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Abstract

Purpose—Regional infarction identification is important for heart disease diagnosis and 

management, and myocardial deformation has been shown to be effective for this purpose. 

Although tagged and strain-encoded MR images can provide such measurements, they are 

uncommon in clinical routine. On the contrary, cardiac CT images are more available with lower 

costs, but they only provide motion of cardiac boundaries and additional constraints are required to 

obtain the myocardial strains. The goal of this study is to verify the potential of contrast-enhanced 

CT images on computer-aided regional infarction identification.

Methods—We propose a biomechanical approach combined with machine learning algorithms. 

A hyperelastic biomechanical model is used with deformable image registration to estimate 3D 

myocardial strains from CT images. The regional strains and CT image intensities are input to a 

classifier for regional infarction identification. Cross-validations on ten canine image sequences 

with artificially induced infarctions were used to study the performances of using different feature 

combinations and machine learning algorithms.

Results—Radial strain, circumferential strain, first principal strain, and image intensity were 

shown to be discriminative features. The highest identification accuracy (85±14%) was achieved 

when combining radial strain with image intensity. Random forests gave better results than support 

vector machines on less discriminative features. Random forests also performed better when all 

strains were used together.

Conclusion—Although CT images cannot directly measure myocardial deformation, with the 

use of a biomechanical model, the estimated strains can provide promising identification results 

especially when combined with CT image intensity.
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1 Introduction

Myocardial infarction is the myocardial cell death caused by prolonged ischemia, which 

may lead to sudden death or severe haemodynamic deterioration [1]. Myocardial ischemia is 

mainly caused by coronary heart disease, which kills over 370 000 people in the United 

States annually [2]. As early treatment of myocardial ischemia can substantially reduce the 

mortality rate [3], reducing the number of misdiagnosis is important [4]. Computer-aided 

infarction identification, whose major function is to aid diagnosis, can be useful for this 

purpose. For regional identification which is crucial for disease diagnosis and management, 

cardiac images can be combined with biomechanical and computational techniques to 

achieve computer-aided diagnosis.

1.1 Cardiac images for regional myocardial deformation

Compared with global cardiac measurements such as wall thickening or ejection fraction, 

regional myocardial deformation has the potential for early quantification and identification 

of cardiac dysfunction especially for myocardial infarction [5–7]. Cardiac magnetic 

resonance (MR) imaging techniques such as tagged and strain-encoded imaging are useful in 

this aspect [8, 9]. MR tagging has been considered as the gold standard for imaging in vivo 

myocardial deformation. Using a special pulse sequence for spatial modulation of 

magnetization, MR tagging produces tag lines or grids that deform with the underlying 

motion of the heart, and the myocardial deformation can be obtained by analyzing their 

motion [8]. Strain-encoded MR imaging produces images which are encoded with the strain 

values of myocardial deformation [9]. Using images of different views, the peak 

circumferential and longitudinal strains can be measured without time-consuming 

postprocessing. Regardless of their capabilities of revealing local myocardial deformation, 

these imaging techniques are uncommon in clinical routine and are relatively expensive. 

Furthermore, the image quality is limited as multiple cardiac cycles are required to produce 

the images, and the long breath-hold time can be difficult for some patients. Moreover, MR 

imaging is unsuitable for patients with implanted electronics devices, such as patients with 

previous myocardial infarction.

On the contrary, cardiac computed tomographic (CT) images are clinically more common 

with lower costs. Using CT systems such as the 256-slice and 320-detector row scanners, a 

high-resolution 3D image sequence of a cardiac cycle can be produced in just a single 

heartbeat, thus virtually no breath-hold is required [10]. In consequence, CT images also 

have higher image resolution than MR images in general. Nevertheless, CT imaging 

associates with potential radiation risks, although strategies such as iterative reconstruction 

have been proposed to reduce the radiation dose [11]. Moreover, different from tagged and 

strain-encoded MR images, CT images can only provide motion of salient features such as 

the cardiac boundaries. Therefore, additional model constraints are required to estimate the 

myocardial deformation [7].

Wong et al. Page 2

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.2 Computer-aided infarction identification

Despite the extensive studies of cardiac images in disease diagnosis [5, 6, 12, 13], there are 

only limited frameworks proposed for computer-aided infarction identification. In [14], 2D 

ultrasound images were used to identify if a heart is normal or infarcted using a support 

vector machine (SVM), and the results of using the texture descriptors computed by discrete 

wavelet transform, gray-level co-occurrence matrix, and high-order spectra were compared. 

In [15], regional 2D myocardial strains and rotation angles were estimated from each 2D 

tagged MR image sequence using nontracking-based estimation. By combining these 

spatiotemporal measurements into a matrix, a tensor-based linear discriminant analysis 

framework was proposed to verify whether a heart is normal or diseased. The regional 

cardiac abnormality can also be revealed by back-projecting the low-dimensional subspace 

feature to the original feature space. In [16], spatiotemporal measurements of the 

endocardium and epicardium were extracted from each 2D cine MR image sequence at 

different ventricular levels using image registration. By using the Shannon's differential 

entropies of these patterns, a naive Bayes classifier was used to identify regional infarction. 

To the best of our knowledge, there are currently no computer-aided regional infarction 

identification frameworks specifically proposed for CT images except our preliminary work 

published in [17].

1.3 Our framework

To study the potential of using contrast-enhanced CT images on computer-aided regional 

infarction identification, we propose a biomechanical approach combined with machine 

learning techniques (Fig. 1). Different from tagged or strain-encoded MR images, CT 

images cannot directly provide the myocardial deformation. Therefore, to estimate 3D 

myocardial strains, displacements of the cardiac boundaries are computed using deformable 

image registration. By applying these boundary displacements to a finite element (FE) 

representation of the heart with hyperelastic and isotropic material properties, the 3D finite 

strains are computed by solving the cardiac system dynamics. Apart from strains, CT image 

intensity, which has been shown to be highly correlated to infarction, is also utilized [12]. 

For regional identification, the left ventricle is divided into the 17 zones of the American 

Heart Association (AHA) nomenclature [18], and the zonal strains and image intensities are 

input to a machine learning classifier. To evaluate the identification capability, leave-one-

subject-out (LOSO) cross-validations were performed on ten canine cardiac image 

sequences with artificially induced infarctions. Although this paper is based on our 

preliminary work in [17], more details and analyses are covered, such as the comparisons of 

using different image registration approaches, feature combinations, and machine learning 

algorithms.

2 Myocardial strain estimation from CT images

Regional myocardial deformation has the potential for early quantification and identification 

of cardiac dysfunction, and cardiac images provide a good source of such information [5–7, 

13]. Although multidetector CT systems can provide 3D high-resolution cardiac images in 

just a single heartbeat, these images cannot directly provide the myocardial deformation but 

the motion of the salient features such as the cardiac boundaries. To relate such motion with 
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the myocardial deformation, we use a biomechanical approach for physically plausible strain 

estimation (Fig. 2). Deformable image registration is used to extract motion from images, 

and strain estimation is realized as enforcing such motion on the cardiac boundaries of the 

FE heart representation.

2.1 Heart representation

The finite element method is used to handle the complicated biomechanical model and 

boundary conditions [19]. To obtain the FE heart representation, the semiautomatic 

segmentation tool in CardioViz3D is applied on the end-diastolic image to provide the left 

ventricular geometry [20]. The resulted binary mask is then input to a mesh generating and 

processing toolbox, iso2mesh, for the tetrahedral mesh [21]. The mesh is partitioned into the 

17 AHA zones for regional analysis, and thus each mesh node is associated with one of the 

zones [18]. By enforcing the image-derived displacement boundary conditions, the FE mesh 

is deformed through the biomechanical model for the myocardial strain estimates.

2.2 Motion tracking with deformable image registration

Because of the high image quality of contrast-enhanced CT images, motion tracking 

algorithms developed for cine MR images can be adopted [7]. During the initial framework 

development, the block-matching method which compares local image blocks between 

consecutive images was used. Nevertheless, without additional constraints, the resulted 

displacement fields can be unsmooth and physically unrealistic deformation may occur. As a 

result, filtering techniques or manual adjustments may be required, and this complicates the 

framework.

To facilitate implementation and clinical applications, deformable image registration is used 

instead [22]. This approach provides smooth deformation fields because of the nature of the 

B-spline transform, and its ITK implementation can provide robust inputs to our strain 

estimation. Image registrations are only performed on the cropped 3D volumes of the left 

ventricle for better accuracy. Mutual information is used as the similarity metric, with the 

number of histogram bins as 100. The number of control points for the B-spline transform is 

eight in each dimension. The L-BFGS optimizer is used with the gradient convergence 

tolerance as 10−5. These parameters were obtained empirically.

We have investigated two possible approaches of using image registration for motion 

tracking: frame-to-frame and reference-frame. In the frame-to-frame approach, consecutive 

image frames are registered. As the deformation between consecutive frames is relatively 

small, the resulted deformation fields are relatively smooth. Nevertheless, when enforcing 

the displacements to the FE representation, as the nodal position at the next time step 

depends on the current nodal position, registration error may propagate. In the reference-

frame approach, all image frames are registered to a reference frame, which is the frame 

used for the heart segmentation in our framework. As the deformation from the reference 

frame can be large, less accurate registration may occur. Despite that, as the nodal position at 

any time step only depends on the fixed reference nodal position, registration error does not 

propagate. The effects of using these approaches on computer-aided infarction identification 

are shown in the experiments section.
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2.3 Biomechanics-based myocardial strain estimation

Image registration can only provide useful displacement information of the salient features 

such as the cardiac boundaries, thus the deformation field of the myocardium is unreliable 

and cannot be used. In consequence, deformable models are required to relate the image-

derived motion to myocardial deformation. Among different algorithms [7], biomechanics-

based approaches have shown to be promising because of the physically realistic 

characteristics such as smooth deformation and tissue incompressibility.

Although the heart tissue is known to be orthotropic [23], we use the isotropic material 

property because subject-specific tissue structures are clinically unavailable. Furthermore, 

the hyperelastic material property is used as it is more realistic for soft tissues which 

undergo large deformation [23]. For simplicity, we use the modified Saint-Venant-Kirchhoff 

constitutive law to model the tissue as nearly incompressible and isotropic material [24]:

(1)

where J = det F, with F the deformation gradient tensor. ε̄ is the isovolumetric part of the 

Green-Lagrange strain tensor . λ and μ are the bulk and shear modulus, 

respectively. With (1), the second Piola-Kirchhoff stress tensor  and the elasticity 

tensor  can be computed, which are embedded to the FE-based total-Lagrangian 

cardiac system dynamics for the myocardial deformation [25]:

(2)

with M, C, and K the mass, damping, and stiffness matrix, respectively. ΔU, U̇, and Ü 
contain the nodal incremental displacements, velocities, and accelerations, respectively. Rb 

contains the displacement boundary conditions from image registration that are enforced by 

the penalty method [19]. Rt contains the internal stresses caused by the existing deformation. 

By solving (2), the nodal displacements and thus strains can be estimated from the image-

derived motion. At each node, the three principal strains (ε1 > ε2 > ε3) and the six 

cylindrical strains with respect to the long-axis of the left ventricle (εrr, εθθ, εzz, εrθ, εrz, 
εθz, with r, θ, and z the radial, circumferential, and longitudinal direction, respectively, see 

Fig. 3) are computed for the cardiac cycle.

Fig. 4 shows examples of estimated strains at end-systole at the mid-ventricular level. The 

expert-identified infarcted AHA zones are 7 and 8 for this subject. The infarcted regions can 

be best distinguished visually by the radial strain and the first principal strain as indicated by 

the red circles.
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3 Computer-aided regional infarction identification

Although myocardial strains can provide useful information of infarction, appropriate 

feature combinations and classification criteria are required for accurate computer-aided 

infarction identification. To achieve this purpose, supervised machine learning is used in our 

framework. The SVM and random forests classifiers were studied, which are supervised 

learning algorithms frequently used in medical image analysis because of their accuracy and 

flexibility in adapting different sources of data [26, 27]. With these classifiers, 

experimentally verified features including myocardial strains and contrast-enhanced CT 

image intensity are used for the computer-aided infarction identification. LOSO cross-

validations were used to evaluate their performances.

3.1 SVM and random forests classifiers

In a binary classification problem, given training feature vectors with known labels, the 

SVM classifier constructs a hyperplane whose distances to the nearest training vectors of 

each class are maximized. In this paper, the C-support vector classification is utilized as it is 

less sensitive to outliers [26]. We use the linear kernel because it gave similar results as the 

nonlinear kernels in our experiments but is more computationally efficient. Grid search is 

used to select the optimal regularization parameter C using the training data. The LIBSVM 

library is used for the implementation [28].

Random forests performs classification using an ensemble of decision trees [27]. Each tree 

gives a prediction probability of each class when classifying a new instance, and the forest 

chooses the class with the largest overall probability. The generalization error of the 

classification depends on the strength of each tree and the correlations among the trees. By 

using sampling with replacement of the training data set, and the random selection of 

features to split each node, the generalization error decreases with the increase of the 

number of trees. The performance of random forests is comparable to Adaboost but is more 

robust with respect to noise. The MATLAB function TreeBagger is used.

3.2 Myocardial strains

The capability of using strains to identify infarction has been verified from both animal and 

human data [5, 6, 13]. In [5], experiments using tagged MR images showed that the 

magnitude of the first principal strain was inversely proportional to the severity of infarction. 

In [6], the radial and circumferential strains estimated from tagged MR images showed their 

superiority to wall thickening. In [13], strains estimated by speckle tracking 

echocardiography correlated well with the normal and abnormal cardiac functions including 

infarction.

Although nodal strains from CT images are available using the biomechanical approach, the 

AHA zonal strains are used for more robust and clinically relevant results. As each node is 

associated with one of the 17 AHA zones, each AHA zonal strain is computed as the 

average nodal strains of each zone. Therefore, zonal strains are available for the whole 

cardiac cycle, and temporal selection is performed for each zone. For each strain type (e.g. 

εrr) in each zone, the zonal strain with the largest magnitude in the whole cardiac cycle is 
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chosen. Apart from temporal selection, spatial normalization is also performed to alleviate 

the effects of inter-subject variability. For each strain type of each heart, the zonal strains are 

normalized (divided) by the largest zonal strain magnitude among all zones in the whole 

cardiac cycle (Fig. 5(b)).

3.3 Contrast-enhanced CT image intensity

Apart from myocardial strains, the capability of using contrast-enhanced CT image intensity 

to depict myocardial infarction has also been experimentally verified [12, 29]. To obtain 

contrast-enhanced CT images, an iodine-based contrast agent which causes greater 

absorption and scattering of X-ray radiation is injected into the subject, which leads to an 

increase in CT attenuation and thus contrast enhancement. As infarction reduces myocardial 

blood supply, hypo-enhancement can be observed (e.g. Fig. 5(a)). Using porcine data with 

artificially-induced myocardial infarction, independent experiments showed that infarcted 

areas depicted by hypo-enhancement of CT images were highly correlated with those 

depicted by postmortem TTC staining [12, 29]. As hypo-enhancement lasts for several 

cardiac cycles, it can be a robust feature for infarction identification.

To utilize the image intensity, we compute the nodal image intensity at end-diastole from 

which the left ventricular mesh is constructed. As regional infarction is of interest, the 

average value of the nodal image intensity at the bottom 10th percentile of each AHA zone 

is used (Fig. 5(b)). To alleviate the effects of inter-subject variability and to facilitate the 

accuracy and stability of the classifiers, the AHA zonal intensities are normalized (divided) 

by the largest zonal intensity of each subject.

3.4 Leave-one-subject-out cross-validations

To verify the infarction identification capabilities of different feature combinations, image 

registration approaches, and machine learning algorithms, LOSO cross-validations were 

performed. Let n be the number of subjects. In each test, the zonal features of n − 1 subjects 

are used to train the classifier, which is then used to classify the zonal infarction of the left-

out subject. The average performance can then be obtained after all n tests. The 

classification accuracy (∈ [0,1]) of each LOSO test is defined as:

(3)

The Cohen's kappa (κ) is used for the inter-rater agreement between the ground truth and the 

classification.

Moreover, to measure feature discrimination, a variant of Fisher score is used [30]:
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(4)

with x̄, x̄(+), and x̄(−) the average value of the whole, positive-labeled (infarct), and negative-

labeled (normal) instances of a feature, respectively. n+ and n− are the numbers of positive 

and negative instances, and (equation) and (equation) are the ith positive and negative 

instances. Therefore, a larger F-score means a more discriminative feature.

4 Experiments

Experiments were performed to evaluate the proposed framework. Different feature 

combinations were tested, including single-strain features, all-strain features, and with and 

without feature normalization. Single-strain features use only one type of strain, say εrr, as 

input instances to the classifier. All-strain features use all strain types as input instances. The 

differences of using SVM and random forests were also studied.

4.1 Experimental setups

Ten single-heartbeat contrast-enhanced CT image sequences of ten canines with artificially 

induced myocardial infarctions were used, with the infarctions induced by left anterior 

descending artery blockages. These sequences were acquired by the Toshiba Aquilion ONE 

CT system. Each cardiac cycle (0.52-0.96s) had 20 frames, with voxel size of 0.28 × 0.28 × 

1.00 mm3. The infarcted regions were identified by experts using dynamic perfusion CT 

images in terms of AHA zones, with 110 normal and 60 infarcted zones in total. As the 

control group without infarction was unavailable, the capability of the framework on 

discriminating between infarcted and non-infarcted hearts could not be studied.

4.2 F-score comparisons

Table 1 shows the F-scores of all features. The radial strain (εrr), circumferential strain (εθθ), 

first principal strain (ε1), and image intensity were the more discriminative features 

regardless of the motion tracking approaches or feature normalization. On the contrary, the 

F-scores of the longitudinal strain (εzz) and shear strains were relatively low. For both 

frame-to-frame and reference-frame motion tracking, the normalized features had higher F-

scores than the unnormalized features in general, and the F-scores of the more discriminative 

features were almost doubled after normalization. As Table 1 and the preliminary results in 

[17] show that the normalized features can provide better identification, only the results of 

the normalized features are shown in the following sections.

4.3 Results of using SVM

Fig. 6 shows the infarction identification on one of the subjects using SVM. For the single-

strain classifications, the combination of strains and image intensity outperformed the 

individual features regardless of the image registration approaches. For the all-strain 

classifications, the combination of strains and image intensity did not always outperform the 
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individual features, and the frame-to-frame approach performed better than the reference-

frame approach regardless of the use of image intensity.

Fig. 7 shows the receiver operating characteristic (ROC) curves of the LOSO cross 

validations using SVM. The reference-frame approach provided better results than the 

frame-to-frame approach when using strains alone, especially for the more discriminative 

strains (εrr, εθθ, ε1). This is consistent with the F-scores in Table 1. When combining strains 

with image intensity, image intensity became the dominant feature with the less 

discriminative strains, and the performances of the frame-to-frame and reference-frame 

approaches were similar. The more discriminative strains, when combined with image 

intensity, outperformed the individual features. These observations are coherent to those in 

Table 2 which shows the optimal identification results. For the more discriminative strains, 

the accuracies and Cohen's kappas were larger for the reference-frame approach. When 

using only strains, some less discriminative features had the Cohen's kappas as zeros which 

indicates no agreement between the expert identification and the estimation.

Fig. 8 and Table 3 show the results of using all-strain features. Similar to single-strain 

features, the reference-frame approach had better performance when using strains alone. 

When combining strains with image intensity, the performance was dominated by the image 

intensity. Although the performance of using all-strain features was promising, the results 

were worse than using the radial strain alone.

4.4 Results of using random forests

Fig. 9 shows the infarction identification on the same subject in Fig. 6 using random forests. 

For the single-strain classifications, the reference-frame approach performed better when 

using strains alone, however, the frame-to-frame approach performed better when combining 

strains with image intensity. For the all-strain classifications, the reference-frame approach 

performed better regardless of the use of image intensity, and the combination of strains and 

image intensity gave better results than using strains alone in both approaches.

Fig. 10 and Table 4 show the results of using single-strain features. Similar to SVM, the 

more discriminative strains gave better performances, and when combining strains with 

image intensity, image intensity became the dominant feature. Furthermore, when using 

strains alone, the reference-frame approach performed better than the frame-to-frame 

approach for the more discriminative features. These observations are similar to those of 

Table which shows the optimal results. Comparing between SVM and random forests, the 

accuracies and Cohen's kappas of image intensity were almost the same. Different from 

SVM, there were no zero Cohen's kappas for the less discriminative features, and their 

accuracies were also higher.

Fig. 11 and Table 5 show the results of using all-strain features. Different from SVM, the 

results between the reference-frame and frame-to-frame approaches were very similar 

regardless of the use of image intensity. The overall performance was also better than using 

SVM. Furthermore, the performance of using all-strain features was comparable to that 

using radial strain alone.
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5 Discussions

Table 1 shows that the radial, circumference, and first principal strains were more 

discriminative than the longitudinal and shear strains. This actually shows the limitation of 

CT images, which can provide the radial and circumferential motion from the cardiac 

boundaries, but not the twisting and longitudinal motion as tagged MR images. 

Nevertheless, consistent with the findings in [5, 6], our results showed that the radial, 

circumferential, and first principal strains are good indicators of myocardial infarction.

The experimental results show that, when using only strains, the overall performance of the 

reference-frame approach is better than that of the frame-to-frame approach especially for 

the more discriminative features. This shows that although the reference-frame approach 

may lead to more difficult image registration because of the larger deformation (e.g. between 

end-systole and end-diastole), as the motion tracking does not suffer from error propagation, 

the results are more robust to image noises and artifacts.

Comparing between SVM and random forests, random forests performed better with the less 

discriminative features and all-strain features. The better performance for single-strain 

features may be related to the sampling with replacement approach which reduces the noise 

sensitivity of the classifier. The better performance for all-strain features may be further 

related to the random feature selection approach which reduces the correlations among trees 

and thus the generalization errors.

Table 4 shows that when using random forests, especially for the reference-frame approach, 

the first principal strain can perform as well as the radial strain. As the definition of the long-

axis of the left ventricle can be subjective and involve additional geometrical considerations, 

the possibility of not using the cylindrical strains may help to simplify the framework 

without compromising the identification performance.

Although image intensity shows promising performance, the use of strains is still important. 

First of all, the experimental results showed that the combination of strains and image 

intensity can outperform the individual features alone. Secondly, depending on the imaging 

protocol and the use of reperfusion therapy [31], myocardial infarction may not be indicated 

by hypo-enhancement. Therefore, using both features can contribute to more robust results.

6 Conclusions

We have presented a biomechanical approach for computer-aided regional infarction 

identification for CT images. By enforcing the image-derived motion as the displacement 

boundary conditions to a cardiac biomechanical model, the myocardial strains can be 

estimated. Using also the image intensity, the regional myocardial infarction in terms of 

AHA zones can be identified using machine learning algorithms. Experiments showed that 

the radial strain, circumferential strain, first principal strain, and image intensity were 

discriminative features which can provide promising identification performance. The 

reference-frame motion tracking approach was shown to be better than the frame-to-frame 

approach for both SVM and random forests, and random forests gave better results with all-

strain features and the less discriminative single-strain features.
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Fig. 1. 
Computer-aided regional infarction identification. By inputting the AHA zonal strains and 

image intensities to a trained classifier, regional infarction can be identified.
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Fig. 2. 
Biomechanics-based strain estimation. Myocardial strains can be estimated by enforcing the 

image-derived motion of the cardiac boundaries to the FE heart representation.

Wong et al. Page 14

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Cylindrical coordinate system of the left ventricle. r, θ, and z represent the radial, 

circumferential, and longitudinal direction, respectively.
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Fig. 4. 
Examples of estimated strains at end-systole at the mid-ventricular level. The infarcted AHA 

zones are 7 and 8. The red circles highlight the infarcted zones on the radial and the first 

principal strain maps.
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Fig. 5. 
Data examples. (a) Short-axis slice and expert-identified infarction in red (zone 7 and 8). (b) 

Expert-identified infarction, normalized radial strain (εrr), and normalized image intensity in 

terms of AHA zones.
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Fig. 6. 
Infarction identification on a subject using SVM. Identified infarcted zones are colored. F-F 

represents the frame-to-frame approach and R-F represents the reference-frame approach. 

Only normalized features were used.
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Fig. 7. 
Average ROC curves of LOSO cross-validations on single-strain features with SVM. Each 

curve was constructed from the SVM decision values of all tests in a cross-validation. Only 

normalized features were used.
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Fig. 8. 
Average ROC curves of LOSO cross-validations on all-strain features with SVM. Each 

curve was constructed from the SVM decision values of all tests in a cross-validation. Only 

normalized features were used.
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Fig. 9. 
Infarction identification on the same subject in Fig. 6 using random forests. Identified 

infarcted zones are colored. F-F represents the frame-to-frame approach and R-F represents 

the reference-frame approach. Only normalized features were used.
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Fig. 10. 
Average ROC curves of LOSO cross-validations on single-strain features with random 

forests. Each curve was constructed from the prediction probabilities of all tests in a cross-

validation. Only normalized features were used.
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Fig. 11. 
Average ROC curves of LOSO cross-validations on all-strain features with random forests. 

Each curve was constructed from the prediction probabilities of all tests in a cross-

validation. Only normalized features were used.
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Table 3

Results of LOSO cross-validations on all-strain features with SVM. For image intensity, accuracy = 82±15% 

and κ = 65±25%. Only normalized features were used.

Frame-to-frame Reference-frame

Strains
Accuracy (%) 74±22 80±10

κ (%) 54±31 58±20

Strains + intensity
Accuracy (%) 82±17 81±15

κ (%) 64±29 62±27
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Table 5

Results of LOSO cross-validations on all-strain features with random forests. For image intensity, accuracy = 

82±16% and κ = 65±26%. Only normalized features were used.

Frame-to-frame Reference-frame

Strains
Accuracy (%) 81±10 81±12

κ (%) 56±24 57±27

Strains + intensity
Accuracy (%) 85±11 84±13

κ (%) 67±25 65±28
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