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Abstract. We consider the number of linear extensions of an N-free order
P . We give upper and lower bounds on this number in terms of parameters
of the corresponding arc diagram. We propose a dynamic programming
algorithm to calculate the number. The algorithm is polynomial if a new
parameter called activity is bounded by a constant. The activity can be
bounded in terms of parameters of the arc diagram.
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1 Introduction

The number of linear extensions is one of the most fundamental combina-
torial parameters of an order (poset). Explicit formulas and efficient algo-
rithms have been found for several classes of orders, see e.g. [1] [2], [3] or [7].
Brightwell and Winkler [4] have shown that for general orders the problem
is #P-complete. Hence, unless P=NP, there is no polynomial algorithm for
this problem.

Problems that are hard for general orders may become tractable when re-
stricted to more structured classes of orders, see [11] for a survey on the topic.

∗Partially supported by DFG grant FE-340/7-2 and ESF EuroGIGA project ComPoSe.
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One of the most prominent classes of orders is the class of N-free ordered
sets. This class was introduced by Grillet [5]. Leclerc and Montjardet [10]
characterized N-free orders as the chain-antichains-complete orders. A se-
ries of papers investigated algorithmic problems on N-free orders : Habib
and Jegou [6] and independently Sys lo [14] showed that the jump number
of an N-free order can be computed in linear time. For general orders the
jump-number problem is NP-hard. Habib and Möhring [7] proved that the
isomorphism problem remains isomorphism-complete when restricted to N-
free orders. More recent contributions to N-free orders are the enumeration
of N-free orders of a given height [8] and the computation of their page num-
ber [9]. Zaguia [16] verified the 1/3 − 2/3 conjecture for N-free orders. We
are not aware of previous results concerning the number of linear extensions
of N-free orders.

The next section provides definitions and background information about
N-free orders. In Section 2 we present upper and lower bounds for the
number of linear extensions of an N-free order.

Section 3 is devoted to the dynamic programming algorithm for calculat-
ing the number of linear extensions of N-free orders. Dynamic programming
was used to show that the number of linear extensions of orders of bounded
width can be computed in polynomial time, see [1]. In our approach the size
of an antichain is replaced by the size of an active set. In particular our al-
gorithm has a polynomial running time for some N-free orders of unbounded
width.

We conclude with a discussion of some open problems.

1.1 Definitions and background on N-free orders

We are concerned here with combinatorial problems for partially ordered
sets. We assume some familiarity with concepts and results in this area,
including linear extensions, comparability graphs and diagrams. For readers
who are new to the subject, we suggest consulting one of the books on the
topic (Trotter [15], Schröder [13], Neggers and Kim [12]).

An order is N-free if its diagram does not contain an N (see Figure 1).
There are many characterizations for N-free orders, an overview is given by
Möhring [11]. The relevant characterization in our context is the following :

Figure 1: The order N.

2



Theorem 1.1 An order is N-free if and only if its diagram is the line digraph
of a directed acyclic graph (dag).

Theorem 1.1 enables us to represent N-free orders, using an arc diagram.
The arc diagram A(P ) of an N-free order P is the digraph of which the order
is the line digraph. Figure 2 shows an example. Such a digraph is not unique,
but if we require that A(P ) has a unique source 0̂ and a unique sink 1̂, then
it becomes unique. Sys lo [14] used A(P ) to deal with jump number of N-free
orders. Since A(P ) can easily be computed we will assume that P and A(P )
are both available. Depending on the context we then think of elements of
P as vertices of P or as edges of A(P ), whatever is more convenient.

1 2
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P

A(P )

1 2
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9

Figure 2: An N-free order and its arc diagram.

Being acyclic the arc diagram A(P ) or more precisely its transitive clo-
sure is a partial order relation on the vertex set of A(P ). In the following,
we will switch hence and forth between the arc diagram as a directed graph
and the arc diagram as an order. The interpretation will be clear from the
context. It is important to notice that in general the digraph A(P ) is not
the diagram of the order A(P ), simply because A(P ) may have transitive
edges.

2 Bounds for the linear extensions of an N-free

order

Using the arc diagram representation of an N-free order, we prove the fol-
lowing

Proposition 2.1 Let P be an N-free order and e(P ) be its number of linear
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extensions, then

e(A(P ))
∏

v∈VA(P )

ov! ≤ e(P ) ≤ |P |!
∏

v∈VA(P )

(

iv + ov
ov

)

−1

where VA(P ) is the set of the vertices of A(P ), ov is the out-degree of v ∈
VA(P ), and iv is the in-degree of v ∈ VA(P ).

Proof. For the lower bound we construct an appropriate set of linear exten-
sions of P . Let L = (v1, v2, .., vk) be a linear extension (topological ordering)
of the arc diagram A(P ). For each vertex v of A(P ), choose a permutation
σv = (xv1, x

v
2, .., x

v
ov ) of the out-edges of v. Concatenating these permutations

in the order given by L yields L′ = (xv11 , xv12 , .., xv1ov , . . . , x
vi
1 , .., x

vi
ovi

, . . . , xvkovk
),

a permutation of the elements of P . We claim that L′ is a linear extension
of P . If x < y in P , then there is a directed path in A(P ) whose first and
last edge are x and y respectively. Let vx and vy be the source vertices of
the edges x and y. The directed path implies the relation vx < vy in A(P ),
whence vx precedes vy in L. This in turn implies that x precedes y in L′.
We have thus shown that L′ respects the order relations of P , i.e., it is a
linear extension.

Hence, there is a linear extension L′ for every tuple (L, σ1, . . . , σk). Ob-
viously, if L′ and L′′ are constructed using different tuples, then they are
different. The lower bound is just the number of tuples.

The upper bound is based on a probabilistic argument. Let σ be a
randomly chosen permutation of the elements of P . The upper bound will
be obtained by considering the probability that σ is a linear extension of P .

A vertex v ∈ A(P ) is good with respect to σ, in symbols v◮σ, if in σ all
in-edges of v precede all out-edges of v. The probability that v is good with

respect to a random permutation σ is
(

iv+ov
ov

)−1
: just consider the induced

permutation σv on the edges incident to v, out of the (iv + ov)! possible
permutations σv exactly iv !ov! make v good.

Now we try to see what happens if we have to deal with more than
one vertex. Let Pr(A) denote the probability of A and Pr(A|B) = Pr(A ∩
B)Pr(B)−1 be the conditional probability of A given B. Since a permutation
is a linear extension of P if and only if all the vertices of A(P ) are good for
this permutation, we get:

Pr(σ ∈ L(P )) =

k
∏

j=1

Pr(vj◮σ|v1◮σ, . . . vj−1◮σ) (1)

Where (v1, . . . , vk) is an arbitrary enumeration of the vertices of A(P ) and
L(P ) is the set of the linear extensions of P . To shorten the proof a little,
we will assume that (v1, . . . , vk) is a linear extension of A(P ).
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We claim that for all j ∈ [k]

Pr(vj◮σ|v1◮σ, . . . , vj−1◮σ) ≤ Pr(vj◮σ) =

(

ivj + ovj
ovj

)

−1

. (2)

Plugging these inequalities into (1) yields the upper bound.
Permutations σ and π of P are called equivalent for j if:

1. all x ∈ P that are not incident to vj are at the same position in σ and
π,

2. both permutations induce the same orderings (permutations) on the
in-edges and the out-edges of vj, i.e., σin

j = πin
j and σout

j = πout
j .

Claim. If an equivalence class C contains a permutation that makes vj good,
then

Pr(vj◮σ|σ ∈ C) =
(

ivj+ovj
ovj

)−1
, otherwise Pr(vj◮σ|σ ∈ C) = 0.

To see that the claim implies the correlation inequality (2) we propose
an experiment in two phases. First we pick a class with a probability pro-
portional to its size, then we pick a random element from the class. When
the probability space for the experiment consists of all permutations, the

probability for picking a σ with vj ◮σ is
(

ivj+ovj
ovj

)−1
. For a proof of (2) we

are interested in a probability space for the experiment that only consists
of permutations satisfying v1 ◮ σ, . . . , vj−1 ◮ σ. In this space we only get
a σ with vj ◮ σ if we are lucky in the first phase of the experiment. From
the claim we know that, conditioned on success in the first phase, the prob-

ability of success in the second phase is again
(

ivj+ovj
ovj

)−1
. This yields (2).

Proof of the claim. Let C be a class. With a permutation σ ∈ C con-
sider the induced permutation σj on the edges incident to vj. From the
two properties in the definition of equivalence it follows that σ is uniquely
determined if we know which positions of σj are used by in-edges and which
by out-edges. This can be encoded by a 0-1 vector sσ = (s1, s2, . . . , sivj+ovj

)

with si = 1 if the ith entry of σj is an in-edge and si = 0 if it is an out-edge.
Now consider an adjacent inversion (si, si+1) = (1, 0) in sσ and let σ′

be the permutation obtained from σ by swapping the out-edge x and the
in-edge y of vj that are at positions i and i + 1 in σj . To show that σ′

belongs to the same class it suffices to show that vℓ ◮ σ′ for all 1 ≤ ℓ < j.
Let x be the edge vj → vjx and y be the edge vjy → vj. Since (v1, . . . , vk) is
a topological order of A(P ) we have jy < j < jx. We don’t care whether vjx
is good with respect to σ′. Vertex vjy is good for σ and in σ′ an out-edge of
vjy has been moved further to the right compared to σ, hence, vjy is good
for σ′. For all the other ℓ < j the property vℓ◮σ′ is directly inherited from

5



σ. Note that the encoding vector sσ′ of σ′ has exactly one inversion pair less
than sσ.

Let s and s′ be two 0-1 vectors of length t with r ones such that s′ is
majorized by s, i.e.,

∑j
i=1 s

′

i ≤
∑j

i=1 si for all j = 0, .., t. Sequence s′ can
be reached from s by a sequence of steps that remove a single inversion
each. Now, suppose class C contains a permutation σ that makes vj good.
Being good is equivalent to sσ = (1, .., 1, 0, .., 0) which is the maximum in
the majorization order. Hence, starting from σ we can find a sequence
of inversion reducing swaps to reach every permutation σ′ such that sσ′

is majorized by sσ. Since σ ∈ C and the steps do not leave C we find
that |C| =

(

ivj+ovj
ovj

)

. This completes the proof of the claim and of the

proposition.

There are few examples of N-free orders where one of the bounds is
sharp. In special cases, however, there may be many ways for improving
the bounds. We exemplify this with the lower bound. First note that the
dual P ∗ of an N-free order P is N-free again and A(P ∗) is the dual of A(P ).
Indeed A(P ∗) = A(P )∗ holds in both interpretations, as a digraph and as an
order. Hence the dual lower bound can be written as e(A(P ))

∏

v∈VA(P )
iv!

and also provides a lower bound on e(P ). Moreover, in many cases the set
of linear extensions of P that are obtained from the lower bound proof and
the dual are disjoint. This is always the case if there is a vertex v in A(P )
such that the out-edges of v are always separated if we keep the in-edges
of all vertices together. In particular, if A(P ) has a subdigraph of one of
the types shown in Figure 3 then e(A(P ))(

∏

v∈VA(P )
ov! +

∏

v∈VA(P )
iv!) is a

lower bound on e(P ).

v

v

Figure 3: Subdigraphs of A(P ) that allow the addition of the lower bound
and its dual.
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3 A dynamic programming algorithm for enumer-

ation

In this section we describe a dynamic programming algorithm for the enu-
meration of linear extensions of an N-free order.

Let P be an N-free order with arc diagram A(P ). Given a linear exten-
sion (x1, . . . , xn) of P the algorithm computes the number of linear exten-
sions of the induced suborders Pi = P [x1, .., xi] for i increasing from 1 to
n. Denote the edge of A(P ) that represents xj by (v−j , v

+
j ). The active set

Ai corresponding to Pi consists of all vertices of A(P ) that have incident
edges from Pi and from the complement of Pi, i.e., Ai = {v : ∃ j′ ≤ i <
j′′ with v+j′ = v = v−j′′}. Let L be a linear extension of Pi−1, extending L to
a linear extension of Pi means that xi is placed at a position behind all of its
immediate predecessors in L. The immediate predecessors of xi are exactly
the elements that point into v−i , whence v−i belongs to the active set Ai−1.

We are now ready to describe the algorithm. For i = 1, . . . , n and a
function f : Ai → [i] we define

zi(f) = #
(

L : linear extension of Pi such that in L the last element xj with v+j = v

is at position f(v), for all v ∈ Ai).

Let zi−1(f) be known for all f : Ai−1 → [i− 1], then we can compute zi(f)
for all f : Ai → [i]. The first thing that has to be done is to find Ai. Only
two events have to be checked for the update from Ai−1 to Ai :

• If all element incident to v−i belong to Pi, then v−i is removed from
the active set.

• If xi is the only element of Pi incident to v+i , then v+i is added to the
active set.

For fixed f let consider a linear extension L counted by zi−1(f). Inserting
xi in L after the tth element yields a linear extension of Pi if and only if
f(v−i ) ≤ t < i. If t respects these bounds we obtain a linear extension of Pi

counted by zi(f
′) where for v ∈ Ai the value f ′(v) is defined as follows:

f ′(v) =











max(f(v), t) + 1 if v = v+i
f(v) if f(v) ≤ t

f(v) + 1 if f(v) > t.

We write f ′ = Γi(f, t). The initialization for the dynamic program is zi(f) =
0 for all i and f except z1(f0) = 1, where f0(v

+
1 ) = 1 (note that A1 = {v+1 }).

The outer loop of the algorithm is increasing i from 2 to n. For each i we
go through all f and all t with f(v−i ) ≤ t ≤ i and update zi(Γi(f, t)) ←
zi(Γi(f, t)) + zi−1(f).

7



Let α be an upper bound on the size of the active sets, i.e, if |Ai| ≤ α
for all i. For each of the n levels i of the computation we have to consider at
most nα functions f . For each function f we have to consider ≤ n derived
functions f ′, if in the loop for f we decrease t in steps of −1, then updates
can be done in O(1). Altogether this yields a running time of O(nα+2).

We can improve the running time by stripping off a factor of n. The key
observation is that in each relevant f at level i, i.e., each f with zi(f) 6= 0,
we have some v ∈ Ai with f(v) = i. Hence, if we mark this element v we
can describe the rest of f as a function in [n]α−1. This shows that we only
have to consider αnα−1 functions on each level.

In the following subsection we discuss conditions that allow to bound
the size of the active set.

3.1 Bounding the size of active sets

Since each active set Ai is a subset of the vertex set of the arc diagram we
easily get:

Proposition 3.1 The number of linear extensions of N-free orders with n
elements and an arc diagram with ≤ k vertices can be computed in O(nk+1).

The initial linear extension L0 = (x1, . . . , xn) of P determines the se-
quence A1, . . . , An of active sets. Different choices for L0 may lead to active
sets of very different size. Let us define the activity α(L) of a linear exten-
sion as the maximum size of an active set in its sequence. The activity an
N-free order is

α(P ) = min
(

α(L) : L a linear extension of P
)

In some sense the strongest result that can be stated on the basis of our
algorithm is the following

Proposition 3.2 The number of linear extensions of an N-free order P of
bounded activity can be computed efficiently if a linear extension L with
α(P ) = α(L) is given.

However, we do not know how to compute the activity of an N-free order.
We propose the activity as a new parameter of N-free ordered sets for further
studies.

It would be nice to improve on Proposition 3.1 by only bounding the
width of the arc diagram. This, however, is not enough. In Figure 4 we
show the arc diagram A(Rℓ) of an N-free order Rℓ with 3ℓ elements and
width(A(Rℓ)) = 1, the activity of Rℓ is at least ℓ. Indeed if x̂ is at position i
in L, then Ai contains at least one of {ui, wi} for i = 1, .., ℓ.

For two vertices u and v of a directed acyclic graph D we define spread(u, v)
by looking at pairs of interiorly disjoint u to v paths. If there is no such
pair, then spread(u, v) = 0, otherwise we let spread(u, v) be the maximal
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A(R5)

u1

u2

u3

u4

u5

x̂

w1

w2

w3

w4

w5

Figure 4: The arc diagram of an N-free order R5 with α(R5) = 6.

difference in length of two such paths. The spread of D is spread(D) =
max(spread(u, v) : u, v ∈ D). Since shortest and longest paths in directed
acyclic graphs are efficiently computable the spread is also tractable.

Note that spread(A(Rℓ)) = ℓ+ 1. In fact, the activity of an N -free order
P is small if width and spread of A(P ) are small.

Lemma 3.3 For N-free orders P we have α(P ) ≤ width(A(P ))·(spread(A(P ))+
2).

Proof. The rank rk(v) of a vertex of A(P ) is the length of a longest path
ending in v. Let T = (v1, . . . , vs) be a topological order of A(P ) such that
i < j implies rk(vi) ≤ rk(vj). Define a linear extension LT such that for
i < j the out-edges of vi precede the out-edges of vj.

Claim. α(LT ) ≤ width(A(P )) · (spread(A(P )) + 2).

Partition the vertices of A(P ) into ranks Sj = {v ∈ VA(P ) : rk(v) = j}.
By definition each Sj is an antichain of A(P ), hence |Sj| ≤ width(A(P ). If
xi, the ith element of LT , has its source v−xi

in Sj , then Ai ⊂ Sj ∪ Sj+1 ∪
. . . ∪ Sj+spread(A(P ))+1. To see this consider v ∈ Ai with rk(v) = k. Let p be

a path of length k from 0̂ to v in A(P ). From v ∈ Ai and the construction
of LT we conclude that there is y ∈ P with rk(v−y ) ≤ j and v+y = v. Let q

be a path from 0̂ through v−y to v. The length of q is at most j + 1. Note

that after clipping p and q from 0̂ to the last common vertex u we obtain a
pair of disjoint u to v paths whose difference in length is at least k− (j + 1),
hence spread(A(P )) ≥ k − j − 1.

9



Theorem 3.4 The number of linear extensions of N-free orders with n ele-
ments and an arc diagram with width ≤ k and spread ≤ s can be computed
in O(nk(s+2)+1).

Conclusion

We have shown that the number of linear extensions of N-free orders of
bounded activity can be computed in polynomial time. It would be inter-
esting to understand the class of N-free orders of bounded activity better.
Is membership in this class testable in polynomial time? Are there simple
additional sufficient conditions or necessary conditions for membership in
this class?

We do not expect that there is a polynomial algorithm that solves the
problem for general N-free orders. Indeed we conjecture that counting linear
extensions of N-free orders is #P-complete.

Brightwell and Winkler [4] have shown #P-completeness for general or-
ders of height 3. They expect that the problem remains hard for orders of
height 2. Since N-free orders of height 2 are disjoint unions of weak orders
of height 2 the counting problem for this class is easy. We think that the
counting problem should already be hard for N-free orders of height 3.
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