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Abstract

In this paper, a fifth-order moment-based Hermite weighted essentially non-oscillatory

scheme with unified stencils (termed as HWENO-U) is proposed for hyperbolic conservation

laws. The main idea of the HWENO-U scheme is to modify the first-order moment by a

HWENO limiter only in the time discretizations using the same information of spatial re-

constructions, in which the limiter not only overcomes spurious oscillations well, but also

ensures the stability of the fully-discrete scheme. For the HWENO reconstructions, a new

scale-invariant nonlinear weight is designed by incorporating only the integral average values

of the solution, which keeps all properties of the original one while is more robust for simu-

lating challenging problems with sharp scale variations. Compared with previous HWENO

schemes, the advantages of the HWENO-U scheme are: (1) a simpler implemented process

involving only a single HWENO reconstruction applied throughout the entire procedures

without any modifications for the governing equations; (2) increased efficiency by utilizing

the same candidate stencils, reconstructed polynomials, and linear and nonlinear weights in

both the HWENO limiter and spatial reconstructions; (3) reduced problem-specific depen-

dencies and improved rationality, as the nonlinear weights are identical for the function u and

its non-zero multiple ζu. Besides, the proposed scheme retains the advantages of previous

HWENO schemes, including compact reconstructed stencils and the utilization of artificial

linear weights. Extensive benchmarks are carried out to validate the accuracy, efficiency,

resolution, and robustness of the proposed scheme.
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1 Introduction

In this paper, we construct a fifth-order Hermite weighted essentially non-oscillatory

scheme with unified candidate stencils (termed as HWENO-U) for hyperbolic conservation

laws, where both the zeroth- and first-order moments are evolved in time and used in spatial

reconstructions. Compared with other moment-based HWENO schemes [8, 24, 37, 44, 45, 46],

the HWENO-U scheme adds a high order modification for the first-order moments in time

discretizations by using the same information of spatial reconstructions, which is simpler and

more efficient for using the same reconstructed polynomials, smooth indicators, linear and

nonlinear weights in the entire procedures. HWENO schemes are constructed on the basis

of weighted essentially non-oscillatory (WENO) schemes, and WENO schemes have been

widely applied for hyperbolic conservation laws in the past three decades. The first WENO

scheme was proposed by Liu et al. [27] in 1994, where they combined all candidate stencils of

essentially non-oscillatory (ENO) schemes [14, 15, 16] to achieve a third-order accuracy in the

finite volume version. Next, Jiang and Shu developed a fifth-order finite difference WENO

scheme [19] in 1996, in which they gave a general definition for the smoothness indicators and

nonlinear weights, and the fifth-order finite volume WENO scheme was presented by Shu [34]

in 1998. After that, WENO schemes have been further developed in [1, 4, 7, 17, 22, 42, 49, 54],

and a recent review can be found in [35].

The fundamental difference between WENO and HWENO schemes is spatial discretiza-

tions, where WENO schemes only use the information of solutions, but HWENO schemes

can use additional information in each cell, such as the derivatives or first-order moments of

solutions. Hence, HWENO schemes can use more compact stencils than WENO schemes on

the same order accuracy, resulting in more minor numerical errors in smooth cases and fewer

transition points near discontinuities based on the comparisons in [43]. However, HWENO

schemes are less robust than WENO schemes as the derivatives or first-order moments may

become quite large near discontinuities. For example, using the same thought of the first

one-dimensional HWENO scheme [31], the first two-dimensional HWENO scheme [32] gave
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poor resolutions for the double Mach and forward step problems, though this drawback

was solved later in [48] by using more complicated techniques to reconstruct the derivative

terms. The common point of the HWENO schemes [31, 32, 48] is to use different stencils or

techniques in the discretization of the governing and derived equations by avoiding discon-

tinuities, which also has been used in the subsequent HWENO schemes [3, 23, 28, 37, 40].

However, reducing the use of derivatives or first-order moments alone is not sufficient to con-

trol oscillations effectively. For instance, additional techniques such as positive-preserving

limiters and a smaller time step are required in the first finite difference HWENO scheme

[28]. Furthermore, the selection of optimal stencils and approximated methods often heavily

relies on numerical experiences.

To enhance the robustness of HWENO schemes, Zhao et al. [44] proposed an alternative

approach to control the derivatives or first-order moments as limiters in the discontinuous

Galerkin (DG) method [6], which can effectively overcome oscillations even with a normal

time step. This moment-based HWENO scheme also can be viewed as a P1PM method, as

defined by Dumbser et al. [8]. The key feature of the HWENO scheme [44] is the separation

of limiters and spatial reconstructions into two distinct parts, while the limiters in DG

methods [30, 47, 53] and the spatial reconstructions in WENO schemes [1, 4, 7, 49] have

been extensively studied over the past three decades. Consequently, constructing HWENO

schemes with the proposed framework [44] benefits from the wealth of mature references

in these two fields, reducing reliance on numerical experiences. Later, by modifying the

first-order moments in advance as [44], the modified HWENO scheme with artificial linear

weights [45], the positivity-preserving HWENO scheme [9], the Hermite TENO scheme [38],

the multi-resolution HWENO scheme [24], and the finite difference HWENO combined with

limiter scheme [43] have been developed to solve hyperbolic conservation laws. However, the

proposed framework [44] still utilizes two sets of stencils as the first HWENO scheme [31],

and using two sets of stencils means repetitive algorithms, and double or triple computational

costs. Recently, Zhao and Qiu [46] designed a sixth-order HWENO scheme by introducing
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damping terms in the first-order moment equations as the oscillation-free DG methods [26,

29]. This approach allows for the use of unified stencils in spatial reconstructions, which

is easier to implement and have higher efficiency. However, the presence of damping terms

in [46] has significant impacts on the stability, particularly when simulating strong shocks

and extreme problems with highly stiff damping terms, which leads to a small time step

restriction and requires the (modified) exponential Runge-Kutta (RK) time discretization

[18].

In this paper, we mainly focus on developing a practical moment-based HWENO scheme

with unified candidate stencils. Based upon previous studies of the HWENO schemes [9, 24,

37, 44, 45, 46], it has been observed that the first-order moments tend to become large near

discontinuities, which potentially impacts the robustness of HWENO schemes. To address

this issue, various approaches have been introduced in the aforementioned HWENO schemes,

such as reducing the utilization of the first-order moments optimally, controlling the first-

order moments near discontinuities before spatial reconstructions, or introducing damping

terms in the first-order moment equations. These schemes share a common characteristic

where all first-order moments are utilized in the spatial reconstructions. The main reason

is that omitting the utilization of the first-order moment on the central cell will lead to

instabilities for HWENO schemes based on our mathematical analysis. More intuitively, we

take the one-dimensional case in the target cell Ii as an example. If we directly use the

values of the zeroth-order moments {ui−1, ui, ui+1} and the first-order moments {vi−1, vi+1}

to discretize the space, the fully-discrete scheme will be unstable by using the forward Euler

or third-order SSP RK time discretization [34], proved in Theorem 2.1. Taking into account

the symmetry of the stencils and the formulation of the Lax-Friedrichs scheme [21]:

un+1
i −

(
un
i−1+un

i+1

2

)
∆t

+
un
i+1 − un

i−1

2∆x
= 0. (1.1)

It is well known that the scheme
un+1
i −un

i

∆t
+

un
i+1−un

i−1

2∆x
= 0 is unstable, but the Lax-Friedrichs

scheme (1.1) is stable as un
i is modified by

un
i−1+un

i+1

2
in the time discretization. Inspired by
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this point, we also introduce a modification for the first-order moment in time discretizations

using the information provided by spatial discretizations, and the proposed scheme is proved

to be stable through analyses in Subsection 2.3 using the Fourier method. Besides, it is worth

noting that this modification step, which utilizes the same information as these for spatial

discretizations, plays a vital role in the adoption of unified stencils throughout the entire pro-

cedures. To overcome spurious oscillations near discontinuities, we use the HWENO method

in the modified HWENO (HWENO-M) scheme [45] to modify the first-order moments and

perform spatial discretizations, where the linear weights can be any positive numbers as long

as their sum is one. Differently, the modification and spatial discretizations are combined

into a single step for they use the same information, resulting in unified candidate stencils

in the HWENO-U scheme, which simplifies the implementation process of [45] and enhances

the computational efficiency. Furthermore, we also improve the nonlinear weights in the

HWENO-M scheme to make them scale-invariant. For the reasonability, the function u and

its non-zero multiple ζu should have the same nonlinear weights on the same cells. Con-

versely, the nonlinear weights in the HWENO-M scheme lose this basic property. Although

this scale-dependent nonlinear weight has no obvious differences on the simulations of bench-

mark tests shown in the various subsquen WENO schemes [49, 50, 51, 52], the results may

generate oscillations in simulating large-scale problems [2, 5], and the similar phenomenon

also occurs in simulating extreme problems based on our numerical experiments. To inherit

the advantages of the nonlinear weights in [45, 49, 50, 51, 52] and make them scale-invariant,

we bring the integral average values of solutions into the original definition, which also can

be viewed as a normalization procedure for the nonlinear weights. This minor modification

has no impacts on the accuracy firstly, and it also can enhance resolutions and is more robust

for simulating challenging problems with sharp scale variations. In short, the HWENO-U

scheme uses unified stencils in the entire procedures, which avoids repetitive algorithms and

enhances computational efficiencies. Furthermore, the HWENO-U scheme has the capabil-

ity to simulate extreme problems by directly incorporating a positive-preserving technique
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from [9, 41], which is simpler and more practical compared to the other HWENO scheme

with unified stencils [46], since the proposed scheme avoids the introduction of additional

parameters and stiff terms. Besides, the designed scale-invariant nonlinear weight is more

reasonable and robust in numerical simulations. These advantages will be demonstrated in

the next algorithm descriptions and numerical tests.

The paper is organized as follows: Section 2 presents the detailed implementation of the

HWENO-U scheme in one- and two-dimensional cases, and provides a stability analysis for

the linear scheme using the Fourier method. In Section 3, extensive benchmarks are con-

ducted to illustrate the numerical accuracy, high resolution, and robustness of the proposed

scheme. Finally, concluding remarks are given in Section 4.

2 Description of HWENO-U scheme

This section contains three subsection. In the first and second subsections, we present

the detailed procedures of the moment-based fifth-order HWENO-U scheme in the one-

and two-dimensional cases, respectively, in which the high order HWENO modification for

the first-order moments and the spatial reconstructions use the same information, such as

candidate stencils, reconstructed polynomials, smoothness indicators, linear and nonlinear

weights. Remarkably, incorporating the modification for the first-order moments in the time

discrete stage is essential to ensure the stability of the HWENO-U scheme, therefore, we give

a stability analysis in the last subsection to illustrate it.

2.1 One-dimensional case

Consider one-dimensional scalar hyperbolic conservation laws{
ut + f(u)x = 0,

u0(x) = u(x, 0).
(2.1)

For simplicity, we consider a uniform partition of a given domain [a, b], a = x 1
2
< x 3

2
< · · · <

xNx+
1
2
= b. Let Ii = [xi− 1

2
, xi+ 1

2
] denote a computational cell with its length ∆x = xi+ 1

2
−xi− 1

2
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and its center xi = 1
2
(xi− 1

2
+ xi+ 1

2
). By multiplying equation (2.1) with a test function

ϕ(x) ∈ span
{

1
∆x

, x−xi

(∆x)2

}
, integrating over interval Ii and using integration by parts, we have

dūi(t)

dt
= − 1

∆x

(
f(u(xi+ 1

2
, t))− f(u(xi+ 1

2
, t))
)
,

dv̄i(t)

dt
= − 1

2∆x

(
f(u(xi− 1

2
, t)) + f(u(xi+ 1

2
, t))
)
+

1

(∆x)2

∫
Ii

f(u)dx,
(2.2)

where ūi(t) =
1
∆x

∫
Ii
u(x, t)dx and v̄i(t) =

1
∆x

∫
Ii
u(x, t)x−xi

∆x
dx are the zeroth-order moment

(cell-average) and first-order moment in the cell Ii, respectively.

Let {x̂G
i }4G=1 denote four Gauss-Lobatto points in a cell Ii with the corresponding weights

{ω̂G}4G=1 on the interval [−1
2
, 1
2
]. The value of the flux function f(u(xi+ 1

2
, t)) is approxi-

mated by a high order Lax-Friedrichs numerical flux f̂i+ 1
2
and the integral term

∫
Ii
f(u)dx

is approximated by a 4-point Legendre Gauss-Lobatto quadrature formula. Consequently, a

conservative semi-discrete scheme is defined as
dūi(t)

dt
= − 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
) ≜ F1

i (ū, v̄),

dv̄i(t)

dt
= − 1

2∆x
(f̂i− 1

2
+ f̂i+ 1

2
) +

1

∆x

4∑
G=1

ω̂Gf(u(x̂
G
i , t)) ≜ F2

i (ū, v̄),
(2.3)

where F1
i (ū, v̄) and F2

i (ū, v̄) are the right-hand terms, and the numerical flux f̂i+ 1
2
is defined

as

f̂i+ 1
2
=

1

2

[
f(u−

i+ 1
2

) + f(u+
i+ 1

2

)− α(u+
i+ 1

2

− u−
i+ 1

2

)
]
, (2.4)

with α = max
u

|f ′(u)|. The superscribes “− ” and “ + ” of u±
i+ 1

2

represent the left-hand and

right-hand limits at the interface xi+ 1
2
, respectively. The Gauss-Lobatto points {x̂G

i }4G=1 are

x̂1
i = xi− 1

2
, x̂2

i = x
i−

√
5

10

, x̂3
i = x

i+
√
5

10

, x̂4
i = xi+ 1

2
,

with xi+ℓ = xi + ℓ∆x, the normalized weights ω̂1 = ω̂4 =
1
12

and ω̂2 = ω̂3 =
5
12
.

The equations (2.3) also are the semi-discrete form of the P1(Ii) DG finite element

method, but for moment-based HWENO schemes, a Hermite reconstruction is used to ap-

proximate the values u±
i∓ 1

2

and u
i±

√
5

10

based on the zeroth- and first-order moments in the
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cells {Ii−1, Ii, Ii+1}. In the following, we will outline the detailed steps of 1D HWENO-U

scheme, based on the set of values {ūi−1, ūi, ūi+1, v̄i−1, v̄i+1}.

Step 1. Reconstruct a quartic polynomial p0(x) and two linear polynomials {pm(x)}2m=1.

Firstly, we consider a large stencil S0 = {Ii−1, Ii, Ii+1} and two small stencils S1 =

{Ii−1, Ii}, S2 = {Ii, Ii+1}. A quartic polynomial p0(x) is reconstructed by a Hermite recon-

struction on S0, satisfying

1

∆x

∫
Ik

p0(x)dx = ūk, k = i−1, i, i+1,
1

∆x

∫
Ik

p0(x)
x− xk

∆x
dx = v̄k, k = i−1, i+1. (2.5)

Two linear polynomials {pm(x)}2m=1 are obtained by a linear reconstruction based on S1 and

S2, respectively, having

1

∆x

∫
Ik

p1(x)dx = ūk, k = i− 1, i;
1

∆x

∫
Ik

p2(x)dx = ūk, k = i, i+ 1. (2.6)

Then we rewrite p0(x) as

p0(x) = γ0

(
1

γ0
p0(x)−

γ1
γ0

p1(x)−
γ2
γ0

p2(x)

)
+ γ1p1(x) + γ2p2(x), γ0 ̸= 0. (2.7)

To ensure the next WENO procedure stable, {γm}2m=0 are positive with
∑2

m=0 γm = 1.

Step 2. Compute smoothness indicators {βm}2m=0 to measure the level of smoothness for

the functions {pm(x)}2m=0 in the cell Ii, which is defined as in the classical WENO scheme

[19], satisfying

βm =
r∑

l=1

∫
Ii

∆x2l−1(
dlpm(x)

dxl
)2dx,m = 0, 1, 2, (2.8)

where r is the degree of the polynomials pm(x). Let pm(x) =
r∑

l=0

cm,l(
x−xi

∆x
)l, the explicit

expressions of the smoothness indicators are β0 =(c0,1 +
1

4
c0,4)

2 +
13

3
(c0,2 +

63

130
c0,4)

2 +
781

20
c20,3 +

1421461

2275
c20,4,

βm =c2m,1,m = 1, 2,

(2.9)

where the coefficients of the polynomials {pm(x)}2m=0 are listed in Appendix A.

Step 3. Compute nonlinear weights based on linear weights and smoothness indica-

tors. As in the WENO scheme of Zhu and Qiu (WENO-ZQ) [50], we also introduce a new

8



parameter τ to measure the absolute difference between β0, β1 and β2 as

τ =

(
|β0 − β1|+ |β0 − β2|

2

)2

. (2.10)

Differently, we add the integral average values of solutions into the original definition of the

nonlinear weights, that is uave, having

ωm =
ω̃m

ω̃0 + ω̃1 + ω̃2

, with ω̃m = γm(1 +
τ

βmuave + ε
), m = 0, 1, 2, (2.11)

where uave = ( |ui−1|+|ui|+|ui+1|
3

)2, and ε is set as 10−10 for avoiding zero denominator. It is

worth mentioning that the nonlinear weights (2.11) are scale-invariant, since the function u

and its non-zero multiple ζu have the same ω̃m on the same cells.

Remark 2.1 The original ω̃m is defined as γm(1 + τ
βm+ε

) for the WENO and HWENO

schemes with artificial linear weights [45, 50], which is also a special case of the formula

(2.11) when uave = 1. However, the original nonlinear weight in [45, 50] depends on the

scale of functions as its ω̃m is γm(1 + ζ2τ
βm+ε

) for the function ζu, and this scale-dependent

nonlinear weight has obvious impacts on the simulations of problems with different scales,

as demonstrated in Examples 3.5 and 3.12. Multiplying by uave in (2.11) is actually a

normalization procedure for the nonlinear weights, and it will not destroy the properties

of original one, such as the accuracy and resolution, as uave is of order O(1). Besides, the

formula (2.11) is still suitable when uave = 0, that is ūi−1 = ūi = ūi+1 = 0, where the

solution is smooth in the target cell and the nonlinear weights will degenerate to linear

weights simultaneously.

Finally, through replacing a part of linear weights in (2.7) by the nonlinear weights (2.11),

we obtain a nonlinear HWENO reconstructed polynomial ui(x) for u(x). Additionally, a high

order modification v̂i for the first-order moment v̄i is obtained using the same pm(x), γm,

and ωm simultaneously, which is only used in the next time discretization, havingui(x) = ω0

(
1
γ0
p0(x)− γ1

γ0
p1(x)− γ2

γ0
p2(x)

)
+ ω1p1(x) + ω2p2(x),

v̂i =
1
∆x

∫
Ii
ui(x)

x−xi

∆x
dx = ω0

(
1
γ0
q0 − γ1

γ0
q1 − γ2

γ0
q2

)
+ ω1q1 + ω2q2,

(2.12)
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where qm = 1
∆x

∫
Ii
pm(x)

x−xi

∆x
dx. Then, the required Gauss-Lobatto point values are evalu-

ated by

u+
i− 1

2

= ui(xi− 1
2
), u

i±
√
5

10

= ui(xi±
√
5

10

), u−
i+ 1

2

= ui(xi+ 1
2
).

Step 4. Time discretizations for the semi-discrete scheme (2.3).

To construct a stable scheme, we modify the first-order moments in time discretizations

as the Lax-Friedrichs scheme [21] on the basis of the third-order SSP RK method [34], then,

the fully-discrete one-dimensional HWENO-U scheme for Eq. (2.3) is written as

[
ū
(1)
i

v̄
(1)
i

]
=

[
ūn
i

v̂ni

]
+∆t

[
F1

i (ū
n, v̄n)

F2
i (ū

n, v̄n)

]
,[

ū
(2)
i

v̄
(2)
i

]
=

3

4

[
ūn
i

v̂ni

]
+

1

4
(

[
ū
(1)
i

v̂
(1)
i

]
+∆t

[
F1

i (ū
(1), v̄(1))

F2
i (ū

(1), v̄(1))

]
),

[
ūn+1
i

v̄n+1
i

]
=

1

3

[
ūn
i

v̂ni

]
+

2

3
(

[
ū
(2)
i

v̂
(2)
i

]
+∆t

[
F1

i (ū
(2), v̄(2))

F2
i (ū

(2), v̄(2))

]
),

(2.13)

where v̂ni , v̂
(1)
i and v̂

(2)
i represent the high order modification of v̄ni , v̄

(1)
i and v̄

(2)
i , respectively,

obtained by the formula (2.12). This modified time discretization has also been used in

the finite difference HWENO schemes [10, 43], but these two schemes are unable to utilize

unified stencils in both the spatial discretizations and the modification of vi.

2.2 Two-dimensional case

Consider two-dimensional scalar hyperbolic conservation laws{
ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).
(2.14)

For simplicity, we also consider a uniform partition of a given domain [a, b] × [c, d] with

computational cells Ii,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] for i = 1, . . . , Nx, j = 1, . . . , Ny. The

mesh sizes are ∆x = xi+ 1
2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
, and (xi, yj) is the center of

the cell Ii,j with xi = 1
2
(xi− 1

2
+ xi+ 1

2
) and yj = 1

2
(yj− 1

2
+ yj+ 1

2
). Define Ii = [xi− 1

2
, xi+ 1

2
]

and Ij = [yj− 1
2
, yj+ 1

2
]. After multiplying the equation (2.14) by a test function ϕ(x, y) ∈

span{ 1
∆x∆y

, x−xi

(∆x)2∆y
,

y−yj
∆x(∆y)2

}, integrating over the cell Ii,j, and using the integration by parts,

10



we have

dūi,j(t)

dt
= − 1

∆x∆y

∫
Ij

[
f
(
u(xi+ 1

2
, y, t)

)
− f

(
u(xi− 1

2
, y, t)

)]
dy

− 1

∆x∆y

∫
Ii

[
g
(
u(x, yj+ 1

2
, t)
)
− g

(
u(x, yj− 1

2
, t)
)]

dx,

dv̄i,j(t)

dt
= − 1

2∆x∆y

∫
Ij

[
f
(
u(xi− 1

2
, y, t)

)
+ f

(
u(xi+ 1

2
, y, t)

)]
dy +

1

(∆x)2∆y

∫
Ii,j

f(u)dxdy

− 1

∆x∆y

∫
Ii

[
g
(
u(x, yj+ 1

2
, t)
)
− g

(
u(x, yj− 1

2
, t)
)] (x− xi)

∆x
dx,

dw̄i,j(t)

dt
= − 1

∆x∆y

∫
Ij

[
f
(
u(xi+ 1

2
, y, t)

)
− f

(
u(xi− 1

2
, y, t)

)] (y − yj)

∆y
dy

− 1

2∆x∆y

∫
Ii

[
g
(
u(x, yj− 1

2
, t)
)
+ g

(
u(x, yj+ 1

2
, t)
)]

dx+
1

∆x(∆y)2

∫
Ii,j

g(u)dxdy,

(2.15)

where ūi,j(t) = 1
∆x∆y

∫
Ii,j

u(x, y, t)dxdy, v̄i,j(t) = 1
∆x∆y

∫
Ii,j

u(x, y, t)x−xi

∆x
dxdy and w̄i,j(t) =

1
∆x∆y

∫
Ii,j

u(x, y, t)
y−yj
∆y

dxdy are the zeroth-order moment (cell-average), the first-order mo-

ment in the x-direction and the first-order moment in the y-direction, respectively.

Let {x̂G
i }3G=1 and {ŷGj }3G=1 denote three Gauss points in the intervals Ii and Ij, respec-

tively, and {ω̂G}3G=1 are the weights of Gauss quadrature formula on a interval [−1
2
, 1
2
], i.e.

x̂1
i = x

i−
√

15
10

, x̂2
i = xi, x̂3

i = x
i+

√
15

10

, ŷ1j = y
j−

√
15

10

, ŷ2j = yj, ŷ3j = y
j+

√
15

10

,

with the normalized weights ω̂1,3 = 5
18

and ω̂2 = 4
9
. We use the Gauss quadrature formula

to approximate the integral terms over Ii, Ij and Ii,j, and apply high order Lax-Friedrichs

numerical fluxes to reconstruct the values of flux functions f(u(xi+ 1
2
, y, t)) and g(u(x, yj+ 1

2
, t))

11



at specified points, then a conservative semi-discrete scheme is defined as

dūi,j(t)

dt
=− 1

∆x

3∑
G=1

ω̂G(f̂i+ 1
2
,G − f̂i− 1

2
,G)−

1

∆y

3∑
G=1

ω̂G(ĝG,j+ 1
2
− ĝG,j− 1

2
) ≜ F1

i,j(ū, v̄, w̄),

dv̄i,j(t)

dt
=− 1

2∆x

3∑
G=1

ω̂G(f̂i− 1
2
,G + f̂i+ 1

2
,G) +

1

∆x

3∑
G=1

3∑
H=1

ω̂Gω̂Hf(u(x̂
G
i , ŷ

H
j ))

− 1

∆y

3∑
G=1

ω̂G
x̂G
i − xi

∆x
(ĝG,j+ 1

2
− ĝG,j− 1

2
) ≜ F2

i,j(ū, v̄, w̄),

dw̄i,j(t)

dt
=− 1

∆x

3∑
G=1

ω̂G

ŷGj − yj

∆y
(f̂i+ 1

2
,G − f̂i− 1

2
,G)−

1

2∆y

3∑
G=1

ω̂G(ĝG,j− 1
2
+ ĝG,j+ 1

2
)

+
1

∆y

3∑
G=1

3∑
H=1

ω̂Gω̂Hg(u(x̂
G
i , ŷ

H
j )) ≜ F3

i,j(ū, v̄, w̄),

(2.16)

where F1
i,j(ū, v̄, w̄), F2

i,j(ū, v̄, w̄) and F3
i,j(ū, v̄, w̄) are the right-hand terms. The numeri-

cal fluxes f̂i+ 1
2
,G and ĝG,j+ 1

2
are used to approximate the values of f(u(xi+ 1

2
, y, t)) and

g(u(x, yj+ 1
2
, t)) at the points {x̂G

i }3G=1 and {ŷGj }3G=1, respectively, defined as

f̂i+ 1
2
,G =

1

2

[
f(u−

i+ 1
2
,G
) + f(u+

i+ 1
2
,G
)− α1(u

+
i+ 1

2
,G

− u−
i+ 1

2
,G
)
]
,

ĝG,j+ 1
2
=

1

2

[
g(u−

G,j+ 1
2

) + g(u+
G,j+ 1

2

)− α2(u
+
G,j+ 1

2

− u−
G,j+ 1

2

]
,

with α1 = max
u

|f ′(u)| and α2 = max
u

|g′(u)|. {u±
i+ 1

2
,G
}3G=1 and {u±

G,j+ 1
2

}3G=1 are the values of

u(x, y, t) at the points {(xi+ 1
2
, ŷGj )} and {(x̂G

i , yj+ 1
2
)}3G=1, respectively. The superscribes “−”

and “ + ” of {u±
i+ 1

2
,G
}3G=1 represent the limits from the left and right sides at the interface

xi+ 1
2
, respectively. Similarly, the superscribes “ − ” and “ + ” of {u±

G,j+ 1
2

}3G=1 indicate the

limits from the bottom and top sides at the interface yj+ 1
2
, respectively.

The equations (2.16) also can be expressed as the semi-discrete form of the P1(Ii,j) DG

finite element method. However, for moment-based HWENO schemes, a Hermite recon-

struction is used to approximate {u±
i∓ 1

2
,G
}3G=1, {u±

G,j∓ 1
2

}3G=1 and {u(x̂G
i , ŷ

H
j )}3G,H=1 based on

the zeroth- and first-order moments in the cells {Ii−1,j−1, Ii,j−1, Ii+1,j−1, Ii−1,j, Ii,j, Ii+1,j,

Ii−1,j+1, Ii,j+1, Ii+1,j+1}. To simplify the representation, we rebel the cell Ii,j and its adjacent

cells as I1, ..., I9, e.g., Ii,j ≜ I5. Let {ūk, v̄k, w̄k} denote the zeroth- and first-order moments

12



of the cell Ik, e.g., {ūi,j ≜ ū5, v̄i,j ≜ v̄5, w̄i,j ≜ w̄5}.

Similar to the one-dimensional case for utilizing unified stencils to construct a stable

scheme, the first-order moments v̄5 and w̄5 in the central mesh are no longer used in spatial

reconstructions. Instead, their high order modified terms v̂5 and ŵ5 are also obtained by

using the same information from the spatial reconstructions and incorporated only into time

discretizations. Next, we will provide the detailed reconstructed procedures for u(x, y) at spe-

cific points, and the modified terms v̂5 and ŵ5, based on the values {ū1, . . . , ū9, v̄k, w̄k}k=2,4,6,8.

Step 1. Reconstruct a quartic polynomial p0(x, y) and four linear polynomials {pm(x, y)}4m=1.

Firstly, we consider a big stencil S0 and four small stencils {Sm}4m=1 shown in Fig.

2.1. Here, we use the values {ū1, . . . , ū9, v̄k, w̄k}k=2,4,6,8, {ūk}k=2,4,5, {ūk}k=2,5,6, {ūk}k=4,5,8,

and {ūk}k=5,6,8 in the stencils {Sm}4m=0, respectively, then, a quartic polynomial p0(x, y) ∈

P
4(Ii,j) is obtained by a Hermite reconstruction based on S0, satisfying

1

∆x∆y

∫
Ik

p0(x, y)dxdy = ūk, k = 1, ..., 9,

1

∆x∆y

∫
Ik

p0(x, y)
x− xk

∆x
dxdy = v̄k, k = 2, 4, 6, 8,

1

∆x∆y

∫
Ik

p0(x, y)
y − yk
∆y

dxdy = w̄k, k = 2, 4, 6, 8,

(2.17)

and four linear polynomials {pm(x, y)}4m=1 ∈ P1(Ii,j) are obtained by a linear reconstruction,

satisfying

1

∆x∆y

∫
Ik

pm(x, y)dxdy = ūk,

for
m = 1, k = 2, 4, 5; m = 2, k = 2, 5, 6;

m = 3, k = 4, 5, 8; m = 4, k = 5, 6, 8.

The quartic polynomial p0(x, y) can be uniquely determined by requiring it to exactly match

{ū1, . . . , ū9, v̄4, v̄6, w̄2, w̄8} with the least square methodology in [17, 45], while the four poly-

nomials {pm(x, y)}4m=1 can be directly obtained by solving 3× 3 linear systems.

Still, p0(x, y) can be written as

p0(x, y) = γ0

(
1

γ0
p0(x, y)−

4∑
m=1

γm
γ0

pm(x, y)

)
+

4∑
m=1

γnpm(x, y), γ0 ̸= 0, (2.18)
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where {γm}4m=0 also are arbitrary positive linear weights with
∑4

m=0 γm=1.

Step 2. Compute the smoothness indicators of {pm(x, y)}4m=0 by the definition as in

[17, 45], given by

βm =
r∑

|l|=1

|Ii,j||l|−1

∫
Ii,j

(
∂|l|

∂xl1∂yl2
pm(x, y)

)2

dxdy, m = 0, ..., 4, (2.19)

where l = (l1, l2), |l| = l1 + l2 and r is the degree of pm(x, y). Similar to the one-dimensional

case, let pm(x, y) =
r∑

n=0

cm,nϕn(x, y), where the basis functions ϕn(x, y) are defined as

ϕ0 = 1, ϕ1 = ξi, ϕ2 = ηj, ϕ3 = ξ2i , ϕ4 = ξiηi, ϕ5 = η2j , ϕ6 = ξ3i , ϕ7 = ξ2i ηj,

ϕ8 = ξiη
2
j , ϕ9 = η3j , ϕ10 = ξ4i , ϕ11 = ξ3i ηj, ϕ12 = ξ2i η

2
j , ϕ13 = ξiη

3
j , ϕ14 = η4j , ϕ15 = ξ5i , · · · ,

with ξi =
x−xi

∆x
and ηj =

y−yj
∆y

. Then the explicit expression of the smoothness indicators are

β0 =
1

2
(c0,1 +

1

2
c0,6)

2 +
1

2
(c0,1 +

1

6
c0,8)

2 +
1

2
(c0,2 +

1

6
c0,7)

2 +
1

2
(c0,2 +

1

2
c0,9)

2 +
13

6
(c0,3 +

63

65
c0,10)

2

+
13

6
(c0,3 +

1

6
c0,12)

2 +
7

12
(c0,4 +

17

35
c0,11)

2 +
7

12
(c0,4 +

17

35
c0,13)

2 +
13

6
(c0,5 +

1

6
c0,12)

2

+
13

6
(c0,5 +

63

65
c0,14)

2 +
3119

80
(c0,6 +

5

9357
c0,8)

2 +
3379

720
(c0,7 +

15

3379
c0,9)

2 +
2634769

561420
c20,8

+
2634769

67580
c20,9 +

5676583

9100
(c0,10 +

3185

11353166
c0,12)

2 +
709573

16800
(c0,11 +

1155

709573
c0,13)

2

+
230094013357

12261419280
(c0,12 +

2145748374

230094013357
c0,14)

2 +
31468281769

745051650
c20,13 +

25118160529227568

40266452337475
c20,14,

βm = c2m,1 + c2m,2,m = 1, 2, 3, 4,
(2.20)

where the coefficients of the polynomials {pm(x)}4m=0 are listed in Appendix A.

Step 3. Compute nonlinear weights based on linear weights and smoothness indica-

tors. Similar to the one-dimensional case, we also use a parameter τ to measure the overall

difference between {βm}4m=0,

τ =

(
|β0 − β1|+ |β0 − β2|+ |β0 − β3|+ |β0 − β4|

4

)2

, (2.21)

then we compute the nonlinear weights by

ωm =
ω̃m

ω̃0 + . . .+ ω̃4

, with ω̃m = γm(1 +
τ

βmuave + ε
), m = 0, . . . , 4, (2.22)
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Fig. 2.1. The big stencil S0, small stencils {Sm}4m=1 and their respective labels.
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where uave = ( |u2|+|u4|+|u5|+|u6|+|u8|
5

)2, and ε = 10−10 is to avoid zero denominator. The

nonlinear weights also preserve the scale-invariant property for adding uave, while the original

formulation employed in the WENO and HWENO schemes with artificial linear weights [45,

50] (the special case of uave = 1 in Eq. (2.22)) lacks this fundamental property. Consequently,

the original definition for the nonlinear weights in [45, 50] leads to noticeable oscillations when

simulating the Sedov blast wave problem, as exhibited in Example 3.12.

Finally, by replacing a part of the linear weights in (2.18) by the nonlinear weighs (2.22),

a nonlinear HWENO reconstructed polynomial ui,j(x, y) is obtained for u(x, y). Also, using

the same polynomials, linear and nonlinear weights, the high order modification v̂i,j for the

first-order moment v̄i,j and the high order modification ŵi,j for the first-order moment w̄i,j

are obtained simultaneously, but the modified values are only used in the following time

discretizations, having

ui,j(x, y) = ω0

(
1
γ0
p0(x, y)−

4∑
m=1

γm
γ0
pm(x, y)

)
+

4∑
m=1

ωnpm(x, y),

v̂i,j =
1

∆x∆y

∫
Ii,j

ui,j(x, y)
x−xi

∆x
dxdy = ω0

(
1
γ0
qv0 −

4∑
m=1

γm
γ0
qvm

)
+

4∑
m=1

ωmq
v
m,

ŵi,j =
1

∆x∆y

∫
Ii,j

ui,j(x, y)
y−yj
∆y

dxdyω0

(
1
γ0
qw0 −

4∑
m=1

γm
γ0
qwm

)
+

4∑
m=1

ωmq
w
m,

(2.23)

where qvm = 1
∆x∆y

∫
Ii,j

pm(x, y)
x−xi

∆x
dxdy and qwm = 1

∆x∆y

∫
Ii,j

pm(x, y)
y−yj
∆y

dxdy. Then, the

values at specific points that we need are computed as below:

u∓
i± 1

2
,G

= ui,j(xi± 1
2
, ŷGj ), u∓

G,j± 1
2

= ui,j(x̂
G
i , yi± 1

2
), u(x̂G

i , ŷ
H
j ) = ui,j(x̂

G
i , ŷ

H
j ), G,H = 1, 2, 3.

Step 4. Time discretizations for the semi-discrete scheme (2.16).

As in the one-dimensional case, the modified third-order SSP RK method (2.13) is also

used to solve the two-dimensional semi-discrete scheme (2.16). Differently, the involved

variables are (ui,j, vi,j, wi,j). Also, the modified terms v̂i,j and ŵi,j are treated solely as time

stage values, and they are obtained by the formula (2.23).

Remark 2.2 For one- and two-dimensional compressible Euler equations, the HWENO

procedures are used in cooperation with the local characteristic decomposition to avoid
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spurious oscillations, which is similar to the classical WENO scheme [19]. Besides, the

computation of uave in (2.11) and (2.22) is also implemented in the local characteristic

direction for uave relies on the reconstructed variable.

2.3 Stability analysis

In this subsection, we present the stability analysis for the proposed HWENO-U scheme

by the Fourier analysis method. This potent technique for stability analysis depends heavily

on the assumption of uniform meshes and periodic boundary conditions. Additionally, it is

only effective for the linear scheme used to solve a scalar linear equation.

For simplicity of analysis, we consider the one-dimensional linear equation

ut + aux = 0, x ∈ [0, 2π], t > 0, (2.24)

with constant coefficient a. Assume a = 1, then the semi-discrete finite volume HWENO

scheme (2.3) reads 
dūi(t)

dt
= − 1

∆x
(u−

i+ 1
2

− u−
i− 1

2

),

dv̄i(t)

dt
= − 1

2∆x
(u−

i− 1
2

+ u−
i+ 1

2

) +
1

∆x
ūi.

(2.25)

Here, we first use the moments {ūi−1, ūi, ūi+1, v̄i−1, v̄i+1} to reconstruct u−
i+ 1

2

linearly, e.g.,

u−
i+ 1

2

= 269
456

ūi−1 +
7
12
ūi − 79

456
ūi+1 +

177
76
v̄i−1 +

63
76
v̄i+1. Substituting u−

i+ 1
2

into equations (2.25)

gives

dui(t)

dt
=

1

∆x
(Aui−2 +Bui−1 +Cui +Dui+1), (2.26)

where ui(t) = (ūi(t), v̄i(t))
T, A, B, C and D are 2× 2 constant matrices given by

A =

[
− 79

456
−63

76

79
912

63
152

]
,B =

[
115
152

63
76

−187
912

63
152

]
,C =

[
1

152
−177

76

377
912

177
152

]
,D =

[
−269

456
177
76

−269
912

177
152

]
.

For the stability of scheme (2.25), we have the following conclusions.

Theorem 2.1 Combining the semi-discrete HWENO scheme (2.25) with either the stand

forward Euler or third-order SSP RK time discretization [34], the resulting schemes are both

unstable.
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(a) The polar plot of λ1,2(G̃) in (2.31), K ∈ [0, 2π]
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(b) The polar plot of spectral radius ρ(Ĝ3) in (2.34)
with different Courant-Friedrichs-Lewy (CFL) num-
ber for the HWENO-U scheme.

Fig. 2.2. The polar plot of the eigenvalues and amplification matrix.

Proof. The semi-discrete HWENO scheme (2.25) with the forward Euler time method is

un+1
i = un

i +
∆t

∆x
(Aun

i−2 +Bun
i−1 +Cun

i +Dun
i+1), (2.27)

To apply the von-Neumann analysis, we have an assumption on the solution

un
i = ûneσik∆x, (2.28)

where σ is the imaginary unit satisfying σ2 = −1, and k is the wave number. We expect

that

un+1
i = ûn+1eσik∆x, (2.29)

where ûn+1 = G1û
n and G1 is the amplification matrix. Substituting (2.28) and (2.29) into

(2.26) gives

G1 = I+
∆t

∆x
G̃, (2.30)

where G̃ = Ae−2σK +Be−σK +C +DeσK , K = k∆x ∈ [0, 2π] is a simplified wave number.

The two eigenvalues of G̃ are

λ1,2 =
1

456
(267 + 131eσiK + 267e−σiK + (55±

√
θ)e−2σiK), (2.31)
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where θ = 17161e6σiK+554226e5σiK−343029e4σiK+329356e3σiK−71709e2σiK+29370eσiK+

3025 ̸= 0, ∀K ∈ [0, 2π]. According to the von-Neumann stability analysis of Section 2.2

in [36], the necessary condition of stability for the scheme (2.27) is the spectral radius

ρ(G1) ≤ 1, which is equivalent to max
i=1,2

|λi(G1)| ≤ 1, ∀K ∈ [0, 2π]. However, we can see that

λ1,2 in (2.31) violate this condition from the left of Fig. 2.2. Therefore, the scheme (2.27)

is unstable. Similarly, when combining the third-order SSP RK method, the amplification

matrix of the resulting HWENO scheme is

G3 =
1

3
I+

1

2
(I+

∆t

∆x
G̃)I+

1

6
(I+

∆t

∆x
G̃)3. (2.32)

Obviously, the spectral radius ρ(G3) > 1 in this case for the third-order RK method that

is a convex combination of forward Euler methods, indicating that the resulting scheme is

unstable. □

Notice that the first-order moment v̄i is not used to approximate u−
i+ 1

2

in the spatial dis-

cretizations of the scheme (2.25), which makes the two fully-discrete schemes above unstable.

However, we find that by combining the high order modification of the first-order moments in

the time discretizations, the new fully-discrete HWENO scheme becomes stable even though

the same saptial discretizations are employed. The provable process is presented below.

Theorem 2.2 When using the modified third-order SSP RK time time discretization (2.13)

to solve the scheme (2.25), the necessary condition of stability for the resulting HWENO

scheme is 0 < ∆t
∆x

≲ 0.824.

Proof. Firstly, by employing the high order modification of the first-order moment,

we utilize the modified forward Euler time-marching method to resolve the scheme (2.25),

namely,

un+1
i =

[
ūn
i

v̂ni

]
+

∆t

∆x
(Aun

i−2 +Bun
i−1 +Cun

i +Dun
i+1), (2.33)

where v̂ni = 5
76
(ūn

i+1 − ūn
i−1)− 11

38
(v̄ni+1 + v̄ni−1). Through applying the von-Neumann analysis,
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we obtain the amplification matrix Ĝ1 = Â+ ∆t
∆x

G̃ with

Â =

[
1 0

5
76
(eσiK − e−σiK) −11

38
(eσiK + e−σiK)

]
.

Similarly, when using the third-order SSP RK time discretization (2.13), the amplification

matrix becomes

Ĝ3 =
1

3
Â+

1

2
(Â+

∆t

∆x
G̃)Â+

1

6
(Â+

∆t

∆x
G̃)3, (2.34)

The polar plot of spectral radius ρ(Ĝ3) is presented in the right of Fig. 2.2 for the HWENO-

U scheme with different CFL numbers. Therefore, the necessary condition of stability for

the resulting HWENO scheme is ρ(Ĝ3) ≤ 1, which is equivalent to 0 < ∆t
∆x

≲ 0.824. This

value can be numerically determined by sampling 10000 points for K ∈ [0, 2π]. □

3 Numerical tests

In this section, we present the numerical results of the benchmark and extreme examples

to verify the fifth-order accuracy, efficiency, high resolution, and robustness of the pro-

posed HWENO-U scheme. For comparisons, we mainly consider the proposed HWENO-U,

HWENO-M [45], andWENO-ZQ [50, 52] schemes since the three schemes have the fifth-order

accuracy and use arbitrary positive linear weights in spatial reconstructions. Particularly,

the results of the WENO-ZQ scheme are computed by the methods of the structured fi-

nite volume version [50] and the unstructured finite volume version [52] in the one- and

two-dimensional cases, respectively. For the HWENO-U scheme, the linear weights of the

low-degree polynomials are set as 1/400 both in one- and two-dimensional cases, and the

remaining linear weight is assigned to the high-degree polynomial, ensuring that their sum

equals one. For fair comparisons, the linear weights of the HWENO-M and WENO-ZQ

schemes are chosen as they suggested from [45, 50, 52]. Besides, a positivity-preserving (PP)

limiter will be used to improve the robustness of the HWENO-U and HWENO-M schemes in

some two-dimensional extreme problems. If not, the two schemes cannot work since negative

densities or pressures will arise, and we refer to [3, 9] for the PP researches of finite volume
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HWENO schemes. The CFL number is set as 0.6. To compare the computational cost, we

utilize the programming language Fortran 95 to execute our simulations on the environment

of Inter(R) Xeon (R) Gold 6130 CPU @ 2.10 GHz.

3.1 Accuracy tests

In this subsection, we first verifies the fifth-order accuracy of the HWENO-U scheme.

Then, the comparisons of computational costs and errors for the HWENO-U, HWENO-M

and WENO-ZQ schemes are presented to demonstrate that the HWENO-U scheme behaves

better performances than the other two schemes. To avoid the machine error of too little

computational time, we take the average time of multi-calculations as the final CPU time

in Examples 3.1-3.3. To have a fair comparison, the WENO-ZQ scheme uses a true two-

dimensional reconstruction as in [52] instead of the dimensional-by-dimensional approach

[50] in the two-dimensional case, as the HWENO-U scheme uses a true two-dimensional

reconstruction too. Differently, the WENO-ZQ scheme uses a wider stencil to reconstruct a

bivariate quartic polynomial.

Example 3.1 We solve the one-dimensional nonlinear Burgers’ equation

ut + (
u2

2
)x = 0, 0 < x < 2,

with periodic boundary conditions up to the time T = 0.5/π when the solution is still

smooth. The initial condition is u(x, 0) = 0.5 + sin(πx). The numerical errors and CPU

time of the HWENO-U, HWENO-M, and WENO-ZQ schemes are presented in Table 3.1,

which shows the schemes all achieve the fifth-order accuracy. More explicitly, with denser

meshes (e.g., ≥ 200), the CPU time ratio of HWENO-U/WENO-ZQ is about 1.739, whereas

the L∞ error ratio is around 1/12.510, and the CPU time ratio of HWENO-M/WENO-ZQ

is around 2.528, but the L∞ error ratio is almost 1/11.529. Since the product of the CPU

time ratio and error ratio is less than 1, it shows that the HWENO schemes are more precise

than the WENO-ZQ scheme at the same CPU cost. More intuitively, we can see it from
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Table 3.1: Example 3.1. One-dimensional Burgers’ equation:
L∞ and L1 errors, orders and CPU time of the HWENO-U,
HWENO-M, and WENO-ZQ schemes.

Meshes L∞ error Order L1 error Order CPU

HWENO-U
40 2.61E-04 − 3.74E-05 − 6.53E-04
80 2.16E-06 6.96 2.44E-07 7.26 4.51E-03
120 2.99E-07 4.87 2.51E-08 5.61 1.58E-02
160 7.13E-08 4.99 5.43E-09 5.32 4.00E-02
200 2.32E-08 5.03 1.76E-09 5.05 8.40E-02
240 9.28E-09 5.03 7.01E-10 5.06 1.56E-01

HWENO-M
40 6.17E-05 − 6.49E-06 − 9.23E-04
80 2.31E-06 4.74 1.77E-07 5.20 6.50E-03
120 3.23E-07 4.86 2.42E-08 4.90 2.29E-02
160 7.70E-08 4.98 5.70E-09 5.03 5.83E-02
200 2.51E-08 5.02 1.88E-09 4.97 1.22E-01
240 1.01E-08 5.02 7.57E-10 5.00 2.27E-01

WENO-ZQ
40 4.79E-04 − 4.67E-05 − 3.98E-04
80 2.45E-05 4.29 1.96E-06 4.57 2.64E-03
120 3.56E-06 4.75 2.76E-07 4.84 9.15E-03
160 8.71E-07 4.90 6.65E-08 4.95 2.30E-02
200 2.88E-07 4.96 2.22E-08 4.93 4.83E-02
240 1.17E-07 4.93 8.95E-09 4.98 8.97E-02

Fig. 3.1 that the HWENO-U scheme is more efficient than the HWENO-M and WENO-ZQ

schemes. Besides, we also present the numerical errors and orders of the first-order moments

for the HWENO-U scheme in Table 3.2, which demonstrates that modifying the first-order

moments in the time level does not destroy their final accuracy.

Table 3.2: Example 3.1. L∞ and L1 errors,
and orders of the HWENO-U scheme for the
first-order moment.

Meshes L∞ error Order L1 error Order

40 3.50E-05 − 2.04E-06 −
80 9.33E-07 5.23 5.76E-08 5.15
120 1.18E-07 5.11 7.37E-09 5.07
160 2.72E-08 5.10 1.69E-09 5.12
200 8.22E-09 5.36 5.27E-10 5.21
240 3.37E-09 4.89 2.13E-10 4.96
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Fig. 3.1. Comparison of L∞, L1 errors and CPU time for Example 3.1.

Example 3.2 We solve one-dimensional compressible Euler equations

∂

∂t

 ρ
ρµ
E

+
∂

∂x

 ρµ
ρµ2 + p
µ(E + p)

 = 0,

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure. The

initial condition is (ρ, µ, p, γ) = (1 + 0.2 sin(πx), 1, 1, 1.4) on the domain [0, 2] with periodic

boundary conditions. The final time is T = 2, and the exact solutions are (ρ, µ, p) =

(1+0.2 sin(π(x−T )), 1, 1). The numerical errors and CPU time of the HWENO-U, HWENO-

M, and WENO-ZQ schemes are presented in Table 3.3, illustrating the schemes all achieve

the fifth-order accuracy. More explicitly, on the denser meshes (e.g., ≥ 200), the CPU

time ratio of HWENO-U/WENO-ZQ is about 1.695, whereas the L∞ error ratio is around

1/10.905, and the CPU time ratio of HWENO-M/WENO-ZQ is around 2.488, but the L∞

error ratio is almost 1/11.897. These data demonstrates that at the same CPU cost, the

HWENO-U scheme is more accurate than the HWENO-M and WENO-ZQ schemes, which

also can be more intuitively observed from Fig. 3.2.

Example 3.3 We consider two-dimensional nonlinear Burgers’ equation

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 < x < 4, 0 < y < 4,
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Table 3.3: Example 3.2. One-dimensional Euler equations:
L∞ and L1 errors, orders and CPU time of the HWENO-U,
HWENO-M, and WENO-ZQ schemes.

Meshes L∞ error Order L1 error Order CPU

HWENO-U
40 4.48E-06 − 7.98E-07 − 5.39E-02
80 3.78E-08 6.89 8.08E-09 6.63 3.89E-01
120 2.92E-09 6.31 1.04E-09 5.05 1.36E+00
160 5.41E-10 5.86 2.46E-10 5.01 3.44E+00
200 1.57E-10 5.56 8.07E-11 5.01 7.22E+00
240 5.87E-11 5.38 3.24E-11 5.00 1.34E+01

HWENO-M
40 4.45E-07 − 2.54E-07 − 7.74E-02
80 1.26E-08 5.14 7.89E-09 5.01 5.58E-01
120 1.64E-09 5.04 1.04E-09 5.01 1.98E+00
160 3.87E-10 5.02 2.46E-10 5.00 5.04E+00
200 1.26E-10 5.01 8.05E-11 5.00 1.06E+01
240 5.08E-11 5.00 3.23E-11 5.00 1.96E+01

WENO-ZQ
40 4.71E-06 − 2.97E-06 − 3.28E-02
80 1.47E-07 5.00 9.34E-08 4.99 2.29E-01
120 1.93E-08 5.00 1.23E-08 5.00 8.02E-01
160 4.59E-09 5.00 2.92E-09 5.00 2.03E+00
200 1.50E-09 5.00 9.57E-10 5.00 4.26E+00
240 6.04E-10 5.00 3.85E-10 5.00 7.88E+00

Fig. 3.2. Comparison of L∞, L1 errors and CPU time for Example 3.2.
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with the initial condition u(x, y, 0) = 0.5+sin(π(x+y)/2) and periodic boundary conditions

in x and y directions. Up to the final time T = 0.5/π, the solution is still smooth. The

L∞ and L1 norms of numerical errors and CPU time of the HWENO-U, HWENO-M and

WENO-ZQ schemes are shown in Table 3.4, illustrating that the three schemes achieve the

fifth-order accuracy. More explicitly, with denser meshes (e.g., ≥ 200), the CPU time ratio

of HWENO-U/WENO-ZQ is about 1.242, whereas the L∞ error ratio is around 1/64.085,

and the CPU time ratio of HWENO-M/WENO-ZQ is around 1.534, but the L∞ error ratio

is almost 1/74.196. This data shows that the HWENO-U scheme is more precise than the

HWENO-M and WENO-ZQ schemes at the same CPU cost, which can be intuitively seen

from Fig. 3.3. With the mesh gets denser, we can intuitively observe that the HWENO-U and

HWENO-M schemes have similar numerical errors, but the HWENO-U scheme has slightly

less computational time. Besides, the numerical errors and orders of the first-order moments

in the x and y directions for the HWENO-U scheme are presented in Table 3.5, in which

the first-order moments also have the fifth-order accuracy as that in the one-dimensional

case. Note that the errors and orders of the first-order moments in the x and y directions

are identical because of the symmetry solution.

Fig. 3.3. Comparison of L∞, L1 errors and CPU time for Example 3.3.
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Table 3.4: Example 3.3. Two-dimensional Burgers’
equation: L∞ and L1 errors, orders and CPU time of
the HWENO-U, HWENO-M and WENO-ZQ schemes.

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40× 40 1.83E-03 − 1.53E-04 − 2.81E-01

80× 80 2.61E-05 6.13 2.47E-06 5.96 3.75E+00

120× 120 1.43E-06 7.17 7.60E-08 8.59 1.89E+01

160× 160 1.21E-07 8.57 9.68E-09 7.16 6.23E+01

200× 200 3.12E-08 6.09 2.34E-09 6.35 1.63E+02

240× 240 9.52E-09 6.50 8.67E-10 5.46 3.69E+02

HWENO-M

40× 40 5.67E-05 − 5.80E-06 − 3.43E-01

80× 80 2.27E-06 4.64 1.76E-07 5.04 4.61E+00

120× 120 3.04E-07 4.96 2.26E-08 5.06 2.33E+01

160× 160 7.18E-08 5.02 5.46E-09 4.94 7.70E+01

200× 200 2.38E-08 4.95 1.78E-09 5.03 2.01E+02

240× 240 9.52E-09 5.02 7.13E-10 5.01 4.56E+02

WENO-ZQ

40× 40 1.82E-03 — 2.16E-04 – 2.37E-01

80× 80 1.24E-04 3.87 1.07E-05 4.33 3.12E+00

120× 120 1.96E-05 4.56 1.58E-06 4.72 1.56E+01

160× 160 5.09E-06 4.68 3.98E-07 4.80 5.16E+01

200× 200 1.74E-06 4.80 1.33E-07 4.90 1.33E+02

240× 240 7.17E-07 4.86 5.49E-08 4.86 2.93E+02

Example 3.4 We solve two-dimensional compressible Euler equations

∂

∂t


ρ
ρµ
ρν
E

+
∂

∂x


ρµ

ρµ2 + p
ρµν

µ(E + p)

+
∂

∂y


ρν
ρµν

ρν2 + p
ν(E + p)

 = 0,

where ρ is the density, µ and ν the velocity in x and y directions respectively, E is the

total energy and p is the pressure. The initial condition is (ρ, µ, ν, p, γ) = (1 + 0.2 sin(π(x+

y)), 1, 1, 1, 1.4) and the computational domain is [0, 4]× [0, 4] with periodic boundary condi-

tions in all directions. We compute the solution up to time T = 2, and the exact solutions

are (ρ, µ, ν, p) = (1 + 0.2 sin(π(x + y − 2T )), 1, 1, 1). The L∞ and L1 errors are presented

in Table 3.6, showing that the three schemes achieve the fifth-order accuracy. More ex-

plicitly, with denser meshes (e.g., ≥ 200), the CPU time ratio of HWENO-U/WENO-ZQ

is about 1.252, whereas the L∞ error ratio is around 1/14.443, and the CPU time ratio of
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Table 3.5: Example 3.3. Two-dimensional Burgers’ equation: L∞ and L1

errors, orders of the HWENO-U scheme for the first-order moments in the
x and y directions.

Meshes
x-direction y-direction

L∞ error Order L1 error Order L∞ error Order L1 error Order

40× 40 9.98E-04 − 6.29E-05 − 9.98E-04 − 6.29E-05 −
80× 80 4.40E-06 7.83 4.49E-07 7.13 4.40E-06 7.83 4.49E-07 7.13

120× 120 1.59E-07 8.19 1.52E-08 8.35 1.59E-07 8.19 1.52E-08 8.35

160× 160 2.64E-08 6.25 2.23E-09 6.68 2.64E-08 6.25 2.23E-09 6.68

200× 200 8.38E-09 5.14 6.00E-10 5.88 8.38E-09 5.14 6.00E-10 5.88

240× 240 3.31E-09 5.09 2.33E-10 5.20 3.31E-09 5.09 2.33E-10 5.20

HWENO-M/WENO-ZQ is around 1.378, but the L∞ error ratio is almost 1/78.888. This

data shows that the HWENO-U scheme is more precise than the HWENO-M and WENO-

ZQ schemes at the same CPU cost, which can be intuitively seen from Fig. 3.3. Compared to

the WENO-ZQ scheme, the HWENO-U and HWENO-M schemes require the computation

of two extra first-order moment equations, yet their CPU costs only increase by no more

than 40% due to the repeated utilization of numerical fluxes on the boundary in the zeroth-

and first-order moment equations. Overall, both the HWENO-U and HWENO-M schemes

demonstrate superior computational efficiency than the WENO-ZQ scheme. It is worth not-

ing that despite using unified stencils throughout the entire procedures, the HWENO-U and

HWENO-M schemes still have similar numerical errors and comparable CPU time. This can

be attributed to the fact that the HWENO-M scheme modifies the first-order moments in a

dimension-by-dimensional manner, resulting in computational cost savings, particularly for

high-dimensional systems. However, extending this dimension-by-dimensional approach to

unstructured meshes is not straightforward. In contrast, the framework of the HWENO-U

scheme is specifically designed to be well-suited for unstructured cases, and the relevant

researches are ongoing.
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Table 3.6: Example 3.4. Two-dimensional Euler equa-
tions: L∞ and L1 errors, orders and CPU time of the
HWENO-U, HWENO-M and WENO-ZQ schemes.

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40× 40 1.33E-04 − 2.23E-05 − 1.24E+02

80× 80 8.41E-07 7.31 8.17E-08 8.09 1.72E+03

120× 120 4.26E-08 7.36 3.82E-09 7.55 1.02E+04

160× 160 5.28E-09 7.26 5.98E-10 6.45 3.65E+04

200× 200 1.08E-09 7.11 1.67E-10 5.72 9.68E+04

240× 240 3.06E-10 6.92 6.45E-11 5.21 2.14E+05

HWENO-M

40× 40 8.85E-07 − 5.01E-07 − 1.34E+02

80× 80 2.52E-08 5.14 1.57E-08 5.00 1.86E+03

120× 120 3.25E-09 5.04 2.06E-09 5.00 1.09E+04

160× 160 7.68E-10 5.02 4.89E-10 5.00 3.96E+04

200× 200 2.52E-10 5.00 1.60E-10 5.00 1.06E+05

240× 240 1.01E-10 4.99 6.43E-11 5.00 2.37E+05

WENO-ZQ

40× 40 1.69E-04 − 3.74E-05 − 9.86E+01

80× 80 2.56E-06 6.04 1.19E-06 4.97 1.30E+03

120× 120 2.80E-07 5.46 1.57E-07 4.99 7.12E+03

160× 160 6.25E-08 5.21 3.74E-08 5.00 2.54E+04

200× 200 2.00E-08 5.12 1.22E-08 5.00 7.48E+04

240× 240 7.92E-09 5.07 4.92E-09 5.00 1.77E+05

Fig. 3.4. Comparison of L∞, L1 errors and CPU time for Example 3.4.
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(a) Density with 100 cells (b) A zoomed-in figure

Fig. 3.5. Example 3.5. The results of solution computed by the HWENO-U, HWENO-M
and WENO-ZQ schemes.

3.2 Non-smooth tests

In this subsection, we compare the performance of the HWENO-U, HWENO-M, and

WENO-ZQ schemes in capturing shocks by simulating some benchmark and extreme prob-

lems.

Example 3.5 We solve the Lax problem for one-dimensional Euler equations with the initial

conditions:

(ρ, µ, p, γ)T =

{
(0.445, 0.698, 3.528, 1.4)T,−0.5 ≤ x < 0,

(0.5, 0, 0.571, 1.4)T, 0 ≤ x ≤ 0.5.

The final time is T = 0.16 and outflow boundary conditions are imposed on all bound-

aries. The computational results of density for the HWENO-U, HWENO-M and WENO-ZQ

schemes are displayed in Fig. 3.5, which indicates that the results of the HWENO-U and

HWENO-M schemes are more close to the exact solution than the WENO-ZQ scheme. The

numerical solution of the WENO-ZQ scheme has obvious overshoots or undershoots in Fig.

3.5, which is attributed to the nonlinear weights in [50] for violating the scale-invariant prop-

erty. If the HWENO-U scheme also uses the original nonlinear weights [50], the overshoots

or undershoots also generate.
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(a) HWENO-U (ζ = 10−6) (b) HWENO-U (ζ = 106)

Fig. 3.6. Example 3.5. The results of solution computed by the HWENO-U scheme with
the scaled initial conditions using the proposed scale-invariant nonlinear weights (2.11) and
the original nonlinear weights [50].

To prove that the proposed nonlinear weights (2.11) satisfy the scale-invariant property,

similar to [5], we scale the initial conditions to be (ζρ, µ, ζp, γ) with a constant ζ > 0. For

this Riemann problem, the exact solution at time T is ζρ(x, T ). We compute this scaled

case by the HWENO-U scheme with the scale-invariant nonlinear weights (2.11) and origi-

nal nonlinear weights [50], respectively. The computed results are shown in Fig. 3.6, which

validates the effectiveness of scale-invariant nonlinear weights for the proposed HWENO-U

scheme.

Example 3.6 We solve the interaction of the blast wave problem for one-dimensional Euler

equations with the initial conditions:

(ρ, µ, p, γ)T =


(1, 0, 1000, 1.4)T, 0 < x < 0.1,

(1, 0, 0.01, 1.4)T, 0.1 < x < 0.9,

(1, 0, 100, 1.4)T, 0.9 < x < 1.

The computing time is T = 0.038 and reflective boundary conditions are imposed on all

boundaries. The reference solution is generated by the classical WENO scheme [19] using

2001 points. The density computed by HWENO-U, HWENO-M and WENO-ZQ schemes
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are plotted in Fig. 3.7, which shows the HWENO-U scheme has higher resolutions than the

HWENO-M and WENO-ZQ schemes.

(a) Density with 800 cells (b) A zoomed-in figure

Fig. 3.7. Example 3.6. The results of solution computed by the HWENO-U, HWENO-M
and WENO-ZQ schemes.

Example 3.7 We solve the Shu-Osher problem for one-dimensional Euler equations, which

describes the interaction between shock and entropy waves. The initial condition is

(ρ, µ, p, γ) =

{
(3.857143, 2.629369, 10.333333, 1.4), − 5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1, 1.4), − 4 ≤ x ≤ 5.

The final time is T = 1.8 and outflow boundary conditions are imposed on all boundaries.

The density calculated by the HWENO-U, HWENO-M, and WENO-ZQ schemes are dis-

played in Fig. 3.8, indicating that the HWENO-U and WENO-ZQ schemes exhibit similar

results but both have better resolutions than the HWENO-M scheme.

Example 3.8 We solve the double rarefaction wave problem [25] for one-dimensional Euler

equations with the initial condition

(ρ, µ, p, γ) =

{
(7,−1, 0.2, 1.4), − 1 < x < 0,

(7, 1, 0.2, 1.4), 0 < x < 1.

The final time is T = 0.6 and outflow boundary conditions are imposed on all boundaries.

The results computed by the HWENO-U, HWENO-M and WENO-ZQ schemes are shown
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(a) Density with 400 cells (b) A zoomed-in figure

Fig. 3.8. Example 3.7. The results of solution computed by the HWENO-U, HWENO-M
and WENO-ZQ schemes with 400 cells.

in Fig. 3.9. Numerically we find that such three schemes work well for this extreme prob-

lem without PP limiters, but the two HWENO schemes have more compact reconstructed

stencils.

Fig. 3.9. Example 3.8. Double rarefaction wave problem with 400 cells.

Example 3.9 We solve the Sedov blast wave problem for one-dimensional Euler equations

with the initial condition

(ρ, µ, E, γ) =

{
(1, 0, 10−12, 1.4), x ∈ [−2, 2] \ the center cell,

(1, 0, 3200000
∆x

, 1.4), x ∈ the center cell.
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Fig. 3.10. Example 3.9. One-dimensional Sedov problem with 800 cells.

The final time is T = 0.001 and outflow boundary conditions are imposed on all boundaries.

The exact solution is provided in [20, 33]. We present the computational density in Fig.

3.10 for the HWENO-U, HWENO-M and WENO-ZQ schemes. Also, we do not use any PP

limiters for the three scheme in this extreme problem, and the results are non-oscillatory

with high resolutions.

Example 3.10 We solve the double Mach reflection problem [39] for two-dimensional Euler

equations. The computational domain is [0, 4]× [0, 1] and the initial condition is

(ρ, µ, ν, p, γ) =

{
(8, 33

4
sin(π

3
),−33

4
cos(π

3
), 116.5, 1.4), x < 1

6
+ y√

3
,

(1.4, 0, 0, 1, 1.4), otherwise.

The boundary conditions are set as inflow on the left, outflow on the right and bottom. The

reflection boundary condition are applied for the bottom boundary starting from x = 1
6
to

x = 4, while the rest part from x = 0 to x = 1
6
imposes the exact post-shock condition.

Besides, the upper boundary is the exact motion of a Mach 10 shock. The final time is

T = 0.2. The computational results of density for the HWENO-U and HWENO-M schemes

are showed in Fig. 3.11. We can see that the two results are similar, but the HWENO-U

scheme has simpler procedures with unified stencils.

Example 3.11 We solve the forward step problem [39] for two-dimensional Euler equa-

tions, which contains a Mach 3 wind tunnel with a step. The computational domain is

[0, 0.6]× [0, 1]∪ [0.6, 1]× [0.2, 1] and the initial condition is a right-going Mach 3 flow. Reflec-
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(a) HWENO-U

(b) HWENO-M

Fig. 3.11. Example 3.10. Double Mach reflection problem. Contour plots of density with
30 equally spaced lines from 1.5 to 22.7. Uniform meshes: 1920× 480.

tive boundary conditions are applied along the walls of the tunnel, and inflow and outflow

boundary conditions are implemented at the entrance and exit respectively. The final time

is T = 4. The density results computed by the HWENO-U and HWENO-M schemes are

shown in Fig. 3.12. We can observe that both results are comparable for the HWENO-U

and HWENO-M schemes.

Example 3.12 We solve a Sedov blast wave problem [20, 33] for two-dimensional Euler

equations. The computational domain is [0, 1.1]× [0, 1.1] and the initial condition is

(ρ, µ, ν, E, γ) =

{
(1, 0, 0, 0.244816

∆x∆y
, 1.4), (x, y) ∈ [0,∆x]× [0,∆y],

(1, 0, 0, 10−12, 1.4), otherwise.

Reflective boundary conditions are employed on the left and bottom, while outflow conditions
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(a) HWENO-U

(b) HWENO-M

Fig. 3.12. Example 3.11. Step forward problem. Contour plots of density with 30 equally
spaced lines from 0.32 to 6.15. Uniform meshes: 960× 320.

are applied on the right and upper boundaries. The computational results at the final time

T = 1 are presented in Fig. 3.13 for both the HWENO-U and HWENO-M schemes with PP

limiters. Notably, it is essential to utilize PP limiters in this case, as both schemes would

fail to work effectively without them due to negative densities or pressures. This extreme

problem involves very strong shock and the variation of density is pretty large. From Fig.

3.13, we can observe obviously that there exist numerical oscillations even using PP limiters

for the HWENO-M scheme with original nonlinear weights [50], since the PP limiters can

keep the positivity of density and pressure but cannot control numerical oscillations. On

the contrary, the HWENO-M scheme with the scaling-invariant weights in Eq. (2.22) and

the proposed HWENO-U scheme behave similar and comparable results as in the reference
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(a) HWENO-U with original non-
linear weights [50])

(b) HWENO-M with original non-
linear weights [50]

(c) Density at x = y

(d) HWENO-U with the proposed
scale-invariant weights (2.22)

(e) HWENO-M with the proposed
scale-invariant weights (2.22)

(f) Density at x = y

Fig. 3.13. Example 3.12. Two-dimensional Sedov problem. Contour plots of density with
40 equally spaced lines from 0.95 to 6. Uniform meshes: 320× 320.

[41]. Also, the HWENO-U scheme has higher resolutions and better performances than the

HWENO-M scheme with the nonlinear weights in [50] or Eq. (2.22). The results presented

above demonstrate the necessity of scale-invariant weights, especially for the problems with

sharp scale variations.

Example 3.13 Finally, we solve the Mach 2000 astrophysical jet problem without a ra-

diative cooling studied in [11, 12, 13]. The computational domain is [0, 1] × [−0.25, 0.25].

Initially, it is full of an ambient gas with (ρ, µ, ν, p, γ) = (0.5, 0, 0, 0.4127, 5
3
). Outflow bound-

ary conditions are imposed on the right, top, and bottom. The left boundary conditions are
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(a) HWENO-U (b) HWENO-M

Fig. 3.14. Example 3.13. High Mach 2000 problem. Contour plots of density with 40
equally spaced lines from -2 to 3 and scales are logarithmic. Uniform meshes: 640× 320.

established with the values (ρ, µ, ν, p, γ) = (5, 800, 0, 0.4127, 5
3
) when |y| < 0.05. For values

outside of this range, the values are (0.5, 0, 0, 0.4127, 5
3
). In Figure 3.14, we present the re-

sults obtained by the HWENO-U and HWENO-M schemes with PP limiters for a final time

T = 0.001. The results show that the HWENO-U and HWENO-M schemes have comparable

results, which are also similar to that in the reference [41].

4 Concluding remarks

In this paper, we introduced a moment-based finite volume HWENO-U scheme with

unified stencils on structured meshes. The novel point is to incorporate the spatial recon-

structions with the modification of the first-order moments into a single step, resulting in a

simpler approach than the HWENO-M scheme [45], which involves two separate steps. The

HWENO modification for the first-order moments in time discretizations serves two signif-

icant purposes in the proposed scheme. Firstly, it ensures the stability of the fully-discrete

scheme as that in the Lax-Friedrichs scheme [21], which is demonstrated through analyses

in Subsection 2.3. Secondly, it helps to overcome spurious oscillations for using nonlinear

HWENO procedures. Furthermore, the proposed scale-invariant nonlinear weight of this

paper not only retains all properties of original one but also is more robust when simulating

challenging problems with sharp scale variations, shown in Examples 3.5 and 3.12.

Overall, the HWENO-U scheme is a simpler and more practical numerical method, which
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not only inherits the advantages of previous HWENO schemes, including compact stencils,

high order accuracy, high resolution, and the use of artificial linear weights, but also employs

unified stencils throughout the entire process without any modifications for the governing

equations, resulting in easier and faster implementations as evidenced in the algorithm de-

scriptions and numerical results. Furthermore, in the two-dimensional case, the framework

of the HWENO-U scheme is based on truly two-dimensional reconstructions, making it more

straightforward to extend to unstructured meshes, and the relevant works are ongoing.

A Appendix

In the one-dimensional case, the coefficients of the reconstructed polynomials {pm(x)}2m=0

in (2.9) are given as follows:

c0,0 = −43 ūi−1

384
+ 235 ūi

192
− 43 ūi+1

384
− 27 v̄i−1

64
+ 27 v̄i+1

64
,

c0,1 = −63 ūi−1

76
+ 63 ūi+1

76
− 75 v̄i−1

19
− 75 v̄i+1

19
,

c0,2 =
23 ūi−1

16
− 23 ūi

8
+ 23 ūi+1

16
+ 45 v̄i−1

8
− 45 v̄i+1

8
,

c0,3 =
5 ūi−1

19
− 5 ūi+1

19
+ 60 v̄i−1

19
+ 60 v̄i+1

19
,

c0,4 = −5 ūi−1

8
+ 5 ūi

4
− 5 ūi+1

8
− 15 v̄i−1

4
+ 15 v̄i+1

4
;

c1,0 = ūi, c1,1 = ūi − ūi−1;

c2,0 = ūi, c2,1 = ūi+1 − ūi.

In the two-dimensional case, the coefficients of the reconstructed polynomials {pm(x, y)}4m=0
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in (2.20) are given as follows:

c0,0 =
ū1

576
− 133 ū2

1152
+ ū3

576
− 133 ū4

1152
+ 419 ū5

288
− 133 ū6

1152
+ ū7

576
− 133 ū8

1152
+ ū9

576
− 27 v̄4

64
+ 27 v̄6

64
− 27 w̄2

64
+ 27 w̄8

64
,

c0,1 =
ū1

48
− ū3

48
− 397 ū4

456
+ 397 ū6

456
+ ū7

48
− ū9

48
− 75 v̄4

19
− 75 v̄6

19
,

c0,2 =
ū1

48
− 397 ū2

456
+ ū3

48
− ū7

48
+ 397 ū8

456
− ū9

48
− 75 w̄2

19
− 75 w̄8

19
,

c0,3 = − ū1

48
+ ū2

24
− ū3

48
+ 71 ū4

48
− 71 ū5

24
+ 71 ū6

48
− ū7

48
+ ū8

24
− ū9

48
+ 45 v̄4

8
− 45 v̄6

8
,

c0,4 =
7 ū1

22
+ 7 ū3

22
+ 7 ū7

22
− 7 ū9

22
− 75 v̄2

11
+ 75 v̄8

11
− 75 w̄4

11
+ 75 w̄6

11
,

c0,5 = − ū1

48
+ 71 ū2

48
− ū3

48
+ ū4

24
− 71 ū5

24
+ ū6

24
− ū7

48
+ 71 ū8

48
− ū9

48
+ 45 w̄2

8
− 45 w̄8

8
,

c0,6 =
5 ū4

19
− 5 ū6

19
+ 60 v̄4

19
+ 60 v̄6

19
,

c0,7 = − ū1

4
+ ū2

2
− ū3

4
+ ū7

4
− ū8

2
+ ū9

4
,

c0,8 = − ū1

4
+ ū3

4
+ ū4

2
− ū6

2
− ū7

4
+ ū9

4
,

c0,9 =
5 ū2

19
− 5 ū8

19
+ 60 w̄2

19
+ 60 w̄8

19
,

c0,10 = −5 ū4

8
+ 5 ū5

4
− 5 ū6

8
− 15 v̄4

4
+ 15 v̄6

4
,

c0,11 =
5 ū1

22
− 5 ū3

22
− 5 ū7

22
+ 5 ū9

22
+ 60 v̄2

11
− 60 v̄8

11
,

c0,12 =
ū1

4
− ū2

2
+ ū3

4
− ū4

2
+ ū5 − ū6

2
+ ū7

4
− ū8

2
+ ū9

4
,

c0,13 =
5 ū1

22
− 5 ū3

22
− 5 ū7

22
+ 5 ū9

22
+ 60 w̄4

11
− 60 w̄6

11
,

c0,14 = −5 ū2

8
+ 5 ū5

4
− 5 ū8

8
− 15 w̄2

4
+ 15 w̄8

4
;

c1,0 = ū5, c1,1 = ū5 − ū4, c1,2 = ū5 − ū2;

c2,0 = ū5, c2,1 = ū6 − ū5, c2,2 = ū5 − ū2;

c3,0 = ū5, c3,1 = ū5 − ū4, c3,2 = ū8 − ū5;

c4,0 = ū5, c4,1 = ū6 − ū5, c4,2 = ū8 − ū5.

References

[1] D. S. Balsara, S. Garain and C.-W. Shu, An efficient class of WENO schemes with

adaptive order, J. Comput. Phys., 326 (2016), 780-804.

[2] C. Cai, J. Qiu and K. Wu, Provably convergent Newton-Raphson methods for recovering

primitive variables with applications to physical-constraint-preserving Hermite WENO

schemes for relativistic hydrodynamics, J. Comput. Phys., 498 (2024), 112669.

[3] X. Cai, X. Zhang and J. Qiu, Positivity-preserving high order finite volume HWENO

schemes for compressible Euler equations, J. Sci. Comput., 68 (2016), 464-483.

39



[4] M. Castro, B. Costa and W. S. Don, High order weighted essentially non-oscillatory

WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230 (2011), 1766-

1792.

[5] Y. Chen and K. Wu, A physical-constraint-preserving finite volume WENO method for

special relativistic hydrodynamics on unstructured meshes. J. Comput. Phys., 466 (2022),

111398.

[6] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws II: general framework, Math. Comput., 52

(1989), 411-435.

[7] B. Costa and W. S. Don, Multi-domain hybrid spectral-WENO methods for hyperbolic

conservation laws, J. Comput. Phys., 224 (2007), 970-991.

[8] M. Dumbser, D. S. Balsara, E. F. Toro and C. D. Munz, A unified framework for the

construction of one-step finite volume and discontinuous Galerkin schemes on unstruc-

tured meshes, J. Comput. Phys., 227 (2008), 8209-8253.

[9] C. Fan, X. Zhang and J. Qiu, Positivity-preserving high order finite volume hybrid

Hermite WENO scheme for compressible Navier-Stokes equations, J. Comput. Phys.,

445 (2021), 110596.

[10] C. Fan, Z. Zhao, T. Xiong and J. Qiu, A robust fifth order finite difference Hermite

WENO scheme for compressible Euler equations, Comput. Methods Appl. Mech. Engrg.,

412 (2023), 116077.

[11] C. L. Gardner and S. J. Dwyer, Numerical simulation of the xz tauri supersonic astro-

physical jet, Acta Mathematica Scientia, 29 (2009), 1677-1683.

[12] Y. Ha and C. L. Gardner, Positive scheme numerical simulation of high Mach number

astrophysical jets, J. Sci. Comput., 34 (2008), 247-259.

40



[13] Y. Ha, C. L. Gardner, A. Gelb and C.-W. Shu, Numerical simulation of high Mach

number astrophysical jets with radiative cooling, J. Sci. Comput., 24 (2005), 29-44.

[14] A. Harten, Preliminary results on the extension of ENO schemes to two-dimensional

problems, in Proceedings, International Conference on Nonlinear Hyperbolic Prob-

lems, Saint-Etienne, 1986, Lecture Notes in Mathematics, edited by C. Carasso et al.

(Springer-Verlag, Berlin, 1987).

[15] A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order accurate

essentially non-oscillatory schemes III, J. Comput. Phys., 71 (1987), 231-323.

[16] A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes, IMRC

Technical Summary Rept. 2823, Univ. of Wisconsin, Madison, WI, May 1985.

[17] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular

meshes, J. Comput. Phys., 150 (1999), 97-127.

[18] J. Huang and C.-W. Shu, Bound-preserving modified exponential Runge-Kutta discontin-

uous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput.

Phys. 361 (2018), 111-135.

[19] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J.

Comput. Phys., 126 (1996), 202-228.

[20] V. P. Korobeinikov, Problems of point blast theory, American Institute of Physics, Col-

lege Park, 1991.

[21] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical com-

putation, Communications on Pure and Applied Mathematics, 7, (1954), 159-193.

[22] D. Levy, G. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of

conservation laws, Math. Model. Numer. Anal., 33 (1999), 547-571.

41



[23] J. Li, C.-W. Shu and J. Qiu, Multi-resolution HWENO schemes for hyperbolic conser-

vation laws, J. Comput. Phys., 446 (2021), 110653.

[24] J. Li, C.-W. Shu and J. Qiu, Moment-based multi-resolution HWENO scheme for hy-

perbolic conservation laws, Commun. Comput. Phys., 32 (2022), 364-400.

[25] T. Linde and P. Roe, Robust Euler codes, AIAA paper-97-2098, in 13th Computational

Fluid Dynamics Conference, Snowmass Village, CO, 1997.

[26] Y. Liu, J. Lu and C.-W. Shu, An essentially oscillation-free discontinuous Galerkin

method for hyperbolic systems, SIAM J. Sci. Comput., 44 (2022), A230-A259.

[27] X. D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J.

Comput. Phys., 115 (1994), 200-212.

[28] H. Liu and J. Qiu, Finite difference Hermite WENO schemes for conservation laws, J.

Sci. Comput., 63 (2015), 548-572.

[29] J. Lu, Y. Liu and C.-W. Shu, An oscillation-free discontinuous Galerkin method for

scalar hyperbolic conservation laws, SIAM J. Numer. Anal., 59 (2021), 1299-1324.

[30] H. Luo, J. D. Baum and R. Lohner, A Hermite WENO-based limiter for discontinuous

Galerkin method on unstructured grids, J. Computat. Phys., 225 (2007), 686-713.

[31] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for

Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys.,

193 (2004), 115-135.

[32] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for

Runge-Kutta discontinuous Galerkin method II: Two dimensional case, Comput. Fluid.,

34 (2005), 642-663.

[33] L. I. Sedov, Similarity and dimensional methods in mechanics, Academic Press, New

York, 1959.

42



[34] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes

for hyperbolic conservation laws, In: Quarteroni, A. (ed.) Advanced Numerical Ap-

proximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, CIME

subseries, Springer, Berlin (1998).

[35] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes,

Acta Numerica, 29 (2020), 701-762.

[36] J C. Strikwerda, Finite difference schemes and partial differential equations, Society for

Industrial and Applied Mathematics, 2004.

[37] Z. Tao, F. Li and J. Qiu, High-order central Hermite WENO schemes: dimension-by-

dimension moment-based reconstructions, J. Comput. Phys.,318 (2016), 222-251.

[38] I. Wibisono and A. K. Engkos, Fifth-order Hermite targeted essentially non-oscillatory

schemes for hyperbolic conservation laws, J. Sci. Comput., 87 (2021), 1-23.

[39] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow

with strong shocks, J. Comput. Phys., 54 (1984), 115-173.

[40] Y. H. Zahran and A. H. Abdalla, Seventh order Hermite WENO scheme for hyperbolic

conservation laws, Comput. Fluid., 131 (2016), 66-80.

[41] X. Zhang and C.-W. Shu, On positivity-preserving high order discontinuous Galerkin

schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229

(2010), 8918-8934.

[42] Y.-T. Zhang and C.-W. Shu, Third order WENO scheme on three dimensional tetrahe-

dral meshes, Commun. Comput. Phys., 5 (2009), 836-848.

[43] M. Zhang and Z. Zhao, A fifth-order finite difference HWENO scheme combined with

limiter for hyperbolic conservation laws, J. Comput. Phys., 472 (2023), 11676.

43



[44] Z. Zhao, Y. Chen and J. Qiu, A hybrid Hermite WENO method for hyperbolic conser-

vation laws, J. Comput. Phys., 405 (2020), 109175.

[45] Z. Zhao and J. Qiu, A Hermite WENO scheme with artificial linear weights for hyper-

bolic conservation laws, J. Comput. Phys., 417 (2020).

[46] Z. Zhao and J. Qiu, An oscillation-free Hermite WENO scheme for hyperbolic conser-

vation laws, Sci. China Math., 67 (2024), 431-454.

[47] X. Zhong and C.-W. Shu, A simple weighted essentially nonoscillatory limiter for Runge-

Kutta discontinuous Galerkin methods, J. Comput. Phys., 232 (2013), 397-415.

[48] J. Zhu and J. Qiu, A class of fourth order finite volume Hermite weighted essentially

non-oscillatory schemes, Sci. China Ser. A Math., 51 (2008), 1549-1560.

[49] J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for solving hyper-

bolic conservation laws, J. Comput. Phys., 318 (2016), 110-121.

[50] J. Zhu and J. Qiu, A new type of finite volume WENO schemes for hyperbolic conser-

vation laws, J. Sci. Comput., 73 (2017), 1-22.

[51] J. Zhu and J. Qiu, A new third order finite volume weighted essentially non-oscillatory

scheme on tetrahedral meshes, J. Comput. Phys., 349 (2017), 220-232.

[52] J. Zhu and J. Qiu, New finite volume weighted essentially non-oscillatory schemes on

triangular meshes, SIAM J. Sci. Comput., 40 (2018), A903-A928.

[53] J. Zhu, J. Qiu and C.-W. Shu, High-order Runge-Kutta discontinuous Galerkin methods

with a new type of multi-resolution WENO limiters, J. Comput. Phys., 404 (2020),

109105.

[54] J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with increasingly

higher order of accuracy, J. Comput. Phys., 375 (2018), 659-683.

44


	Introduction
	Description of HWENO-U scheme
	One-dimensional case
	Two-dimensional case
	Stability analysis

	Numerical tests
	Accuracy tests
	Non-smooth tests

	Concluding remarks
	Appendix

