
Noname manuscript No.
(will be inserted by the editor)

Game-Based Verification of Contract Signing Protocols
with Minimal Messages

Ying Zhang · Chenyi Zhang · Jun Pang · Sjouke Mauw

Received: date / Accepted: date

Abstract A multi-party contract signing (MPCS) pro-
tocol is used for a group of signers to sign a digital
contract over a network. We analyse the protocols of
Mauw, Radomirović and Torabi Dashti (MRT), using
the finite-state model checker Mocha. Mocha allows for
the specification of properties in alternating-time tem-
poral logic (ATL) with game semantics, and the model
checking problem for ATL requires the computation of
winning strategies. This gives us an intuitive interpreta-
tion of the verification problem of crucial properties of
MPCS protocols. MRT protocols can be generated from
minimal message sequences, depending on the number
of signers. We discover an attack on fairness in a pub-
lished MRT protocol with three signers and a general
attack on abuse-freeness for all MRT protocols. For
both attacks, we present solutions. The abuse-freeness
attack leads us to a revision of the methodology to con-

Y. Zhang
Computer Science and Communications
University of Luxembourg, Luxembourg &
School of Computer Science and Technology
Shandong University, China

C. Zhang
School of Information Technology and Electrical Engineering
University of Queensland, Australia
E-mail: chenyi@uq.edu.au

J. Pang (corresponding author)
Computer Science and Communications
University of Luxembourg, Luxembourg
E-mail: jun.pang@uni.lu
Phone: +352 4666445625
Fax: +352 4666445500

S. Mauw
Computer Science and Communications &
Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg
E-mail: sjouke.mauw@uni.lu

struct an MRT protocol. Following this revised method-
ology, we design a number of MRT protocols using min-
imal message sequences for three and four signers, all of
which have been successfully model checked in Mocha.

Keywords: Contract signing, alternating-time tempo-
ral logic, model checking, fairness, abuse-freeness.

1 Introduction

The goal of a multi-party contract signing (MPCS) pro-
tocol is to allow a number of parties to sign a digital
contract over a network. Such a protocol is designed
as to ensure that no party is able to withhold his sig-
nature after having received another party’s signature.
A simple way to achieve this is to introduce a trusted
third party (T). The trusted third party simply collects
signed contracts from all signers, verifies the signatures,
and then distributes them back to the signers. A ma-
jor drawback of this approach is that the trusted third
party easily becomes a bottleneck and overwhelmed
by the communications, if it has to be involved in a
huge number of protocol executions. This problem can
be tackled by the introduction of, so-called, optimistic
multi-party contract signing protocols [5]. The idea is
that involvement of the trusted third party is only re-
quired if something goes wrong, e.g. if one of the parties
tries to cheat or if a non-recoverable network error oc-
curs. If all parties and the communication network be-
have correctly, which can be considered the optimistic
case, the protocol terminates successfully without in-
tervention of the trusted third party.

MPCS protocols are supposed to satisfy three prop-
erties: fairness, abuse-freeness and timeliness. Fairness
means that each signer who sends out his signature
has a means to receive all the other signers’ signatures.

2 Ying Zhang et al.

Abuse-freeness guarantees that no signer can prove to
an outside observer that he is able to determine the re-
sult of the protocol. Timeliness ensures that each signer
has the capability to end infinite waiting.

Several optimistic contract signing protocols have
been proposed, most of which only focus on the special
case of two parties [6,17]. In 1999, Garay and Macken-
zie proposed the first optimistic contract signing pro-
tocol [18] for multiple parties, which we call the GM
protocol. Chadha, Kremer and Scedrov found a flaw
in the GM protocol for n ≥ 4, where n is the num-
ber of signers. They revised the GM protocol by mod-
ifying one of its sub-protocols and proposed the new
protocol [9] in 2004 (which we call the CKS protocol).
Mukhamedov and Ryan later showed that the CKS pro-
tocol fails to satisfy the fairness property for n ≥ 5 by
giving a so-called abort-chaining attack. They proposed
a fixed protocol [24] in 2008 based on the CKS protocol.
Mukhamedov and Ryan proved that their protocol sat-
isfies fairness and claimed that it satisfies abuse-freeness
and timeliness as well. They also gave a formal analysis
of fairness in the NuSMV model checker for five signers.

Using the notion of abort-chaining attacks, Mauw,
Radomirović and Torabi Dashti analysed the message
complexity of MPCS protocols [23]. Their results made
it feasible to construct MPCS protocols excluding abort-
chaining attacks but with minimal messages, which we
call the MRT protocols, based on so-called signing se-
quences. They also gave an example protocol with three
signers. However, they only justified the correctness of
the protocol at a conceptual level.

Our contributions. In the current paper, we follow
the approach of Chadha, Kremer and Scedrov [9] to
model check the MRT protocols,1 in Mocha [3]. Mocha
can be used to verify properties specified in alternating-
time temporal logic (ATL) [4]. This allows us to have a
precise and natural formulation of desired properties of
contract signing, e.g., fairness can be specified as the ex-
istence of a user’s strategy to obtain other parties’ signa-
tures once his signature is obtained by others, as model
checking of ATL requires the computation of winning
strategies.

We clarify how to construct an MRT protocol from a
minimal signing sequence, according to [23]. In particu-
lar, we discover a fairness attack on the published MRT
protocol with three signers [23] and a general abuse-
freeness attack on MRT protocols.2 For both attacks,
we present solutions. As a consequence, the methodol-
ogy to construct an MRT protocol is revised. Following

1 We also verified instances of the MR protocol [28]. In this
paper, we focus on the MRT protocols.

2 The abuse-freeness attack is not reported in [28].

the revised methodology, we design a number of MRT
protocols for three and four signers, and all of them
have been successfully model checked in Mocha.

Structure of the paper. The rest of the paper is
organised as follows. Sect. 2 presents the basic assump-
tions and notions that are used for description of MPCS
protocols. Sect. 3 briefly introduces concurrent game
structures, the temporal logic ATL and the model checker
Mocha. This section also shows how to build MPCS
protocol models in Mocha and how to express their de-
sired properties in ATL. In Sect. 4, we recall the design
methodology of MRT protocols as discussed in [23], and
describe the attacks found on MRT protocols with pro-
posed solutions. In Sect. 5, we revise the MRT design
methodology, and design a number of MRT protocols
all of which have been successfully model checked in
Mocha. The related work on formal analysis of contract
signing protocols is discussed in Sect. 6. We conclude
the paper with some future research topics in Sect. 7.

2 Preliminaries

This section describes the basic structure of an op-
timistic contract signing protocol with its underlying
assumptions. A few cryptographic primitives are em-
ployed in such protocols which we briefly introduce. We
also explain the security requirements associated with
MPCS protocols.

2.1 Basic notions

An optimistic MPCS protocol generally involves a group
of signers P1, . . . , Pn, who want to sign a contract mon-
itored by a trusted third party T . A signer may be
honest and thus strictly follow the protocol, or he may
be dishonest and deviate from the protocol in order to
collude with other dishonest signers to get undesirable
advantages over the remaining signers. The structure of
a protocol consists of a main protocol and one or several
sub-protocols. The main protocol is executed by signers
to exchange their promises at different levels and sig-
natures without the intervention from the trusted third
party T . The sub-protocols, which usually include an
abort protocol and a resolve protocol, are launched by
a user on contacting T to deal with awry situations.

Once having contacted T by initiating a sub-protocol,
the signers would never be allowed to proceed with the
main protocol. T makes a decision on basis of the in-
formation contained in a request provided by a signer
as well as all previous requests that have been sent by
other participants. A request consists of the promises

Game-Based Verification of Contract Signing Protocols with Minimal Messages 3

that the requesting signer has received so far, serving
as a clue for T to judge the signer’s position in the
current protocol execution. On making a decision, T
presumes that all the signers are honest, unless the re-
ceived requests contradict, showing that someone has
lied. A reply from T can be either an abort confirma-
tion or a contract signed by all the participants. After
T has sent an abort reply, she may later overturn that
abort and reply with a signed contract to subsequent
requests if T detects that all the signers who have pre-
viously contacted T are dishonest.3 However, once T

has sent a signed contract, she will have to stick to that
decision for all subsequent requests. Without launching
a sub-protocol, a signer Pi quits a protocol if he sim-
ply follows the main protocol till the end. Otherwise,
Pi quits the protocol once a reply from T is received.

An important assumption of optimistic contract sign-
ing protocols is that all communication channels be-
tween the signers and the trusted third party are re-
silient, which means that messages sent over the chan-
nels are guaranteed to be delivered eventually.

2.2 Cryptographic primitives

An optimistic MPCS protocol usually employs zero-
knowledge cryptographic primitives, i.c., private con-
tract signatures (PCS) [18]. Informally, a PCS is a
“semi-signature”, which serves as a promise from a signer,
showing his commitment to sign a contract at later
stages of a protocol. In case of dishonesty, a trusted
third party T is able to convert the PCS into a “true”
signature, should it be necessary to guarantee fairness.
As a protocol continues with multiple rounds, levels of
PCS with incremental degrees of commitment are em-
ployed in a protocol. We write PCSPi

((c, τ), Pj , T) for
a promise made by Pi to Pj (i 6= j) on contract c at
level τ , where τ indicates the current level of a proto-
col execution where Pi makes the promise. A promise
is assumed to have the following properties.

– PCSPi((c, τ), Pj , T) can only be generated by Pi
and Pj .

– Only Pi, Pj and T can verify PCSPi
((c, τ), Pj , T).

– PCSPi((c, τ), Pj , T) can be transformed into Pi’s
signature only by Pi and T .

Intuitively, PCSPi
((c, τ), Pj , T) acts as a promise by

Pi to Pj to sign the contract c at level τ . However, the
properties guarantee that Pj cannot use it to prove to
anyone except T that he has this promise. This is es-
sential to achieve abuse-freeness for MPCS protocols.

3 If not all received requests are from dishonest signers, an
overturn decision may impair fairness of an honest signer who
has previously received an abort reply.

Since these properties sufficiently describe the purpose
and use of this primitive, we will not discuss its imple-
mentation.

2.3 Desirable properties

All contract signing protocols are expected to satisfy
three security properties [24], viz. fairness, abuse-freeness
and timeliness.

Fairness. At the end of the protocol, either each hon-
est signer gets all the others’ signatures, or no signer
gets the signatures of any other honest signer. Fairness
ensures that no signer can get any valuable information
without sending out his signature, and once an honest
signer sends out his signature, he will eventually get all
the others’ signatures. An abort chain [24] is a sequence
of abort and resolve messages to T in a particular order,
such that it enforces T to return an abort reply to an
honest signer who has already sent out his signature.
Abort-chaining attacks are a major challenge to fair-
ness, and this concept was instrumental to deriving the
resolve-impossibility result for a trusted third party for
a certain class of MPCS protocols [24].

Abuse-freeness. At any stage of the protocol, there
does not exist a coalition of signers who are able to
prove to an outside observer that they have the power
to choose between aborting the protocol and getting
the signature from another signer who is honest and
optimistically participating in the protocol. Intuitively,
a protocol not being abuse-free implies that some of
the signers have an undesirable advantage over other
signers, and therefore they may enforce others to com-
promise on a contract.

Timeliness. Each signer has a solution to prevent end-
less waiting at any time. That means no signer is able
to force anyone else to wait forever.

3 Formal Model

In this section, we discuss how to model protocols in
Mocha using a concurrent game structure, and how
to express specifications for the desired properties in
alternating-time temporal logic (ATL) with game se-
mantics. We start with the introduction of concurrent
game structures and ATL [4].

3.1 Concurrent game structures and ATL

A (concurrent) game structure is defined as a tuple S =
〈Σ,Q,Π, π, d, δ〉 with components:

4 Ying Zhang et al.

– A finite set Σ = {1, . . . , k} of players that are iden-
tified with natural numbers (i.e., |Σ| = k).

– Q is a finite set of states.
– Π is a finite set of propositions.
– π : Q → 2Π is a labeling function. For each state
q ∈ Q, a set π(q) ⊆ Π of propositions are true.

– d : {1, . . . , k} ×Q→ N+. da(q) represents the num-
ber of available moves for player a ∈ {1, . . . , k} at
state q ∈ Q. We identify the moves of player a at
state q with the numbers 1, . . . , da(q).

– δ : Q× (N+)Σ → Q is a transition function. Define
a move vector to be a tuple of k actions from the k
distinct players. Then for each q ∈ Q and each move
vector 〈j1, . . . , jk〉, δ(q, j1, . . . , jk) is the state that
results from q if every player a ∈ {1, . . . , k} chooses
move ja ≤ da(q).

The temporal logic ATL (Alternating-time Tempo-
ral Logic) is defined with respect to a finite set Π of
propositions and a given set Σ of players. An ATL for-
mula is one of the following:

– p for propositions p ∈ Π.
– ¬φ or φ1∨φ2, where φ, φ1, and φ2 are ATL formulas.
– 〈〈A〉〉# φ, 〈〈A〉〉2φ, or 〈〈A〉〉φ1Uφ2, where A⊆ Σ is a

set of players, and φ, φ1 and φ2 are ATL formulas.

We interpret ATL formulas over the states of a con-
current game structure S that has the same proposi-
tions and players. The labeling of the states of S with
propositions is used to evaluate the atomic formulas of
ATL. The logical connectives ¬ and ∨ have the stan-
dard meaning.

In order to give the definition of the semantics of
ATL, we first give the notion of strategies. Consider
a game structure S = 〈Σ,Q,Π, π, d, δ〉. A strategy for
player a ∈ Σ is a mapping fa : Q+ → N such that
λ is a non-empty finite state sequence and fa(λ) ≤
da(last(λ)) where last(λ) is the last state in λ. A strat-
egy fa can be used to represent a set of (infinite) compu-
tations that player a may enforce. Formally, an infinite
computation λ is enforceable by fa if for all prefixes λ′ ·q
(of length at least two) of λ, there exists a move vector
〈j1, . . . , ja, . . . , jk〉, s.t., q = δ(last(λ′), j1, . . . , ja, . . . , jk)
and fa(λ′) = ja. Hence, FA = {fa | a ∈ A} induces a
set of computations that all the players in A can coop-
eratively enforce, by taking the intersection of all sets
of computations that are enforceable by each fa. Given
a state q ∈ Q, out(q, FA) is the set of computations
starting from q that are enforceable by the set of play-
ers A applying strategies in FA. Write λ[i] for the i-th
state in the sequence λ starting from 0.

We are now ready to give the semantics of ATL. We
write S, q |= φ to indicate that the state q satisfies the
formula φ in the structure S. And if S is clear from the

context we can omit S and write q |= φ. The satisfaction
relation |= is defined for all states q of S inductively as
follows:

– q |= p, for propositions p ∈ Π, iff p ∈ π(q).
– q |= ¬φ iff q 6|= φ.
– q |= φ1 ∨ φ2 iff q |= φ1 or q |= φ2.
– q |= 〈〈A〉〉 # φ iff there exists a set FA of strategies,

one for each player in A, such that for all computa-
tions λ ∈ out(q, FA), we have λ[1] |= φ.

– q |= 〈〈A〉〉2φ iff there exists a set FA of strategies,
one for each player in A, such that for all computa-
tions λ ∈ out(q, FA) and for all positions i ≥ 0, we
have λ[i] |= φ.

– q |= 〈〈A〉〉φ1Uφ2 iff there exists a set FA of strategies,
one for each player in A, such that for all computa-
tions λ ∈ out(q, FA), there exists a position i ≥ 0
such that λ[i] |= φ2 and for all positions 0 ≤ j < i,
we have λ[j] |= φ1.

Note that 3φ can be defined as true Uφ. The logic
ATL generalises Computation Tree Logic (CTL) [13] on
game structures, in that the path quantifiers of ATL are
more general: the existential path quantifier ∃ of CTL
corresponds to 〈〈Σ〉〉, and the universal path quantifier
∀ of CTL corresponds to 〈〈∅〉〉. To this point, for the sake
of readability, we use ∀ (∃) instead of 〈〈∅〉〉 (〈〈Σ〉〉) to de-
note quantification over all paths (some path) starting
from a state. (E.g., ∀2p is a syntactic sugar, which is
semantically equivalent to 〈〈∅〉〉2p, but more readable.)

3.2 Modelling Methodology for MPCS protocols in
Mocha

Mocha [3] is an interactive verification environment for
the modular and hierarchical verification of heteroge-
neous systems. Its model framework is in the form of
reactive modules [2]. The states of a reactive module are
determined by variables and are changed in a sequence
of rounds. Mocha can check ATL formulas, which ex-
press properties naturally as winning strategies with
game semantics. This is the main reason we choose
Mocha as our model checker in this work.

Mocha provides a guarded command language to
model the protocols, which uses the concurrent game
structures as its formal semantics. The syntax and se-
mantics of this language can be found in [3]. Intuitively,
each player a ∈ Σ conducts a set of guarded commands
in the form of guardξ → updateξ. The update step is
executed by each player choosing one of its commands
whose boolean guard evaluates to true. The next state
combines the outcomes of the guarded commands cho-
sen by the players.

Game-Based Verification of Contract Signing Protocols with Minimal Messages 5

We now describe how to model MPCS protocols in
detail, following [9]. Each participant is modelled as a
player4 using the above introduced guarded command
language. Different from other security protocols, the
security of MPCS protocols is threatened by dishonest
participants rather than an external intruder. In order
to model that a player could be either honest or mali-
cious, for each player Pi we build a process PiH, which
honestly follows the steps of his role in the protocol, and
another process Pi, which is allowed to cheat. An hon-
est signer only sends out a message when the required
messages according to the protocol are received, i.e., he
faithfully follows the protocol all the time. A dishonest
signer may send out a message if he gets enough infor-
mation for generating the message. He can even send
out messages when he is supposed to stop. The trusted
third party T is modelled to be honest throughout the
time. (More details about how to model MRT protocols
in Mocha in given in Sect. 4.2.)

3.3 Expressing properties of MPCS protocols in ATL

We formalise both fairness and timeliness as in [9]. For
signers Pi and Pj , a variable Pi Sj represents that Pi
has got Pj ’s signature. For each Pi, a variable Pi stop
models whether signer Pi has quit the protocol.

Timeliness. At any time, every signer has a strategy
to prevent endless waiting. Signer Pi’s timeliness is ex-
pressed as:

timelinessPi ≡ ∀2 (〈〈PiH〉〉3Pi stop).

where Pi stop represents that Pi has quit the protocol.

Fairness. A protocol is fair for signer Pi can be ex-
pressed by: if any signer obtains Pi’s signature, then Pi
has a strategy to get all the others’ signatures. In ATL,
it can be formalised as follows:

fairnessPi ≡ ∀2 ((
∨

1≤j 6=i≤n Pj Si)
⇒ 〈〈PiH〉〉3 (

∧
1≤j 6=i≤n Pi Sj))

where Pi Sj represents that Pi has received Pj ’s signa-
ture.

Chadha, Kremer and Scedrov also gave an invariant
formulation of fairness for Pi as follows:

invfairnessPi ≡ ∀2 (Pi stop⇒ ((
∨

1≤j 6=i≤n Pj Si)
⇒ (

∧
1≤j 6=i≤n Pi Sj))).

They have proved that if a contract signing proto-
col interpreted as a concurrent game structure satisfies

4 In Mocha, a player is modelled as an interactive module,
and a protocol is modelled as a set of interactive modules

timelinessPi for Pi then the protocol satisfies fairnessPi
iff it satisfies invfairnessPi [9, Thm. 3].5

Abuse-freeness. The formalisation of abuse-freeness
in ATL is more involved. Recall that abuse-freeness
means at any stage of the protocol, any set of signers
are unable to prove to an outside observer that they
have the power to choose between aborting the proto-
col and a fully signed contract. Depending on protocols,
to find abuse-freeness attacks, we need to show that it
is possible for the protocol to reach a stage of the pro-
tocol where a coalition of signers, e.g., Pi and Pj , have
a strategy either to end the protocol with an abort re-
sult or to end the protocol with the result in which the
coalition of signers gets other signer’s signature, e.g.,
the signature of Pk. This can be formalised as follows:

∃3 (an identified stage ∧
〈〈Pi, Pj〉〉2(¬Pk Si ∨ ¬Pk Sj) ∧
〈〈Pi, Pj〉〉2(Pk stop→ (Pi Sk ∧ Pj Sk))

In addition, we also need to show that at the identified
stage of the protocol, the coalition of signers (Pi and
Pj) prove to an outside observer that Pk commits to
sign the contract. Normally, the proof might be some
evidence signed by the TTP.

4 Analyses of Original MRT Protocols

The work of Mauw, Radomirović and Torabi Dashti [23]
aims to define a class of optimistic MPCS protocols ex-
cluding abort-chaining attacks. Their main contribution
is to derive the lower-bound message complexity of such
protocols from a long standing open problem in number
theory — the minimal length of a (number) sequence
containing all permutations of its elements as subse-
quences, to ensure fairness. We give a brief descrip-
tion of their work, and illustrate a fairness attack and
an abuse-freeness attack on the example protocol [23,
Sect. 7] for three signers. The fairness attack is due to
the fact that the example protocol does not faithfully
follow the design methodology of MRT which is not ex-
plicitly given in [23]. The abuse-freeness attack is due to
a design flaw in the abort sub-protocol, thus it applies
to all MRT protocols.

4.1 Design methodology of MRT protocols

Similar to other MPCS protocols (see Sect. 2), an MRT
protocol consists of a main protocol and a resolve sub-
protocol. In the main protocol signers exchange promises

5 Due to this result, for MRT protocols with four signers
we verify invfairnessPi instead of fairnessPi on their Mocha
models after we have successfully checked timeliness for Pi.

6 Ying Zhang et al.

of different levels, followed by a last round of signature
exchange. A signer can abort or resolve by launching the
resolve sub-protocol. In the following we briefly intro-
duce the design methodology of MRT protocols.

Signers are modelled as a finite set of numbers Γ =
{1, 2, . . . n}. A main protocol can be expressed as a nu-
meral string α ∈ Γ ∗, so called a signing sequence, re-
garded as the list of the indices of the signers in which
order they send out their messages. A signing sequence
for n signers can be divided into three phases. In the
initial phase, the first n− 1 signers send out their first
level promises according to the first n − 1 distinct el-
ements in the sequence. The middle phase is initiated
by a first level promise of the signer who was missed
out in the initial phase, followed by a sequence of num-
bers indicating the particular order of further promise
exchanges. In the end phase the signers exchange their
signatures. A typical signing sequence for n = 5 is of
the following form. The symbol ‘|’ is used to separate
different phases.

1234 | 543212345432 | 12345123

From the example one may easily observe that the end
phase needs to be at least of length 2n − 2, in that
the first n numbers, as a permutation, are for all the
signers to send out their signatures, and the remaining
n − 2 messages are necessary to further distribute the
signatures. The last receiver is implicit in a sequence
but can be uniquely determined, e.g., signer P4 in the
above example.

We write αi for the i-th member in a signing se-
quence α. Explicitly, a signing sequence can be uniquely
interpreted as a protocol in the following way.

1. In the i-th step signer Pαi sends out message mi

(1 ≤ i ≤ |α|) to another signer.
2. If it is Pαi

’s τ -th time appearing in a complete sign-
ing sequence, then Pαi ’s promise level in mi is ex-
actly τ . (Signers may have different promise levels
at the same point of time.)

3. Signatures are sent only in the end phase. The first
signature is sent by the first signer appearing in the
end phase.

4. The receiver of mi is the sender of mi+1, where 1 ≤
i < |α|.

5. The receiver of each message is allowed to have the
most recent promises or signatures of all the other
signers, provided that they have sent out promises
or signatures before. That is, a signer is supposed
to transfer all the necessary promises to his receiver.
Therefore, a sender may need to forward up to n−2
promises of other signers besides his own promise.

To design the content of messages, we must note
that, an MRT protocol is executed in a linear way,

which means, at each point of time there is at most
one message in traffic according to its design. Several
other protocols in the literature (e.g., [9,24]) allow a
signer to send messages to multiple other signers. At
each round a signer in the MRT protocols sends a mes-
sage to exactly one intended receiver (instead of sending
n − 1 messages to all other signers), and such a mes-
sage is supposed to let the receiver obtain the whole
history up to that received message. For example, the
message of signer Pi contains all his τ -th level promises
(on contract c) to every other signer in the form of
promτ (c, i), and several promises (perhaps of different
levels) that he has received from others. Intuitively,
promτ (c, i) is an encrypted message consisting of all
the PCSPi

((c, τ), Pj , T) where j 6= i. By forwarding
promises, an MRT protocol reduces the number of com-
munication messages.

A breach of fairness happens when an honest signer
sends out his signature without an effective way to
consequently receive messages from other signers. In-
tuitively, a history of all signers’ promises of sufficient
length helps to convince the trusted third party T that
every other signer in that protocol run has been contin-
uously active (in a certain sense), so that the construc-
tion of an abort chain is prohibited. Such a history also
provides T with the promises of all the participants,
to be later converted into a valid document with all
signatures. A major contribution of MRT [23] is show-
ing that a signing sequence α is free of abort-chaining
attacks iff α’s middle phase together with the first n
elements from its end phase contains all permutations
of the set Γ . Protocols generated from such sequences
Therefore, finding the shortest sequence containing all
permutations yields a solution to minimise the number
of message exchanges in this particular class of proto-
cols.

In the following we give a more detailed explanation
of its sub-protocols.

Main protocol. The signers send out and receive mes-
sages in the order specified by a signing sequence which
is generated from a shortest sequence containing all
permutations as introduced before. Upon receipt of a
message containing all required information, a signer
Pi generates a message consisting of all the up-to-date
promises and signatures and sends it to the next desig-
nated receiver.

If Pi does not receive the expected message, he may
quit the protocol if he has not sent out any messages
yet, or he may start the resolve protocol by sending
a resolve request to T . The request is in the form of
{resolve, i,Hi, c}i, where resolve is a reserved keyword
indicating Pi is contacting T for intervention, and Hi

Game-Based Verification of Contract Signing Protocols with Minimal Messages 7

is Pi’s history including all the messages he has sent or
received so far, which gives T sufficient information to
judge Pi’s current position in an execution. The identi-
fier c is meant to uniquely identify this contract signing
session that includes the contract text and the signing
partners. Pi’s request does not indicate whether Pi asks
T for abort or resolve. It is T ’s duty to make a decision
and to reply with an abort or a signed contract.

Resolve sub-protocol. For sub-protocols, an MRT
protocol does not explicitly distinguish abort and resolve
request, i.e., every request to the trusted third party T
is a resolve. It’s T ’s responsibility to make a decision to
reply with an abort or a signed contract. It is obvious
that if a signer in the initial phase sends a request to T ,
an abort will always be replied. However in the middle
phase and end phase, T will have to make a decision
based on whether all the previously requested signers
have been dishonest.

The trusted third party T maintains a tuple 〈c, status〉
in her database indicating a list of signers who have
contacted her so far. T also controls a variable T i(c)
for each Pi to record Pi’s executing position at the mo-
ment Pi contacts T . The variable T i(c) indicates the
highest level of promise Pi has sent out. Together with
the history Hi of each received request, T is able to
make a decision on whether to reply with an abort or
a signed contract. The reasoning patterns of T in the
sub-protocols of MRT are very similar to that of other
optimistic MPCS protocols (e.g. [9,24]): a signer is con-
sidered dishonest if he is shown by another signer’s
request to have continued in the main protocol after
having contacted T . However in the MRT protocols,
different signers may have different promise levels at
a particular position, which are induced by the sign-
ing sequences of the main protocols. As a consequence,
different signing sequences decide slightly different sub-
protocols for T . Informally, after receiving a request
from Pi:

– T checks if it is the first request that she has ever
received. If it is, T judges from Hi whether Pi’s cur-
rent execution position is in the initial phase. If yes,
T replies Pi with an abort and stores 〈c, (i : Hi)〉
into the database. If not, T replies Pi with a signed
contract and stores 〈c, S〉;

– If the request is not the first one, T checks if she
has ever sent a signed contract by checking if there
exists an entry 〈c, S〉 in its database,
– If yes, then T sticks to the decision and replies
Pi with a signed contract and stores 〈c, S〉;

– If not, that means T has replied an abort to a
signer. In order to decide whether to stick to the
abort or overturn it, T checks if all the signers

who have received an abort reply are cheating.
For each j ∈ 〈c, (j : Hj)〉, T checks whether
the current history Hi contains a new promise
of Pj , which means Pj continues the protocol af-
ter having contacted T . If yes, then T detects
that Pj is dishonest. If for all j ∈ 〈c, (j : Hj)〉,
Pj is detected to be dishonest, then T overturns
its abort decision and replies Pi with a signed
contract.6 Otherwise, T sticks to her abort deci-
sion and replies Pi with an abort. Meanwhile, T
stores 〈c, (i : Hi)〉.

4.2 Modelling MRT protocols in Mocha

Following the modelling methodology in Sect. 3.2, we
explain our Mocha models of MRT protocol in more
details as follows.

We use an integer Pr i j L = τ to represent that Pi
has sent out his τ -th level promise to Pj . In particular,
for MRT protocols, the integer Pr i k j L = τ repre-
sents that Pi has forwarded Pk’s τ -th level promise to
Pj .7 An action that a player sends out a certain level
of promise is modelled as a guarded command in which
the sender updates the corresponding integer variable
to the right level. The corresponding guard consists of
the received promises and previously sent out promises.
For signers Pi and Pj , a variable Pi Sj represents that
Pi has got Pj ’s signature. Since Pi continues to hold
Pj ’s signature once Pi gets it, we model that once Pi Sj
is set to true its value would never be changed there-
after. In our models, when an honest signer Pi receives
a signature from another player Pj , he will set the cor-
responding variable Pi Sj to true. When Pi receives a
signed contract from the trusted third party (as a reply
to his resolve request), he will also set the corresponding
variables Pi Sjs to true. For each Pi, a boolean variable
Pi contacted T models whether signer Pi has sent out a
resolve request to T . Another set of boolean variables,
in the form of Pi request τ1 . . . τi−1 τi+1 . . . τn, are
used to indicated that he has received promises of lev-
els τ1, . . . τi−1, τi+1, . . . , τn from the other signers.8 For
instance, the boolean variable P2 request 1 0 indicates
that the signer P2 has received P1’s 1-st level promise

6 Note that if there exists j ∈ 〈c, (j : Hj)〉 such that Pj is
honest, overturning an abort decision may cause the current
run unfair to Pj , which is an assumption that contributes to
abort-chaining attack and resolve-impossibility [24].

7 MRT protocols reduce message complexities by allowing
signers to forward other signers’ signatures. A detailed de-
scription of MRT protocols can be found in Sect. 4.

8 Since there are only few points in an MRT protocol
for a signer to send a resolve request, the number of such
boolean variables are small (see examples of MRT protocols
in Sect. 5).

8 Ying Zhang et al.

but no promise from P3 in a three-party MRT proto-
col. When a signer contacts T for a recovery, he will
also send these information to T . Based on these, T
will decide whether to abort or reply Pi with a signed
contract. These variables are false by default and set
to true when a resolve request is sent out by the signer
while he must have the corresponding levels of promises
from the other signers as the guard. For each Pi, a vari-
able Pi stop models whether signer Pi has quit the pro-
tocol. Since ¬Pi stop is one of conditions within each
Pi’s guarded command, Pi would never change any of
its variables once Pi stop is set to true. If a signer Pi
has not received the first expected messages during the
initial phase9 form other signers, he can quit the pro-
tocol by setting Pi stop to true. If he has received all
necessary signatures or he has received an abort token
or a signed contract from T , he finishes the protocol by
setting Pi stop to true as well. (For dishonest signers,
they might not stop at this stage.) There is an addi-
tional idle action for the signers meaning that they can
wait for some promises while doing nothing.

In our Mocha models, the guard for honest PiH
consists of all the conditions strictly according to the
protocol. While for the dishonest Pi, the guard just con-
sists of only the messages needed to generate a sending
message. We treat the robustness of the cryptographic
primitives as a basic assumption which are not explic-
itly modelled for our protocol. All Mocha models can
be found at [29].

4.3 A fairness attack on the example protocol in [23]

An MRT protocol with three signers was proposed in [23]
as an illustrating example. It is based on the signing
sequence 12 | 3123 | 1232 (see Fig. 1). The message
pr`(c, i) in the illustration is an abbreviation of prom`(c, i),
and s(c, i) represents Pi’s signature and last level promise
on contract c.

Our analysis in Mocha reveals an abort-chaining at-
tack in the example MRT protocol with three sign-
ers in [23]. This is due to the fact that the protocol
does not strictly follow the methodology as described
in Sect. 4.1. Here we also present a simple fix.

The protocol with its attack scenario is depicted in
Fig. 1. The abort-chaining attack is highlighted as shad-
owed rectangles. In this scenario, P1 and P3 are dishon-
est and collude to obtain P2’s signature. The attack is
achieved as follows, where promτ (c, i) denotes the τ -th
level promise of Pi on contract c:

– P1 sends his first message out, and then contacts T
with H1 = {prom1(c, 1)}, by which T presumes P1

9 See more explanation about the initial phase in Sect. 4.

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R
pr2(c, 1), pr2(c, 2)

Rpr2(c, 2), pr2(c, 3)

Rs(c, 1)

R
s(c, 1), s(c, 2)

R s(c, 3)
s(c, 2), s(c, 3)

Fig. 1 The example MRT protocol described in [23].

is in the initial phase, and replies with an abort, at
the same time storing 〈c, (1 : {prom1(c, 1)})〉 into
her database. After having contacted T , P1 contin-
ues in the main protocol till the end.

– P3 contacts T at the position of the first highlighted
R rectangle with

H3 = {prom1(c, 1), prom1(c, 2), prom1(c, 3)}.

This message does not reveal that P1 is continuing
the main protocol, thus T also replies with an abort
and stores

〈c, (3 : {prom1(c, 1), prom1(c, 2), prom1(c, 3)})〉

into her database. After having contacted T , P3 con-
tinues in the main protocol up to the receipt of P2’s
signature {sig(c, 2)}.

– P2 faithfully follows the main protocol till the end.
After sending out his signature, P2 will never re-
ceive P3’s signature. Then P2 contacts T with H2 =
{prom1(c, 1), prom1(c, 2), prom1(c, 3), prom2(c, 1),
prom2(c, 2), sig(c, 1), sig(c, 2)}. On receipt of such a
request, T is able to deduce that P1 has been dis-
honest. However, T is unable to conclude that P3 is
cheating, because P3’s second level promise was not
forwarded by P1 according to the protocol design as
shown in [23, Sect. 7].

This flaw is due to a violation of the design method-
ology in Sect. 4.1 (see the fifth item). In order to fix the
problem, we change P1’s last message from {sig(c, 1)}
into {sig(c, 1), prom2(c, 3)}, i.e., P1 is required to for-
ward all the up-to-date promises and signatures in his
hand to P2 (see Fig. 2). With P3’s second level promise
in H2, T is able to find out that P3 is dishonest. There-
fore, T can overturn her abort decision and guarantee
fairness for P2 by sending him the fully signed contract.

Game-Based Verification of Contract Signing Protocols with Minimal Messages 9

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R
pr2(c, 1), pr2(c, 2)

Rpr2(c, 2), pr2(c, 3)

Rs(c, 1),pr2(c,3)

R
s(c, 1), s(c, 2)

R s(c, 3)
s(c, 2), s(c, 3)

Fig. 2 The fixed MRT protocol.

4.4 An abuse-freeness attack on MRT protocols

We now describe how abuse-freeness fails in MRT pro-
tocols by the protocol described in Fig. 2 as an example
(after fixing the fairness attack).

In our scenario, where P1 is now honest and op-
timistic, we show that P2 and P3 are able to collude
to get a proof that (1) P1 is in the protocol, (2) they
have a strategy to abort the protocol and (3) they have
a strategy to get a fully signed contract. As shown in
Fig. 2, P1 starts the protocol by sending his first mes-
sage to P2. On receipt of P1’s first message, P2 sends
his first message to P3, then contacts T with H2 =
{prom1(c, 1), prom1(c, 2)}, by which T presumes P2 is
in the initial phase. Thus T replies P2 with [Abort, c]T .
In Fig. 2 this corresponds to the first rectangle labelled
A below P2.

At that point, if P2 and P3 show this reply to an
outside observer, say Charlie, Charlie will be convinced
that P1 has started the protocol. That is because P2’s
resolve request contains P1’s promise indicating P1’s
participation in this protocol. Charlie is not able to
verify prom1(c, 1), but T has the ability to verify it,
and P2 enforces T to do this job for Charlie by replying
[Abort, c]T for this contract c. Implicitly, c indicates the
participation of P1, which is thus proved authentic by
T . On the other hand, P2 is unable to get that reply
without P1’s participation. Therefore, Charlie will be
convinced that P1 has started the protocol. Besides, P2

and P3 are able to decide the result of the protocol: If
they want the protocol to be aborted, they can simply
quit the protocol. P1 may contact T with a resolve re-
quest but can only get an abort reply, because T has
replied P2 with an abort and she has not detected that
P2 is dishonest, so she sticks to her abort decision; if

they want to get a signed contract, they can just con-
tinue the main protocol till the end.

We can express the abuse-freeness property in this
particular protocol for P3 in ATL as follows:

¬∃3 (T Abort Send P2 ∧
〈〈P2, P3〉〉2(¬P1 S2 ∨ ¬P1 S3) ∧
〈〈P2, P3〉〉2(P1 stop→ (P2 S1 ∧ P3 S1))

where T Abort Send P2 represents that T has replied
P2 with an abort reply. As discussed before, this reply
means that T has validated P2’s resolve request which
contains some communication history, i.e., it is a proof
of P1’s participation in the current run. Pi Sj represents
that Pi has received Pj ’s signature. P1 stop is used to
prevent P1 from idling forever (since P1 is optimistic).
Consequently, this formula represents that it is not pos-
sible to reach a point where P2 and P3 can collude to
prove to an outside observer that:

1. P1 is participating in the protocol: T Abort Send P2

is true;
2. they have a strategy to end the protocol with an

abort result, namely, P1 cannot get all the signatures
of others: ¬P1 S2 ∨ ¬P1 S3;

3. they have a strategy to end the protocol (when the
boolean variable P1 stop becomes true) with a fully
signed contract: P2 S1 ∧ P3 S1.

In order to model P1 as an optimistic signer to ver-
ify the protocol in Fig. 2 for abuse-freeness, we could
follow [9] and modify our original model by adding a
module Timer, in which we define a timer for each re-
solve of P1. Each time P1 sends out a message, he sets
the value of the corresponding timer to true. P1 only
contacts T when the timer is expired. Intuitively, Timer
enforces P1 to wait sufficiently long before contacting
T . Thus, in order to check abuse-freeness for optimistic
P3, the above formula can be re-formulated as follows:

¬∃3 (T Abort Send P2 ∧
〈〈P2, P3,Timer〉〉2(¬P1 S2 ∨ ¬P1 S3) ∧
〈〈P2, P3,Timer〉〉2(P1 stop→ (P2 S1 ∧ P3 S1))

where the Timer in 〈〈P2, P3, T imer〉〉 enforces P1 to be
optimistic.

Mocha detects the violation of abuse-freeness for our
optimistic model for the protocol in Fig. 2. Such abuse-
freeness flaw also exists in MRT protocols with four
signers. For four-party MRT protocols, suppose P1 is
honest and optimistic, then if dishonest P2 contacts T
after he receives P1’s first message, he could also col-
lude with P3 and P4 to break P1’s abuse-freeness in the
similar way. Chadha, Kremer and Scedrov has detected

10 Ying Zhang et al.

a similar vulnerability against abuse-freeness for GM
protocols [18] in [9].

Note that if signer P1 is honest but not optimistic,
such abuse-freeness attack cannot be achieved. The rea-
son is that if P1 is not optimistic, he could contact T
after sending out his first message as permitted in the
protocol, which makes P1 get an abort reply and pre-
vents P2 and P3 getting P1’s signature.

The violation of abuse-freeness in this protocol is
due to the content of the resolve message. Thus, this
attack generally applies to every MRT protocol. The
MRT protocols do not distinguish abort and resolve re-
quests. All requests in the MRT protocols have the same
form. Thus, if P2 contacts T with his communication
history, namely, P1’s promise, and gets an abort reply
from T , then this reply will indicate that T has val-
idated P1’s promise contained in P2’s request, which
serves as an evidence proving P1’s participation.

A solution to fix such a flaw is to reintroduce the dis-
tinction between the abort and resolve requests (see [24].
In that case, an abort request contains no history, thus
an abort reply cannot prove P1’s participation. 10

5 Analyses of Revised MRT Protocols

In this section we assume that the MRT design method-
ology has been revised in response to the attacks de-
scribed in the previous section. Each MRT protocol con-
sists of a main protocol, a resolve sub-protocol and an
abort sub-protocol. The design of the main protocol and
resolve sub-protocol remain the same as in Sect. 4.1. We
focus on the abort sub-protocol.

In revised MRT protocols, the signers at the initial
phase are allowed to send abort requests to the trusted
third party T . After receiving an abort request from Pi,
T first checks if she has ever sent out a signed contract.
If not, i.e., validated is false, T adds i into S(c), sends
Pi an abort reply, and stores the reply. Besides, T sets
hi(c) = 1 and `i(c) = 0. Otherwise, T sends a signed
contract to Pi. In the following, we design and verify a
number of MRT protocols for 3 and 4 signers.

MRT protocols with three signers. To design MRT
protocols with three signers, first we need to find the
shortest sequences containing all permutations of the
set {1, 2, 3} as a subsequence. There exist 7 distinct
shortest sequences (modulo isomorphism) which con-
tain all permutations of {1, 2, 3} and they are presented

10 This even helps in subsequent unsuccessful resolve re-
quests. Suppose P2 aborts and then P3 resolves and gets an
abort reply from T . Since all the abort replies are of the same
form [Abort, c]T , the second abort token does not make it more
convincing to an outside party.

below. The sequence to the left of the ‘|’ symbol is the
middle phase, and the right sequence is the partial end
phase. We design MRT protocols with three signers us-
ing these sequences.

Ê 3123 | 123 (the instance sequence in [23])
Ë 3121 | 321
Ì 3123 | 132
Í 31323 | 13
Î 31321 | 31
Ï 3123 | 213
Ð 3121 | 312

For sequence Ë, first we complete the end phase by
appending a 2 in the end, then add the initial phase 12
at the beginning, and get a complete signing sequence
12 | 3121 | 3212. After that, we design the contents of
communication messages. First P1 sends his 1-st level
promise to P2. P2 generates a message containing his
1-st level promise and P1’s 1-st level promise to P3. P3

generates a message containing his 1-st level promise
and P2’s 1-st level promise to P1. Then P1 appears in
the sequence again, so P1 sends his 2-nd level promise
as well as P3’s 1-st level promise to P2. Everyone sends
his signature in the end phase. As the number of each
signer’s appearances in the final signing sequence are
different, the promise levels of each signer are also dif-
ferent. In the end phase, P3 is the first one who sends
his signature out, and his signature is with his 3-rd level
promise. While for P1, his signature is with his 4-th level
promise. The designed protocol is specified in Fig. 3.
The rectangles represent the points where a signer can
send a request to contact T . A signer can contact T at
such a point to complain that he has sent his message
out but has not received the expected message. The
labels in the rectangles represent what a signer would
expect from T ’s reply when sending a request from that
point. Label A denotes T replies with an abort, and la-
bel R denotes T may reply with an abort or a signed
contract. T makes her reply decision at R points accord-
ing to her knowledge about signers. Whether the points
are labelled to A or R depends on the position of the
request. If the request position is in the initial phase,
then the points are labelled as A. Otherwise, the points
are labelled as R. For example, the first rectangle with
a label A denotes that: P1 has sent out the first message
{pr1(c, 1)} to T , indicating that he has not received the
expected incoming message {pr1(c, 2), pr1(c, 3)}. On re-
ceipt of that resolve request, T checks her database and
the request content. If no inconsistencies are detected,
T replies P1 with an abort.

For sequence Ì, we can get the corresponding sign-
ing sequence 12 | 3123 | 1321. For this sequence, each
signer commits the same level of promises (3-rd level)

Game-Based Verification of Contract Signing Protocols with Minimal Messages 11

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R pr2(c, 2)

R pr3(c, 1), pr2(c, 2)

R pr3(c, 1), s(c, 3)

R
s(c, 2), s(c, 3)

Rs(c, 1)
s(c, 1), s(c, 2)

Fig. 3 A 3-party MRT protocol for sequence Ë

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R
pr2(c, 1), pr2(c, 2)

Rpr2(c, 2), pr2(c, 3)

Rs(c, 1)

R s(c, 3), s(c, 1)

R
s(c, 2), s(c, 3)

s(c, 2)

Fig. 4 A 3-party MRT protocol for sequence Ì

upon reaching the end phase. The designed protocol is
specified in Fig. 4.

For sequence Í, we can get the corresponding sign-
ing sequence 12 | 31323 | 1321. In order to complete the
final signature distribution, we need to add two more
messages in the end phase. This is an example showing
that a shortest sequence containing all permutations
does not necessarily give rise to a protocol with mini-
mal messages. Fig. 5 is the illustration of the designed
protocol.

The completed signing sequence for sequence Î is
12 | 31321 | 3123. This sequence also requires append-
ing two numbers in the end phase for completing the
final signing sequence. Fig. 6 is the illustration of the
designed protocol.

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1)

R pr2(c, 1), pr2(c, 3)

Rpr2(c, 2)

Rpr3(c, 3), pr2(c, 2)

Rs(c, 1)

R s(c, 1), s(c, 3)

R
s(c, 2), s(c, 3)

s(c, 2)

Fig. 5 A 3-party MRT protocol for sequence Í

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1)

R pr2(c, 1), pr2(c, 3)

R
pr2(c, 2), pr2(c, 3)

R pr3(c, 1), pr2(c, 2)

R s(c, 3)

Rs(c, 1), s(c, 3)
s(c, 1), s(c, 2)

R s(c, 2)

Fig. 6 A 3-party MRT protocol for sequence Î

For sequence Ï, we get the corresponding signing
sequence 12 | 3123 | 2132, in which every signer sends
out his signature together with his 3-rd level promise.

The completed signing sequence for sequence Ð is
12 | 3121 | 3123. Fig. 8 illustrates the protocol designed
from the sequence. In the end phase, P1’s signature is
sent with his 4-th level promise, and all the others’ sig-
natures are sent with their 3-rd level promises.

MRT protocols with four signers. For four signers,
there are 9 distinct sequences modulo isomorphism that
contain all permutations of {1, 2, 3, 4}:

12 Ying Zhang et al.

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R
pr2(c, 1), pr2(c, 2)

R pr2(c, 3)

R
s(c, 2), pr2(c, 3)

Rs(c, 1), s(c, 2)

R s(c, 1), s(c, 3)
s(c, 3)

Fig. 7 A 3-party MRT protocol for sequence Ï

P1 P2 P3

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

Apr1(c, 2), pr1(c, 3)

Rpr2(c, 1), pr1(c, 3)

R pr2(c, 2)

R pr3(c, 1), pr2(c, 2)

R s(c, 3)

Rs(c, 1), s(c, 3)

R
s(c, 1), s(c, 2)

s(c, 2)

Fig. 8 A 3-party MRT protocol for sequence Ð

À 42314234 | 1243
Á 42314234 | 1234
Â 42314234 | 1324
Ã 42314324 | 1234
Ä 42314324 | 1342
Å 42314324 | 1324
Æ 42312432 | 1423
Ç 42312432 | 1432
È 42312432 | 1342

We take 3 typical sequences – sequence Á, Ã and Æ

and generate protocols out of them.
For sequence Á, the completed signing sequence is

123 | 42314234 | 123432. When designing the message
contents, we notice that as the number of signers in-
creases, the promises levels contained in one message
become more and more complex. Therefore, we must

make sure that we strictly follow the methodology in
Sect. 4.1 to avoid mistakes. Fig. 9 shows a designed
protocol for this sequence.

The completed sequences for sequence Ã and se-
quence Æ and the corresponding protocols are as fol-
lows:

Ã 42314324 | 1234 → 123 | 42314324 | 123432
Æ 42312432 | 1423 → 123 | 42312432 | 142324

We have verified fairness and timeliness properties
of the MRT protocols generated from all 7 shortest se-
quences for three signers. As for four signers, we verified
the protocols generated from sequence Á, Ã and Æ. All
Mocha models can be found at [29].

6 Related Work

We first discuss the literature that are most related
to our work on formal verification of MPCS protocols.
Chadha, Kremer and Scedrov [9] used Mocha to check
properties (fairness, timeliness and abuse-freeness) of
the GM protocol and discovered a problem with fair-
ness in the case of four signers. To fix this problem, they
revised the GM protocol by modifying one of its sub-
protocol (resulting in a protocol which we call the CKS
protocol). An abuse-freeness vulnerability was also found
in the GM protocol for three signers. This is due to the
fact that T ’s reply to a signer’s abort or resolve request
contains additional information, which can be used as
a proof to an outside challenger showing the other sign-
ers’ participation in the protocol. Their fix is to exclude
the additional information from T ’s replies. The CKS
protocol was successfully verified using Mocha for four
signers. Mukhamedov and Ryan [24] later showed that
the CKS protocol is not fair for n ≥ 5 by giving an
abort-chaining attack. By an informal argument they
also showed that no resolve protocol can fix the prob-
lem. They proposed a fixed protocol (which we call the
MR protocol) based on the CKS protocol (using simi-
lar abort and resolve sub-protocols). The fairness of the
MR protocol has been analysed in NuSMV for 5 signers.
Mukhamedov and Ryan claimed that their protocol is
abuse-free because of the use of PCS. We followed the
approach of Chadha, Kremer and Scedrov to use Mocha
to model check the MR protocol with up to 5 signers
and both fairness and timeliness properties were suc-
cessfully checked [28]. In our work [28], the formulation
of fairness in ATL as winning strategies is model in-
dependent, while Mukhamedov and Ryan have to split
fairness into two CTL sub-properties in order to cover
all possible scenarios, for which it is necessary to go
through a number of cases (see [24], Sect. 7).

Game-Based Verification of Contract Signing Protocols with Minimal Messages 13

P1 P2 P3 P4

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

A
pr1(c, 1), pr1(c, 2), pr1(c, 3)

Apr1(c, 3), pr1(c, 4)

Rpr2(c, 2), pr1(c, 4)

Rpr2(c, 2), pr2(c, 3), pr1(c, 4)

Rpr2(c, 1), pr2(c, 2), pr2(c, 3)

R pr2(c, 1), pr2(c, 3), pr2(c, 4)

Rpr2(c, 1), pr3(c, 2), pr2(c, 4)

R
pr3(c, 2), pr3(c, 3)

Rpr3(c, 2), pr3(c, 3), pr3(c, 4)

Rs(c, 1), pr3(c, 3), pr3(c, 4)

R
s(c, 1), s(c, 2), pr3(c, 4)

R
s(c, 1), s(c, 2), s(c, 3)

R s(c, 4)
s(c, 3), s(c, 4)

s(c, 2), s(c, 3), s(c, 4)

Fig. 9 A 4-party MRT protocol for sequence Á 123 | 42314234 | 123432.

P1 P2 P3 P4

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

A
pr1(c, 1), pr1(c, 2), pr1(c, 3)

Apr1(c, 3), pr1(c, 4)

Rpr2(c, 2), pr1(c, 4)

R
pr2(c, 2), pr2(c, 3), pr1(c, 4)

Rpr2(c, 1), pr2(c, 2), pr2(c, 3)

R pr2(c, 1), pr2(c, 4)

Rpr2(c, 1), pr3(c, 3), pr2(c, 4)

Rpr3(c, 2), pr3(c, 3)

R
pr3(c, 2), pr3(c, 3), pr3(c, 4)

Rs(c, 1), pr3(c, 4)

R s(c, 1), s(c, 2), pr3(c, 4)

R s(c, 1), s(c, 2), s(c, 3)

R s(c, 4)

s(c, 3), s(c, 4)

s(c, 2), s(c, 3), s(c, 4)

Fig. 10 A 4-party MRT protocol for sequence Ã 123 | 42314324 | 123432.

14 Ying Zhang et al.

P1 P2 P3 P4

pr1(c, 1)

A
pr1(c, 1), pr1(c, 2)

A
pr1(c, 1), pr1(c, 2), pr1(c, 3)

Apr1(c, 3), pr1(c, 4)

Rpr2(c, 2), pr1(c, 4)

Rpr2(c, 2), pr2(c, 3), pr1(c, 4)

Rpr2(c, 1), pr2(c, 3)

R
pr2(c, 1), pr3(c, 2), pr2(c, 3)

R pr2(c, 1), pr3(c, 2), pr3(c, 4)

R
pr3(c, 3), pr3(c, 4)

R
pr4(c, 2), pr3(c, 3), pr3(c, 4)

Rs(c, 1), pr4(c, 2), pr3(c, 3)

R s(c, 1), s(c, 4)

Rs(c, 1), s(c, 2), s(c, 4)

R s(c, 3)

s(c, 2), s(c, 3)

s(c, 2), s(c, 3), s(c, 4)

Fig. 11 A 4-party MRT protocol for sequence Æ 123 | 42312432 | 142324.

Two-party contract signing protocols have been pre-
viously analysed using the finite model checker Murφ [26],
an inductive method based on multiset rewriting [8],
and Mocha [15] to discover errors and suggest fixes.
Unlike in the two-party cases, the complexity of multi-
party protocols comes from the requirement that a se-
curity requirement (e.g., fairness, timeliness and abuse-
freeness) needs to be satisfied for every partipant, and
in order to achieve this requirement, a trusted third
party is allowed to overturn an abort decision she has
previously made. Consequently, it is much more diffi-
cult to design and verify MPCS protocols. Especially it
is the case of MRT protocols in which the behaviours of
distinct parties are totally asymmetric (as derived from
minimal message sequences), unlike GM, CKS and MR
protocols in which signers have relatively symmetric be-
haviours.

7 Discussion and Conclusion

We have applied the model checker Mocha to verify a
number of MRT protocols [23]. All the Mocha models
and ATL properties used by our models are available
at [29]. Mocha allows one to specify properties in ATL
which is a branching-time temporal logic with game
semantics, and the model checking problem for ATL
requires the computation of winning strategies. The

use of Mocha allows us to have a precise and natural
formulation of desirable properties of contract signing.
The generality of this approach is demonstrated by its
use in the verification of other fair exchange protocols,
e.g., [16,20,21].

The main result of Mauw, Radomirović and Torabi
Dashti [23] made it feasible to construct fair MPCS
protocols with a minimal number of messages. Their
main theorem [23] states that there is a fair sequence
of length n2 − n + 3, where n is the number of signers
in an MPCS protocol. This fair sequence contains all
permutations of {1, . . . , n} as sub-sequences, and it can
be transformed into a (linearly ordered) MPCS pro-
tocol of length n2 + 1. However, the resulting MPCS
protocol is only free of abort-chaining attacks, and it
is merely conjectured that this implies fairness. We de-
scribed how to derive an MRT protocol from a minimal
signing sequence explicitly. In particular, we discovered
an abort-chaining attack in the published MRT proto-
col with three signers [23] and an abuse-freeness attack
for all MRT protocols. The first attack is due to a mis-
take in designing this particular protocol, which can
be fixed by following MRT’s design methodology. The
second attack is due to a design flaw in the content
of the resolve messages. A solution to fix it is by rein-
troducing an abort sub-protocol to treat abort requests
differently. After revising the design methodology with

Game-Based Verification of Contract Signing Protocols with Minimal Messages 15

our solution to the abuse-freeness attack, we developed
a number of MRT protocols for three and four signers
and successfully verified all of them in Mocha.

To demonstrate the attack on abuse-freeness using
Mocha, we have to model optimistic behaviour of sign-
ers and to identify a stage in a protocol execution where
a coalition of signers have a strategy to abort the pro-
tocol, and another strategy to end the protocol with
the coalition getting all the other signers’ signatures.
In addition, we also need to show that at this partic-
ular stage the coalition can prove to an outsider that
the other signers have committed to sign the contract.
Such proofs may vary for different protocols. In general,
how to formalise a generic notion of abuse-freeness in
a precise and correct way is still a challenging research
topic [10,14,12].

In this paper, our analyses are performed automat-
ically using Mocha. In principle, we could also apply
MCMAS [22], a model checker for verification of epis-
temic and ATL properties in multi-agent systems, which
has been applied to security protocols, e.g., [7,27]. How-
ever, as the performance of MCMAS on ATL properties
is still unclear to us, our choice to use Mocha in this
work is arbitrary. We believe it will be an interesting
topic to produce a translation of our Mocha models to
MCMAS for a comparative study.

We have verified protocols for fairness and timeli-
ness with a quite limited number of signers (up to four).
The verification of the timeliness property in Mocha
usually took minutes while for fairness properties it
might need a number of days, possibly due to the asym-
metry in MRT’s protocol design. A possible future di-
rection is to study ways of abstractions [19] in order
to analyse models in Mocha with more signers. Using
an inductive approach, e.g. [25], to prove correctness of
the protocols with a more general setting is also inter-
esting. However, such proofs might be highly nontrivial
if the behaviours of signers in an MPCS protocol are
not totally symmetric and especially for MRT proto-
cols, have a non-uniform construction on the order of
signers’ positions.

Acknowledgement. We thank Saša Radomirović for
many helpful discussions and the anonymous reviewers
for their constructive comments.

References

1. Adleman, L.: Short permutation strings. Discrete Mathe-
matics 10 (1974) 197–200

2. Alur, R., Henzinger, T.A.: Reactive modules. Formal
Methods in System Design 15(1) (1999) 7–48

3. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Ra-
jamani, S.K., Tasiran, S.: Mocha: Modularity in model

checking. In: Proc. 10th Conference on Computer Aided
Verification. LNCS 1427., Springer (1998) 521–525

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-
time temporal logic. Journal of the ACM 49(5) (2002)
672–713

5. Asokan, N., Schunter, M., Waidner, M.: Optimistic pro-
tocols for fair exchange. In: Proc. 4th ACM conference
on Computer and Communications Security. ACM (1997)
7–17

6. Asokan, N., Shoup, V., Waidner, M.: Optmistic fair ex-
change of digital signatures. Selected Areas in Communi-
cations 18(4) (2000) 591–606

7. Boureanu, I., Cohen, M., Lomuscio, A.: Automatic veri-
fication of temporal-epistemic properties of cryptographic
protocols. Journal of Applied Non-Classical Logics 19(4)
(2009) 463-487

8. Chadha, R., Kanovich, M., Scedrov, A.: Inductive meth-
ods and contract-signing protocols. in: Proc. 8th ACM
Conference on Computer and Communications Security.
ACM (2001) 176–185

9. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of
multi-party contract signing. Journal of Automated Rea-
soning 36(1-2) (2006) 39–83

10. Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.:
Contract signing, optimism, and advantage. Journal of
Logic and Algebraic Programming 64(2) (2005) 189–218

11. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia,
F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.:
NuSMV 2: An open source tool for symbolic model check-
ing. In: Proc. 14th Conference on Computer Aided Verifi-
cation. LNCS 2404., Springer (2002) 359–364

12. Cortier, V., Küsters, R., Warinschi, B.: A cryptographic
model for branching time security properties - the case of
contract signing protocols. In: Proc. 12th European Sym-
posium on Research in Computer Security. LNCS 4734.,
Springer (2007) 422–437

13. Emerson, E.A.: Temporal and modal logic. In: Handbook
of Theoretical Computer Science (B), MIT Press (1990)
955–1072

14. Kähler, D., Küsters, R., Wilke, T.: A Dolev-Yao-based
definition of abuse-free protocols. In: Proc. 33rd Collo-
quium on Automata, Languages and Programming. LNCS
4052., Springer (2006) 95–106

15. Kremer, S., Raskin, J.-F.: Game analysis of abuse-free
contract signing. In: Proc. 15th IEEE Computer Security
Foundations Workshop. IEEE CS (2002) 206–222

16. Kremer, S., Raskin, J.-F.: A game-based verification of
non-repudiation and fair exchange protocols. Journal of
Computer Security 11(3) (2003) 399–430

17. Kremer, S., Markowitch, O., Zhou, J.: An intensive sur-
vey of fair non-repudiation protocols. Computer Commu-
nications 25(17) (2002) 1606–1621

18. Garay, J.A., MacKenzie, P.D.: Abuse-free multi-party
contract signing. In: Proc. 13th Symposium on Distributed
Computing. LNCS 1693., Springer (1999) 151–165

19. Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin,
J.F.: Abstract interpretation of game properties. In: Proc.
7th Conference on Statics Analysis Symposium. LNCS
1824., Springer (2000) 220–239

20. Liu, Z., Pang, J., Zhang, C.: Extending a key-chain based
certified email protocol with transparent TTP. In: Proc.
6th IEEE/IFIP Symposium on Trusted Computing and
Communications. IEEE CS (2010) 630–636

21. Liu, Z., Pang, J., Zhang, C.: Verification of a key-chain
based TTP transparent CEM protocol. In: Proc. 3rd
Workshop on Harnessing Theories for Tool Support in
Software. ENTCS 274., Elsevier (2011) pp 51–65

16 Ying Zhang et al.

22. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model
checker for the verification of multi-agent systems. In:
Proc. 21st Conference on Computer Aided Verification.
LNCS 5643., Springer (2009) 682-688

23. Mauw, S., Radomirović, S., Torabi Dashti, M.: Minimal
message complexity of asynchronous multi-party contract
signing. In: Proc. 22nd IEEE Computer Security Founda-
tions Symposium, IEEE CS (2009) 13–25

24. Mukhamedov, A., Ryan, M.D.: Fair multi-party contract
signing using private contract signatures. Information and
Computation 206(2-4) (2008) 272–290

25. Paulson, L.C.: The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security 6(1-2)
(1998) 85-128

26. Shmatikov, V., Mitchell, J.: Finite-state analysis of two
contract signing protocols. Theoretical Computer Science
283(2) (2002) 419–450

27. Zhang, C., Pang, J. How to work with honest but curious
judges? (preliminary report). In: Proc. 7th Workshop on
Security Issues in Concurrency. EPTCS 7, (2009) 31-45

28. Zhang, Y., Zhang, C., Pang, J., Mauw, S.: Game-based
verification of multi-party contract signing protocols. In:
Proc. 6th Workshop on Formal Aspects in Security and
Trust. LNCS 5983., Springer (2009) 186–200

29. Zhang, Y., Zhang, C., Pang, J., Mauw, S.: Game-based
verification of multi-party contract signing protocols –
Mocha models and ATL properties (2009) Available at
http://satoss.uni.lu/members/jun/mpcs/.

