u

∣∣∣∣
F

dxdy +
1

2λ

∫
Ω

(u− f)2dxdy

>
( 2h
ε )ρ′(0)√

1 + [( 2h
ε )ρ′(0)]2

[4(R− ε) + πε] +
1

2λ

( h3

6( 2h
ε )ρ′(0)

(R− ε) +
πh3

48( 2h
ε )ρ′(0)

ε
)
. (26)

Setting τ = 2hρ′(0) for the above inequality (26), it follows that

η(ε) =
( τε )√

1 + ( τε )2
[4(R− ε) + πε] +

h3

12λ( τε )
(R− ε) +

πh3

96λ( τε )
ε.

It is obvious that η(ε) goes to 4R = E(f) =
∫

Ω
|Wf |F dxdy as ε→ 0. Moreover, by ε ∈ (0, R2 ),

η′(ε) = − τε

(ε2 + τ2)3/2
[4(R− ε) + πε] +

τ

(ε2 + τ2)1/2
(π − 4) +

h3

12λτ
(R− 2ε) +

πh3

48λτ
ε

≥ − 1

2
√
ε2 + τ2

[4(R− ε) + πε] +
τ√

ε2 + τ2
(π − 4) +

h3

12λτ
(R− 2ε+

π

4
ε)

> − 1

2τ
[4(R− ε) + πε] + π − 4 +

h3

12λτ

πR

8

> −2R

τ
+ π − 4 +

h3

12λτ

πR

8
,

thus we choose

λ <
πRh3

192R+ (4− π)192hρ′(0)
(27)

to satisfy η′(ε) > 0. Note that 1 ≤ ρ′(0) ≤ 2, so we can set C = πRh3

192R+(4−π)384h . If λ < C, for any ρ ∈ P,

E(ζρ,ε) will decrease to E(f) as ε→ 0. Therefore, we obtain E(u) > E(f) for any u ∈ Q.
Moreover, for any small ε > 0, we can find a smooth function u ∈ Q such that E(f) > E(u)− ε. That

verifies E(f) = infu∈QE(u). �

Remark 5 This theorem denotes that our model (12) can preserve corners as long as the tuning parameter
λ is small enough. This is another important feature of our model.

Remark 6 Similar to [51], the discussion in Theorem 2.3 and Theorem 2.5 hold for a small class of
functions with C2 boundaries. In fact, a thorough analysis of the Weingarten map minimization model
(12) needs to be considered in an appropriate function space such as BV(Ω), which is remained as our
future work for exploration.

3 The ADMM algorithm for Weingarten map minimization

Although the Weingarten map minimization model (12) has very good geometric features, it involves
high order derivatives, which result in the difficulties in developing effective and efficient algorithms for
solving it numerically. Here, we first rewrite (12) in terms of ∇u and ∇2u as follows

min
u

∫
Ω

∣∣∣∇2u
( (1 + |∇u|2)I −∇u⊗∇u

(1 + |∇u|2)
3
2

)∣∣∣
F
dx+

1

2λ

∫
Ω

(u− f)2dx, (28)
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where I denotes the identity matrix. By introducing two auxiliary variables v and w, we can reformulate
the above minimization problem into the following equivalent constrained problem

min
(u,v,w)∈V×Q1×Q2

∫
Ω

∣∣∣w( (1 + |v|2)I − v ⊗ v
(1 + |v|2)

3
2

)∣∣∣
F
dx+

1

2λ

∫
Ω

(u− f)2dx

s.t. v = ∇u, w = ∇2u.

(29)

The corresponding augmented Lagrangian functional can be defined as follows

L(u, v, w;λ1, λ2) =

∫
Ω

∣∣∣w( (1 + |v|2)I − v ⊗ v
(1 + |v|2)

3
2

)∣∣∣
F
dx+

1

2λ

∫
Ω

(u− f)2dx−
∫

Ω

λ1(v −∇u)dx

+
r1

2

∫
Ω

(
v −∇u

)2
dx−

∫
Ω

λ2(w −∇2u)dx+
r2

2

∫
Ω

(
w −∇2u

)2
dx, (30)

where (λ1, λ2) ∈ Q1 ×Q2 are the Lagrange multipliers, and r1, r2 are the penalty parameters. Then we
can exploit the ADMM to solve the above saddle-point problem by minimizing the primal variables u, v
and w from

min
u∈V

1

2λ

∫
Ω

(u− f)2dx+
r1

2

∫
Ω

(
∇u− (vk − λk1

r1
)
)2
dx+

r2

2

∫
Ω

(
∇2u− (wk − λk2

r2
)
)2
dx,

min
v∈Q1

∫
Ω

∣∣∣w( (1 + |v|2)I − v ⊗ v
(1 + |v|2)

3
2

)∣∣∣
F
dx+

r1

2

∫
Ω

(
v −∇uk+1 − λk1

r1

)2
dx,

min
w∈Q2

∫
Ω

∣∣∣w( (1 + |v|2)I − v ⊗ v
(1 + |v|2)

3
2

)∣∣∣
F
dx+

r2

2

∫
Ω

(
w −∇2uk+1 − λk2

r2

)2
dx,

and then update the multipliers λ1, λ2 by gradient ascent method.

3.1 The solution to the u-subproblem

Given the fixed variables vk, wk, λk1 , λ
k
2 , we pursue the Euler-Lagrange equation of the u-subproblem as

the following linear partial differential equation (PDE)

1

λ
(uk+1 − f)− r1div

(
∇uk+1 − (vk − λk1

r1
)
)

+ r2div2
(
∇2uk+1 − (wk − λk2

r2
)
)

= 0,

which can be simplified as( 1

λ
− r14+ r242

)
uk+1 = f/λ− div(r1v

k − λk1) + div2(r2w
k − λk2)

with 42 = div2∇2. As long as the periodic boundary condition is adopted, we can utilize FFT to achieve
the optimal solution uk+1 from

uk+1 = F−1

(F(f/λ− div(r1v
k − λk1) + div2(r2w

k − λk2)
)

(1/λ)I − r1F4F−1 + r2F42F−1

)
, (31)

where F and F−1 represent the commonly used forward and inverse FFT operation, respectively.
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3.2 The solution to the v-subproblem

Because the v-subproblem is a nonlinear and non-convex minimization problem, we employ the gradient
descent method to seek an approximated solution. The Euler-Lagrange equation of the v-subproblem is
given by

Φ′(Λ)wk
[
− 3

(1 + |v|2)
3
2

(I−Ψ)v
]

+ r1(v −∇uk+1)− λk1 = 0, with Λ = wk
( (1 + |v|2)I − v ⊗ v

(1 + |v|2)
3
2

)
,

where Φ : R2×2 → R is defined as

Φ(x) =

{√
x2 + ε, x = 0,

|x|F , x 6= 0,

with ε being a small positive constant, and I, Ψ: R2 → R2 are defined as I(x) = x and Ψ(x) = v⊗v
1+|v|2x,

respectively. Supposing that the periodic boundary condition is used, we can estimate vk+1 according to
the following fourth-order evolution equation with time as an evolution parameter

∂v

∂t
= −Φ′(Λ)wk

[
− 3

(1 + |v|2)
3
2

(I−Ψ)v
]

+ r1(∇uk+1 − v) + λk1 . (32)

3.3 The solution to the w-subproblem

The w-subproblem is a typical L1 minimization problem, which can be effectively solved using the shrink-
age operator [3,5] as follows

wk+1 = shrinkageF

(
∇2uk+1 +

λk2
r2
,
|(1 + |vk+1|2)I − vk+1 ⊗ vk+1|F

r2(1 + |vk+1|2)
3
2

)
. (33)

Note that the shrinkage operator shrinkageF (a, ξ) is implemented on each pixel over Ω such as

shrinkageF (a, ξ) = max
(
|a|F − ξ, 0

) a

|a|F
,

where a ∈ R2×2 is a 2× 2 matrix.

3.4 Update of the Lagrange multipliers (λ1, λ2)

The Lagrange multipliers (λ1, λ2) are updated through a standard dual-ascent rule from{
λk+1

1 = λk1 + r1(∇uk+1 − vk+1),

λk+1
2 = λk2 + r2(∇2uk+1 − wk+1).

(34)

Based on the above discussion on the solutions to each variable individually, we then summarize the
iterative procedure for solving the Weingarten map minimization model (28) in Algorithm 1.
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Algorithm 1 The ADMM for Weingarten map minimization model (12)

1: Input: Degraded image f , regularization parameter λ, penalty factors (r1, r2), time stepsize ∆t, maximum iteration
Kmax, and stopping threshold ε;

2: Initialize: u0 = f and v0 = w0 = λ01 = λ02 = 0, set k = 0;
3: while (not converged and k ≤ Kmax) do
4: Compute uk+1 from Eq. (31) for fixed vk, wk, λk1 and λk2 ;
5: Compute vk+1 from Eq. (32) for fixed uk+1, wk and λk1 ;
6: Compute wk+1 from Eq. (33) for fixed uk+1, vk+1 and λk2 ;

7: Update λk+1
1 and λk+1

2 according to (34);

8: Check convergence condition: ‖uk+1 − uk‖V,1/|Ω| ≤ ε;
9: end while

10: Output: Reconstructed image u.

4 Spatially adaptive first and second order regularization model

In Algorithm 1, the v-subproblem needs to be solved by gradient descent, which converges slowly in
practice. The numerical difficulty is mainly due to the coupling of the two terms in the Weingarten map.
Thus, we consider minimizing the following energy functional

F (u) =

∫
Ω

∣∣∣∇ 1√
1 + |∇u|2

⊗∇u
∣∣∣
F
dx+

∫
Ω

∣∣∣ 1√
1 + |∇u|2

∇2u
∣∣∣
F
dx+

1

2λ

∫
Ω

(u− f)2dx.

Note that the following result can be obtained for Frobenius norm

Lemma 4.1 If a ∈ Rn and b ∈ Rn are two vectors, then |a⊗ b|F = |a||b|.

Therefore, we can further reformulate the above functional into a hybrid nonlinear first and second order
regularization problem as follows

min
u

∫
Ω

α(u)|∇u|dx+

∫
Ω

β(u)|∇2u|F dx+
1

2λ

∫
Ω

(u− f)2dx, (35)

with

α(u) =
∣∣∣∇ 1√

1 + |∇u|2
∣∣∣, and β(u) =

1√
1 + |∇u|2

,

where β(u) is an edge detector function and α(u) is the total variation of β(u). As a matter of fact,
similar or partial models have been studied in the literature. Chan, Marquina and Mulet [13] introduced
a nonlinear second order regularization to the TV functional for denoising problem. Specifically, the edge
detection function β(u) is coupled with the elliptic operator to eliminate the action of high order regular-
ization on edges. Likewise, different edge detector functions have been introduced to first or second order
variational models for various image processing problems [7,31,49,20]. However, these works estimated
the edge detector function using the observed images and treated it as the spatially adapted parameter
for the regularization terms. For example, Bresson et al. [7] introduced the edge detector function as the
weights for TV term in image denoising. Li et al. [31] developed a high order denoising model, where the
edge detector function g and 1− g were used as spatially adapted parameters for first and second order
terms, respectively.

4.1 The constrained optimization problem and ADMM-based algorithm

The main computational challenges of the model (35) come from the nonlinear terms α(u) and β(u). As
explored for Euler’s elastica model [2,47], the functional (35) can be regarded as a weighted first and
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second order regularization model by computing α(u) and β(u) separately in an iterative way. Then effec-
tive and efficient numerical algorithms can be used to solve the minimization problem such as augmented
Lagrangian method [46], the split Bregman method [24] and primal-dual splitting method [11], etc.

In particular, we introduce two auxiliary variables v and w and rewrite the original unconstrained
optimization problem (35) into a constrained version as follows

min
(u,v,w)∈V×Q1×Q2

∫
Ω

α(x)|v|dx+

∫
Ω

β(x)|w|F dx+
1

2λ

∫
Ω

(u− f)2dx

s.t. v = ∇u, w = ∇2u,

(36)

where α(x) and β(x) are evaluated in a separate step. Given some (uk, vk, wk) ∈ V × Q1 × Q2, the
augmented Lagrangian functional is defined as follows

L(u, v, w;λ1, λ2) =

∫
Ω

α(x)|v|dx+

∫
Ω

β(x)|w|F dx+
1

2λ

∫
Ω

(u− f)2dx−
∫

Ω

λ1(v −∇u)dx

+
r1

2

∫
Ω

(
v −∇u

)2
dx−

∫
Ω

λ2(w −∇2u)dx+
r2

2

∫
Ω

(
w −∇2u

)2
dx,

(37)

where (λ1, λ2) ∈ Q1 × Q2 are the Lagrange multipliers, and r1, r2 are the positive pently parameters.
During each iteration, by the alternating direction method of multipliers, we tend to sequentially minimize
(37) over variables (u, v, w) while keeping the reminder variables fixed. The minimizers uk+1, vk+1, wk+1

are estimated from

uk+1 = arg min
u∈V

1

2λ

∫
Ω

(u− f)2dx+
r1

2

∫
Ω

(
∇u− (vk − λk1

r1
)
)2
dx+

r2

2

∫
Ω

(
∇2u− (wk − λk2

r2
)
)2
dx,

vk+1 = arg min
v∈Q1

∫
Ω

α(uk+1)|v|dx+
r1

2

∫
Ω

(
v −∇uk+1 − λk1

r1

)2
dx,

wk+1 = arg min
w∈Q2

∫
Ω

β(uk+1)|w|F dx+
r2

2

∫
Ω

(
w −∇2uk+1 − λk2

r2

)2
dx,

(38)

and then the Lagrange multipliers (λ1, λ2) are updated through a standard dual-ascent rule from{
λk+1

1 = λk1 + r1(∇uk+1 − vk+1),

λk+1
2 = λk2 + r2(∇2uk+1 − wk+1),

(39)

where both α(uk+1) and β(uk+1) are of known values as

α(uk+1) =
∣∣∣∇ 1√

1 + |∇uk+1|2
∣∣∣ and β(uk+1) =

1√
1 + |∇uk+1|2

. (40)

4.2 The solutions to subproblems

4.2.1 The sub-minimization problem w.r.t. u

With the fixed variables vk, wk, λk1 , λ
k
2 at the (k + 1)-th outer iteration, the Euler-Lagrange equation of

the u-subproblem is given by

1

λ
(uk+1 − f)− r1div

(
∇uk+1 − (vk − λk1

r1
)
)

+ r2div2
(
∇2uk+1 − (wk − λk2

r2
)
)

= 0,

which can be simplified as( 1

λ
− r14+ r242

)
uk+1 = f/λ− div(r1v

k − λk1) + div2(r2w
k − λk2).
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Suppose the periodic boundary condition is imposed, we can use the FFT to obtain the optimal solution
uk+1 from

uk+1 = F−1

(F(f/λ− div(r1v
k − λk1) + div2(r2w

k − λk2)
)

(1/λ)I − r1F4F−1 + r2F42F−1

)
. (41)

4.2.2 The sub-minimization problem w.r.t. (v, w)

Both the v-subproblem and w-subproblem in (38) are component-wise separable, which can be solved by
shrinkage operators. To be specific, the solution to the variable v is obtained by the isotropic shrinkage
operator defined for vectors

vk+1 = shrinkage2

(
∇uk+1 +

λk1
r1
,
α(uk+1)

r1

)
(42)

with

shrinkage2(b, ξ) = max{|b| − ξ, 0} b
|b|
, for b ∈ Rn.

Likewise, we have the solution to the w-subproblem as follows

wk+1 = shrinkageF

(
∇2uk+1 +

λk2
r2
,
β(uk+1)

r2

)
. (43)

In brief, an efficient ADMM-based numerical algorithm is proposed to deal with the spatially adapted
first and second order regularization model (35), the optimization procedure of which is sketched in
Algorithm 2.

Algorithm 2 The ADMM for spatially adapted first and second order regularization model (35)

1: Input: Degraded image f , positive constant λ, penalty factors (r1, r2), maximum iterationKmax, and stopping threshold
ε;

2: Initialize: u0 = f and v0 = w0 = λ01 = λ02 = 0, set k = 0;
3: while (not converged and k ≤ Kmax) do
4: Compute uk+1 from Eq. (41) for fixed vk, wk, λk1 and λk2 ;
5: Update α(uk+1) and β(uk+1) using uk+1 according to Eq. (40);
6: Compute vk+1 from Eq. (42) for fixed uk+1 and λk1 ;
7: Compute wk+1 from Eq. (43) for fixed uk+1 and λk2 ;

8: Update λk+1
1 and λk+1

2 according to (39);

9: Check convergence condition: ‖uk+1 − uk‖V,1/|Ω| ≤ ε;
10: end while
11: Output: Reconstructed image u.

5 Experimental results

In this section, comprehensive experiments consisting of three parts, i.e., image denoising, image de-
blurring and image inpainting are implemented to verify the efficiency and superiority of the proposed
Algorithm 1 for Weingarten map regularization model (denoted by WM) and Algorithm 2 for the reformu-
lated spatially adapted first and second order variational model (denoted by SA-TV-TV2). All numerical
experiments are performed utilizing Matlab R2016a on a machine with 3.40GHz Intel(R) Core(TM)
i7-6700 CPU and 32GB RAM.



SA-TV-TV2 Regularization for Image Reconstruction 19

Fig. 3 Test images. From left to right: (a) bars(128 × 128), (b) triangle(254 × 214), (c) cameraman(256 × 256), (d)
peppers(256× 256), respectively.

Table 1 The tunable parameters of comparative image reconstruction methods. Here, λ0 indicates the initial value of λ,
which is dynamically updated for the SATV model.

Methods Model parameters Algorithm parameters
Euler’s elastica [42] η a b r1 r2 − r4

MC [52] λ − − r1 r2 r3 r4
TV-TV2 [37] − α β r1 r2 − −

TGV [6] λ α0 α1 r1 r2 − −
SATV [19] λ0 − − ω ζ − −

WM λ − − r1 r2 − −
SA-TV-TV2 λ − − r1 r2 − −

In our work, the popular peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) indexes
[43] are adopted to quantitatively evaluate the imaging performance under different image degradation
conditions. In particular, the PSNR is defined as

PSNR(u0, u) = 10log
2552

MSE
, (44)

and the SSIM is given as

SSIM(u0, u) =
(2µu0µu + c1)(2σu0u + c2)

(µu0
2 + µu2 + c1)(σu0

2 + σu2 + c2)
, (45)

where u0 denotes the clear image, u represents the recovery image, MSE indicates the mean square error
of u0 and u. The µu0 and µu express the local mean values of images u0 and u, σu0 and σu signify the
respective standard deviations, c1 and c2 are two constants to avoid instability for near zero denominator
values, and σu0u is the covariance value between images u0 and u. Theoretically, higher PSNR and SSIM
values normally indicate better performance in image reconstruction.

The variation of the relative residuals, the relative errors and numerical energy can provide important
information about the numerical convergence of the proposed Algorithm 1 and Algorithm 2. Therefore,
we track the relative residuals during the iterations, which is defined as

(Rk1 , R
k
2) =

1

|Ω|
(‖vk −∇uk‖Q1,1, ‖wk −∇2uk‖Q2,1), (46)

where ‖ · ‖Q1,1, ‖ · ‖Q2,1 denote the L1 norm in Q1 and Q2, respectively, and |Ω| is the area of the image
domain. Simultaneously, we check the relative errors of the Lagrange multipliers

(Lk1 , L
k
2) =

1

|Ω|
(‖λk1 − λk−1

1 ‖Q1,1, ‖λk2 − λk−1
2 ‖Q2,1) (47)
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Fig. 4 Denoising results of “bars” (top) and their residual images (bottom) by different methods. The parameters are set
as (a) Euler’s elastica: a = 1, b = 10, η = 1.5 · 102, r1 = 1, r2 = 2 · 102 and r4 = 5 · 102; (b) MC: r1 = 20, r2 = 20, r3 = 104,
r4 = 105 and λ = 1.5 · 103; (c) TV-TV2: α = 10, β = 5, r1 = 1 and r2 = 5; (d) TGV: α0 = 1.5, α1 = 1.0, r1 = 10, r2 = 50
and λ = 4; (e) SATV: ω = 11, ζ = 2 and λ0 = 2.0; (f) WM: r1 = 0.1, r2 = 0.5, ∆t = 0.1 and λ = 200; (g) SA-TV-TV2:
r1 = 0.1, r2 = 0.5 and λ = 160.

Fig. 5 Denoising results of “triangle” (top) and their residual images (bottom) by different methods. The parameters are
set as (a) Euler’s elastica: a = 1, b = 10, η = 1.5 · 102, r1 = 1, r2 = 2 · 102 and r4 = 5 · 102; (b) MC: r1 = 20, r2 = 20,
r3 = 105, r4 = 105 and λ = 1.5 · 103; (c) TV-TV2: α = 10, β = 5, r1 = 1 and r2 = 5; (d) TGV: α0 = 1.5, α1 = 1.0,
r1 = 10, r2 = 50 and λ = 4; (e) SATV: ω = 11, ζ = 2 and λ0 = 2.0; (f) WM: r1 = 0.1, r2 = 0.5, ∆t = 0.1 and λ = 200; (g)
SA-TV-TV2: r1 = 0.1, r2 = 0.5 and λ = 160.

and the relative error in uk

R(uk) =
‖uk − uk−1‖V,1

|Ω|
, (48)

where ‖ · ‖V,1 is the L1 norm defined in V . Besides, the numerical energy is calculated by

E(uk) =

∫
Ω

∣∣∣∇2uk
( (1 + |∇uk|2)I −∇uk ⊗∇uk

(1 + |∇uk|2)
3
2

)∣∣∣
F
dx+

1

2λ

∫
Ω

(uk − f)2dx (49)

for the Weingarten map minimization model (12), and

F (uk) =

∫
Ω

α(uk)|∇uk|dx+

∫
Ω

β(uk)|∇2uk|F dx+
1

2λ

∫
Ω

(uk − f)2dx (50)

for the spatially adapted first and second order regularization model (35), respectively.
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Fig. 6 Denoising results of “cameraman” (top) and their local magnification views (bottom) by different methods. The
parameters are set as (a) Euler’s elastica: a = 1, b = 10, η = 2 · 102, r1 = 1, r2 = 2 · 102 and r4 = 5 · 102; (b) MC: r1 = 40,
r2 = 40, r3 = 105, r4 = 1.5 · 105 and λ = 102; (c) TV-TV2: α = 4, β = 8, r1 = 10 and r2 = 10; (d) TGV: α0 = 1.5,
α1 = 1.0, r1 = 10, r2 = 50 and λ = 10; (e) SATV: ω = 11, ζ = 2 and λ0 = 2.5; (f) WM: r1 = 1, r2 = 2, ∆t = 0.01 and
λ = 90; (g) SA-TV-TV2: r1 = 1, r2 = 2 and λ = 100.
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Fig. 7 Evaluations of “cameraman” by the WM (top) and SA-TV-TV2 (bottom) methods. From left to right: Relative
residuals (46), relative errors in multipliers (47), relative errors in uk (48) and numerical energy (49) (top) and (50) (bottom),
respectively.

5.1 Numerical discretization

Let Ω = {(i, j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n} be the discretized image domain and u(i, j) denote the intensity
value of image u at the pixel (i, j) ∈ Ω. We define the discrete forward (+) and backward (−) differential
operators under periodic boundary condition as: ∂+

x u(i, j) = (u(i+1, j)−u(i, j))/∆x, ∂+
y u(i, j) = (u(i, j+

1) − u(i, j))/∆y, ∂−x u(i, j) = (u(i, j) − u(i − 1, j))/∆x, ∂−y u(i, j) = (u(i, j) − u(i, j − 1))/∆y, where ∆x
and ∆y denote the spatial mesh sizes. Then the discrete gradient operator ∇: Rm×n → (Rm×n)2 is given
by ∇u(i, j) =

(
∂+
x u(i, j), ∂+

y u(i, j)
)
, and the discrete divergence operator div: (Rm×n)2 → Rm×n for

p = (p1, p2) ∈ (Rm×n)2 is denoted as divp(i, j) = ∂−x p1(i, j) + ∂−y p2(i, j).
Correspondingly, based on periodic boundary condition, the discrete second order differential op-

erators are further defined as ∂−+
xx u(i, j) = ∂+−

xx u(i, j) = ∂−x (∂+
x u(i, j)), ∂++

xy u(i, j) = ∂++
yx u(i, j) =
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Fig. 8 Denoising results of “peppers” (top) and their local magnification views (bottom) by different methods. The pa-
rameters are set as (a) Euler’s elastica: a = 1, b = 10, η = 2 · 102, r1 = 1, r2 = 2 · 102 and r4 = 5 · 102; (b) MC: r1 = 40,
r2 = 40, r3 = 105, r4 = 105 and λ = 102; (c) TV-TV2: α = 4, β = 10, r1 = 10 and r2 = 10; (d) TGV: α0 = 1.5, α1 = 1.0,
r1 = 10, r2 = 50 and λ = 10; (e) SATV: ω = 11, ζ = 2 and λ0 = 2.5; (f) WM: r1 = 1, r2 = 2, ∆t = 0.01 and λ = 90; (g)
SA-TV-TV2: r1 = 0.1, r2 = 0.5 and λ = 100.

Table 2 PSNR comparisons of various image denoising methods on test images for restoring noisy images corrupted by
Gaussian noise with different standard deviation σ.

Methods bars triangle cameraman peppers
Euler’s elastica [42] 24.83 33.27 28.05 28.72

MC [52] 26.35 33.65 28.40 29.57
TV-TV2 [37] 25.42 33.06 28.14 28.50

TGV [6] 25.90 33.41 28.30 29.17
SATV [19] 25.64 32.25 28.28 29.43

WM 27.01 34.14 29.13 30.12
SA-TV-TV2 27.08 34.20 29.15 30.28

∂+
x (∂+

y u(i, j)), ∂−−xy u(i, j) = ∂−−yx u(i, j) = ∂−x (∂−y u(i, j)), ∂−+
yy u(i, j) = ∂+−

yy u(i, j) = ∂−y (∂+
y u(i, j)).

Therefore, the discrete Hessian operator ∇2: Rm×n → (Rm×n)4 is denoted as

∇2u(i, j) =

(
∂−+
xx u(i, j) ∂++

xy u(i, j)
∂++
yx u(i, j) ∂−+

yy u(i, j)

)
.

For q = (q11, q12, q21, q22) ∈ (Rm×n)4, the discrete second order divergence operator div2: (Rm×n)4 →
Rm×n is defined by

div2q(i, j) = ∂+−
xx q11(i, j) + ∂−−xy q12(i, j) + ∂−−yx q21(i, j) + ∂+−

yy q22(i, j).

5.2 Parameters discussing and comparison methods

There are three consistent parameters in the proposed Algorithm 1 and Algorithm 2, i.e., λ, r1 and r2. The
regularization parameter λ affects the contributions of the data-fidelity and regularization term, which
should be selected according to the structures of the images and noise levels. The penalty parameters r1

and r2 control the convergent speed and stability of algorithms. To be specific, too small values of r1 and
r2 usually reduce the algorithm’s efficiency and relatively large values of r1 and r2 yield faster convergence.
It is crucial to select appropriate penalty parameters r1 and r2 for balancing both algorithm’s efficiency
and stability. The time step size ∆t in Algorithm 1 is chosen as either ∆t = 0.1 or ∆t = 0.01 in different
experiments. Similar to the mean curvature regularization [52], the choice of spatial mesh sizes influences
the reconstruction performance, which are set as ∆x = ∆y = 5 in the following experiments.
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Fig. 9 Compared evaluations of “triangle” and “peppers” by MC, WM and SA-TV-TV2 methods in terms of relative
errors and numerical energy.

Table 3 SSIM comparisons of various image denoising methods on test images for restoring noisy images corrupted by
Gaussian noise with different standard deviation σ.

Methods bars triangle cameraman peppers
Euler’s elastica [42] 0.9232 0.9503 0.8178 0.8469

MC [52] 0.9453 0.9663 0.8203 0.8628
TV-TV2 [37] 0.9308 0.9561 0.8224 0.8571

TGV [6] 0.9380 0.9358 0.8157 0.8474
SATV [19] 0.9354 0.9517 0.8229 0.8613

WM 0.9554 0.9715 0.8330 0.8762
SA-TV-TV2 0.9576 0.9734 0.8284 0.8784

Table 4 CPU time comparisons between various image denoising methods on test images corrupted by Gaussian noises,
where the best two results are highlighted in bold and with underline, respectively.

Methods bars triangle cameraman peppers
Euler’s elastica [42] 2.48 7.52 8.69 8.51

MC [52] 13.27 41.02 42.88 42.41
TV-TV2 [37] 7.94 21.06 22.58 22.15

TGV [6] 10.09 30.18 31.98 31.32
SATV [19] 24.54 98.85 105.93 103.14

WM 38.34 117.77 143.28 142.53
SA-TV-TV2 5.67 15.41 16.42 16.25

We compare the proposed models with the most relevant methods including the Euler’s elastica model
(Euler) [42], mean curvature (MC) [52], hybrid first and second order model (TV-TV2) [37], the second
order total generalized variation model (TGV) [6] and the spatially adapted TV method (SATV) [19].
The tunable parameters contained in different algorithms for comparison are listed in Table 1. As can be
seen, the proposed two methods not only contain fewer parameters, but also fewer subproblems in each
iteration process.

5.3 Comparison experiments on image denoising

We first illustrate the efficiency and superiority of the proposed models via various examples on image
denoising. Four grayscale images displayed in Fig. 3 are used to evaluate the performance of both our
algorithms and comparison algorithms. To be specific, the synthetic images “bars” and “triangle” are
degraded by Gaussian noises with zero mean and the standard deviation σ = 30, while the real images
“cameraman” and “peppers” are degraded by Gaussian noises with zero mean and the standard deviation
σ = 20. Different algorithms are stopped with the same termination condition such as Tmax = 300 and
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Fig. 10 Convergence curves of “triangle” and “peppers” by different methods.

Fig. 11 The spatially adaptive values of synthetic images in SA-TV-TV2 method. From left to right: α(u) of “bars”, β(u)
of “bars”, α(u) of “triangle”, β(u) of “triangle”, respectively.

ε = 2 × 10−3 throughout this experiment. The specific values of both model and algorithm parameters
for all comparison algorithms are provided separately in each example.

We display both the restoration results and the residual images of the two synthetic images in Fig.
4 and Fig. 5, and the denoising results and the selected local magnification views of the two real images
in Fig. 6 and Fig. 8. In general, all methods can efficiently eliminate the noises, but only MC and
our WM and SA-TV-TV2 can well preserve the image structures and features. More specifically, the
residual images obtained by the Euler’s elastica, TV-TV2 and SATV models contain many image details,
while there is almost no signal left in the residual images of MC and WM, which confirms the contrast-
preserving property of both MC and WM models. On the other hand, from the magnified images, we
observe the TV-TV2 model tends to obtain over-smoothed recovery results with blurry edges and missing
details. The restored images of the Euler’s elastica and TGV methods are not as smooth as others in the
homogeneous regions. Although the SATV method can achieve almost satisfactory visual results owing
to the spatially adapted regularization parameter, it suffers from some unnatural staircase-like artifacts
in large homogeneous regions, e.g., the sky region in Fig. 6. By contrast, the MC, WM and SA-TV-TV2

models retain sharp edges and smoothed flat regions. The advantages of the contrast-preserving methods
are also demonstrated by the PSNR and SSIM listed in Tables 2 and 3. Although the MC model can
also preserve image contrast, higher PSNR and SSIM are always achieved by our WM and SA-TV-TV2

models owing to excellent geometric properties and spatially adapted operators.

We also track the decay of relative residuals (46), the relative errors in multipliers (47), the relative
errors in uk (48) and the numerical energies (49)-(50), which are displayed with log-scale in Fig. 7. These
plots can verify the convergence of Algorithm 1 and Algorithm 2 numerically. Fig. 9 records the curves of
the relative error in uk and numerical energy decay of image “triangle” and “peppers” in log-scale by the
MC, WM and SA-TV-TV2 models. Due to the dependence of gradient descent, the relative error of WM
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Fig. 12 The spatially adaptive values of real images in SA-TV-TV2 method. From left to right: α(u) of “cameraman”,
β(u) of “cameraman”, α(u) of “peppers”, β(u) of “peppers”, respectively.

Fig. 13 PSNRs of “bars” by different penalty factors with fixed regularization parameters in SA-TV-TV2 method. From
left to right: the results of λ = 80, λ = 160 and λ = 320, respectively.

model converges much slower than the other two models, and our SA-TV-TV2 model is faster and more
stable than the MC model. Moreover, the numerical energies of the WM, SA-TV-TV2 and MC models
converge to similar values which also reveal the close relation of the three regularization terms.

Besides, we compare the CPU time consumption in Table 4, where the SA-TV-TV2 model is much
faster than other methods except for the Euler’s elastica model, yet the WM model spends the highest
computational cost due to the gradient descent procedure. The convergence curves in Fig. 10 of image
“triangle” and “peppers” also confirm that Euler’s elastica and SA-TV-TV2 converge faster than other
approaches. Although our SA-TV-TV2 model consumes more CPU time than the Euler’s elastica model,
it also produces much higher PSNR and SSIM values. Compared to the MC and SATV method, much
CPU time is saved by our SA-TV-TV2 model without any sacrifices of the recovery quality. The reason
is that our SA-TV-TV2 method contains fewer subproblems in each iteration and can terminate by the
relative errors, while the WM, MC and SATV are all stopped by the maximum iteration number. The
above evaluations convince that our Algorithm 2 can produce a similar restoration result as Algorithm
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Fig. 14 PSNRs of “cameraman” by different penalty factors with fixed regularization parameters in SA-TV-TV2 method.
From left to right: the results of λ = 40, λ = 100 and λ = 250, respectively.

1, simultaneously saving much CPU time. Therefore, we only implement the SA-TV-TV2 model in the
following experiments.

It is not hard to find that the superior performance of the SA-TV-TV2 model benefits from the spa-
tially adapted regularization parameter α(u) and β(u). Fig. 11 and Fig. 12 confirm that the convergent
values of α(u) and β(u) vary with image gradients in an opposite way. More especially, the model adap-
tively chooses small values of α(u) and large values of β(u) in the homogeneous regions to promote the
second-order regularization term for removing the noises as well as avoiding the staircase effect. On the
other hand, large values of α(u) and small values of β(u) are selected in textural regions to strengthen the
first-order regularization term for allowing jumps and enhancing edges. In all, our SA-TV-TV2 model can
achieve a good trade-off between noise removal and feature preservation leading to satisfactory recovery
results.

Besides, we discuss the impact of parameters λ and r1, r2 in the SA-TV-TV2 model on image “bars”
and “cameraman” to guide how to choose these parameters in practice. First, we vary the parameters
(r1, r2) ∈ {r0

1×2−l1 , r0
1×2−l1+1, · · · , r0

1×2l1−1, r0
1×2l1}×{r0

2×2−l2 , r0
2×2−l2+1, · · · , r0

2×2l2−1, r0
2×2l2}

with r0
1 = 16, r0

2 = 32 and l1 = l2 = 12. Then, we select λ ∈ {80, 160, 320} for the image “bars” and
λ ∈ {40, 100, 250} for the image “cameraman”. As shown in Fig. 13 and Fig. 14, for fixed λ, there are
relatively large intervals for r1 and r2 to generate good restoration results. Furthermore, we also show the
best recovery results among various combinations of r1, r2 for each λ = 80, 160, 320 of the image “bars” in
Fig. 13 and λ = 40, 100, 250 of the image “cameraman” in Fig. 14. It can be observed that small λ leads
to non-smoothed recovery results with some noises remaining, while large λ results in over-smoothed
recovery results with some details missing. Hence, the choice of λ is related to the noise level of the
degenerated images such that the larger the noises are, the larger λ should be.
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Fig. 15 Deblurring comparisons of different parameters in TV-TV2 and SA-TV-TV2 methods on test image “house”.
From left to right: (a) clear image and degraded image, (b) recovery images by TV-TV2 method with α = 0.4, β = 0 and
SA-TV-TV2 method with β = 0, (c) recovery images by TV-TV2 method with α = 0, β = 0.4 and SA-TV-TV2 method
with α = 0, (d) recovery images by TV-TV2 method with α = 0.4, β = 0.4 and SA-TV-TV2 method, respectively.

Table 5 Evaluated comparisons of different parameters in TV-TV2 and SA-TV-TV2 methods on test image “house” for
restoring degraded image corrupted by Gaussian blur kernel with Gaussian noise of standard deviation σ = 5.

TV-TV2 α = 0.4, β = 0 α = 0, β = 0.4 α = 0.4, β = 0.4
PSNR 29.71 29.47 29.85
SSIM 0.8121 0.8027 0.8168

SA-TV-TV2 α = α(u), β = 0 α = 0, β = β(u) α = α(u), β = β(u)
PSNR 29.25 29.92 30.17
SSIM 0.7992 0.8193 0.8221

5.4 Experiments on image deblurring

In this subsection, we implement the image deblurring experiments under different degradations to illus-
trate the efficiency of our proposed method. The corresponding deblurring model can be formalized as
follows

min
u

∫
Ω

α(u)|∇u|dx+

∫
Ω

β(u)|∇2u|F dx+
1

2λ

∫
Ω

|Ku− f |2dx, (51)

where the operator K represents blur kernels.

The clean image “house” is corrupted by Gaussian blur kernel (fspecial(‘gaussian’,[7 7],2)) and Gaus-
sian noise of mean 0 and standard deviation 5 in Fig. 15(a), and the original image “tomato” is degraded
by the average blur kernel (fspecial(‘average’,[7 7])), followed by adding Gaussian noise of mean 0 with
standard deviation 10 in Fig. 16(a). We set r1 = r2 = 4, λ = 5 and r1 = r2 = 0.2, λ = 15 for “house” and
“tomato”, respectively. A series of experiments are conducted by comparing the SA-TV-TV2 and TV-TV2

method with different combinations of regularization parameters, i.e., β = 0, α = 0 and α 6= 0, β 6= 0. The
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Fig. 16 Deblurring comparisons of different parameters in TV-TV2 and SA-TV-TV2 methods on test image “tomato”.
From left to right: (a) clear image and degraded image, (b) recovery images by TV-TV2 method with α = 1.5, β = 0 and
SA-TV-TV2 method with β = 0, (c) recovery images by TV-TV2 method with α = 0, β = 1.5 and SA-TV-TV2 method
with α = 0, (d) recovery images by TV-TV2 method with α = 1.5, β = 1.5 and SA-TV-TV2 method, respectively.

Table 6 Evaluated comparisons of different parameters in TV-TV2 and SA-TV-TV2 methods on test image “tomato” for
restoring degraded image corrupted by Average blur kernel with Gaussian noise of standard deviation σ = 10.

TV-TV2 α = 1.5, β = 0 α = 0, β = 1.5 α = 1.5, β = 1.5
PSNR 33.30 31.82 32.38
SSIM 0.8810 0.8885 0.9050

SA-TV-TV2 α = α(u), β = 0 α = 0, β = β(u) α = α(u), β = β(u)
PSNR 32.58 33.75 34.24
SSIM 0.8704 0.9102 0.9153

image deblurring results and their local magnification views of the SA-TV-TV2 and TV-TV2 method are
displayed in Fig. 15 and Fig. 16, while the quantitative results are detailed in Table 5 and 6.

We can see that both the recovery images of SA-TV-TV2 and TV-TV2 models suffer from serious
staircase effect in the case of β = 0, the main reason behind which is that TV regularization favors
piecewise constant solutions. On the other hand, when α = 0, the results tend to be over-smoothed and
with blurry edges due to the contrast reduction effect. The conclusion on visual comparisons is further
confirmed by the quantitative results in terms of PSNR and SSIM as explored in Tables 5 and 6. The
best PSNR and SSIM are always obtained by the SA-TV-TV2 model with non-zero spatially varying α
and β, which demonstrate the advantages of the contrast-preserving regularization over other spatially
adapted models [13,7,31,49,20].
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(a) Noisy images (b) Euler (c) TV-TV2 (d) TGV (e) SA-TV-TV2

Fig. 17 The color image denoising results of “lena” (σ = 20) (top) and “flower” (σ = 30) (bottom) generated by the
comparative methods. From left to right: (a) noisy images; (b) recovery images by Euler’s elastica; (c) recovery images by
TV-TV2; (d) recovery images by TGV; (e) recovery images by SA-TV-TV2.

Table 7 Comparison of PSNR and SSIM on color image denoising examples among the Euler’s elastica, TV-TV2, TGV
and SA-TV-TV2 methods.

Methods Euler’s elastica TV-TV2 TGV SA-TV-TV2

Images PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

lena (σ = 20) 29.32 0.9406 29.25 0.9392 29.15 0.9363 29.88 0.9453
flower (σ = 30) 30.26 0.9478 30.38 0.9520 29.83 0.9471 30.98 0.9575

5.5 Experiments on color image denoising

In this subsection, we implement our method on color image denoising. For the sake of simplicity, we aim
to recover a color image u = (ur, ug, ub) : Ω → R3 channel by channel, and generate the restored image
by combining the RGB channels together. Our spatially adapted first and second order regularization
model for Gaussian noise removal can be defined as

min
u

∑
c∈{r,g,b}

(

∫
Ω

α(uc)|∇uc|dx+

∫
Ω

β(uc)|∇2uc|F dx) +
∑

c∈{r,g,b}

1

2λ

∫
Ω

|uc − f c|2dx. (52)

As shown in Fig. 17, the color images “lena” and “flower” are degraded by Gaussian noise with mean zero
and the standard deviation σ = {20, 30}, respectively. We use r1 = 1, r2 = 2 and λ = {80, 160} for the
two images accordingly. Although all methods can remove the noises and recover main image structural
information, our method gives the best visual quality with not only sharp and clear edges but also the
homogeneity in slanted regions. The corresponding qualitative evaluations are provided in Table 7, which
also convince the sound effects of our proposal on color image denoising.

5.6 Experiments on image inpainting

Finally, we demonstrate some examples of our SA-TV-TV2 method on image inpainting problems. In
general, the task of image inpainting is to reconstruct a missing part of an image using information from
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Fig. 18 Inpainting results of real images by the SA-TV-TV2 method. The parameters are selected as r1 = 2, r2 = 4,
r3 = 0.005 and λ = 2.

the intact part. The missing part of the image is called the inpainting domain and is denoted by D ⊆ Ω.
Image inpainting has been extensively studied in the literature including TV inpainting [22], curvature
driven diffusion inpainting [16], Mumford-Shah based inpainting [21] and Euler’s elastica inpainting [42].
The spatially varying first and second order regularization inpainting model is described as follows

min
u

∫
Ω

α(u)|∇u|dx+

∫
Ω

β(u)|∇2u|F dx+
1

2λ

∫
Ω\D

(u− f)2dx.

In order to obtained an efficient ADMM algorithm, we introduce three auxiliary variables and rewrite
the above minimization problem into the following constrained one

min
u,v,w

∫
Ω

α(u)|v|dx+

∫
Ω

β(u)|w|F dx+
1

2λ

∫
Ω\D

(z − f)2dx

s.t., z = u, v = ∇u, w = ∇2u.

(53)

More details for dealing with the constrained optimization problem (53) can be referred to [38].
In Fig. 18, we present two convincing examples of image inpainting by our method. We can observe that

the reconstructed regions can naturally blend into background, see Fig. 18 (a2) and (b2). In addition, we
compare the SA-TV-TV2 model, TV-TV2 model [38] and Euler’s elastica model [42] on a simple synthetic
image. As shown by Fig. 19 (b) and (f), the TV inpainting model with the constant regularization
parameter gives nearly piecewise constant result inside the inpainting domain, while the TV model with
adaptive parameter also fails to fill such a large gap in between the two branches. Actually, the TV2 model
can somehow connect the gap as shown in Fig. 19 (c) and (g) with the price of some blur. Similar problem
happened to Fig. 19 (d) and (e), which are obtained by the TV-TV2 method and the Euler’s elastica
method, respectively. It is clearly shown that our SA-TV-TV2 model gives the visually best inpainting
result, which can recover the gap using straight edges; see Fig. 19 (h).

6 Conclusion

In this paper, we proposed a novel Weingarten map minimization model for image restoration problems.
Our model was shown can ideally preserve image contrast, edges and corners of objects. We developed an
ADMM-based algorithm for solving the high order variational model. More than that, we further derived
a spatially adapted first and second order regularization from the Weingarten map, and presented a
more efficient algorithm by solving all subproblems with either FFT or closed-form solution. Numerous
numerical experiments are conducted on both synthetic and real images to demonstrate the efficacious
and ascendant performance of the proposed models. By comparing with other well established high order
models, we showed the spatially adapted first and second order regularization can not only keep image
intensity contrast and eliminate staircase effect, but also save the computational cost.
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Fig. 19 Inpainting comparisons of different parameters in TV-TV2, Euler’s elastica and SA-TV-TV2 methods. From left to
right and top to bottom: (a) the degraded image, (b) TV with α = 10, (c) TV2 with β = 5, (d) TV-TV2 with α = 10, β = 5,
(e) Euler’s elastica model, (f) TV with α(u) in (35), (g) TV2 with β(u) in (35) and (h) SA-TV-TV2.

Appendix A

Let f = hχA(x, y) be a binary function defined on a rectangle domain Ω = (−2R, 2R)× (−2R, 2R) with
A ⊂ Ω being an arbitrary open set with C2 boundary. We consider the following integral of Weingarten
map regularization by triangle inequality∫

Ω

|Wf |F dxdy =

∫
Ω

∣∣∣∣∇( ∇f√
1 + |∇f |2

)∣∣∣∣
F

dxdy

=

∫
Ω

√∣∣∣∣∇ fx√
1 + |∇f |2

∣∣∣∣2 +

∣∣∣∣∇ fy√
1 + |∇f |2

∣∣∣∣2dxdy
≤
∫

Ω

∣∣∣∣∇ fx√
1 + |∇f |2

∣∣∣∣dxdy +

∫
Ω

∣∣∣∣∇ fy√
1 + |∇f |2

∣∣∣∣dxdy,
where fx and fy are the first-order differential operators of f , i.e., ∇f = (fx, fy), and | · | denotes the

Euclidean norm. Similar to the total variation regularization, owing to fx√
1+|∇f |2

≤ 1 and
fy√

1+|∇f |2
≤ 1

at every point (x, y) on Ω, we can arrive at the following conclusion based on divergence theorem and
Cauchy-Schwartz inequality∫

Ω

|Wf |F dxdy ≤
∫

Ω

∣∣∣∣∇ fx√
1 + |∇f |2

∣∣∣∣dxdy +

∫
Ω

∣∣∣∣∇ fy√
1 + |∇f |2

∣∣∣∣dxdy
= sup
p∈C1

c (Ω,Rn)
‖p‖∞≤1

∫
Ω

fx√
1 + |∇f |2

divpdxdy + sup
q∈C1

c (Ω,Rn)
‖q‖∞≤1

∫
Ω

fy√
1 + |∇f |2

divqdxdy

= sup
p∈C1

c (Ω,Rn)
‖p‖∞≤1

∫
∂A

fx√
1 + |∇f |2

p · νdH1 + sup
q∈C1

c (Ω,Rn)
‖q‖∞≤1

∫
∂A

fy√
1 + |∇f |2

q · νdH1

≤ sup
p∈C1

c (Ω,Rn)
‖p‖∞≤1

∫
∂A

∣∣∣∣ fx√
1 + |∇f |2

∣∣∣∣|p · ν|dH1 + sup
q∈C1

c (Ω,Rn)
‖q‖∞≤1

∫
∂A

∣∣∣∣ fy√
1 + |∇f |2

∣∣∣∣|q · ν|dH1

≤ 2

∫
∂A

dH1 = 2Per(A,Ω),

which shows that the integral of Weingarten map is independent of h.
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Appendix B

Let f =
∑n
i=1 hiχi(x, y) be a piecewise constant function defined on a rectangle domain Ω, where χi

is the characteristic function of the subdomain Ωi. Similarly, we can reformulate the Weingarten map
regularization over the image domain Ω as follows∫

Ω

|Wf |F dxdy ≤
n∑
i=1

∫
Ω

∣∣∣∣∇ hiχix√
1 + |hi∇χi|2

∣∣∣∣dxdy +

n∑
i=1

∫
Ω

∣∣∣∣∇ hiχiy√
1 + |hi∇χi|2

∣∣∣∣dxdy
=

n∑
i=1

sup
pi∈C1

c (Ω,Rn)
‖pi‖∞≤1

∫
Ω

hiχix√
1 + |hi∇χi|2

divpidxdy +

n∑
i=1

sup
qi∈C1

c (Ω,Rn)
‖qi‖∞≤1

∫
Ω

hiχiy√
1 + |hi∇χi|2

divqidxdy

=

n∑
i=1

sup
pi∈C1

c (Ω,Rn)
‖pi‖∞≤1

∫
∂Ωi

hiχix√
1 + |hi∇χi|2

pi · νidH1 +

n∑
i=1

sup
qi∈C1

c (Ω,Rn)
‖qi‖∞≤1

∫
∂Ωi

hiχiy√
1 + |hi∇χi|2

qi · νidH1

≤
n∑
i=1

sup
pi∈C1

c (Ω,Rn)
‖pi‖∞≤1

∫
∂Ωi

∣∣∣∣ hiχix√
1 + |hi∇χi|2

∣∣∣∣|pi · νi|dH1 +

n∑
i=1

sup
qi∈C1

c (Ω,Rn)
‖qi‖∞≤1

∫
∂Ωi

∣∣∣∣ hiχiy√
1 + |hi∇χi|2

∣∣∣∣|qi · νi|dH1

≤
n∑
i=1

2

∫
∂Ωi

dH1 = 2

n∑
i=1

Per(Ωi,Ω),

which is also independent of h.
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