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Abstract

Topology control algorithms allow each node in a wireless multi-hop network to adjust the power at
which it makes its transmissions and choose the set of neighbors with which it communicates directly,
while preserving global goals such as connectivity or coverage. This allows each node to conserve energy
and contribute to increasing the lifetime of the network. In this paper, in contrast to most previous work,
we consider (i) both the energy costs of communication as well as the amount of available energy at
each node, (ii) the realistic situation of varying rates of energy consumption at different nodes, and
(iii) the fact that co-operation between nodes, where some nodes make a sacrifice by increasing energy
consumption to help other nodes reduce their consumption, can be used to extend network lifetime. This
paper introduces a new distributed topology control algorithm, called the Cooperative Topology Control
with Adaptation (CTCA), based on a game-theoretic approach that maps the problem of maximizing
the network’s lifetime into an ordinal potential game. We prove the existence of a Nash equilibrium
for the game. Our simulation results indicate that the CTCA algorithm extends the life of a network by
more than 50% compared to the best previously-known algorithm. We also study the performance of
the distributed CTCA algorithm in comparison to an optimal centralized algorithm as a function of the
communication ranges of nodes and node density.

ar
X

iv
:1

30
9.

32
60

v1
  [

cs
.N

I]
  1

2 
Se

p 
20

13



I. INTRODUCTION

In wireless ad hoc networks, especially ad hoc sensor networks, the battery life of each node
plays a critical role in determining the functional lifetime of the entire network. When a node
exhausts its limited energy supply, it may fail to reach nearby nodes leading to a disconnected
network and disabling some essential communications. Without energy, the node will also fail
to continue the environmental monitoring activities essential to the functional operation of the
system. Adding redundant nodes in the network may extend the functional lifetime but it is
ultimately a less cost-effective approach. In this paper, we consider the problem of extending
the lifetime of a network using a new adaptive game-theoretic approach.

Topology control is among the better-known approaches to conserving energy and prolonging
a network’s functional life. In a topology control algorithm, each node adjusts the power at
which it makes its transmissions to reduce the energy consumption to only what is needed
to ensure topological goals such as connectivity or coverage. Examples of topology control
algorithms include Directed Relative Neighborhood Graph (DRNG) [1], Directed Local Spanning
Subgraph (DLSS) [1], Step Topology Control (STC) [2] and Routing Assisted Topology Control
(RATC) [3]. In most traditional algorithms, the topology of the network is determined at the
very beginning of the life of the network where the only consideration for each node is to reduce
its transmission power while keeping the graph connected. After the execution of one of these
algorithms, each node will transmit at the selected power level until it eventually runs out of
energy. However, depending on the location of a node in relation to others, some nodes may end
up with a much larger communication radius, and therefore a much larger transmission power,
than some others. This uneven distribution of the assigned transmission powers may result in an
unbalanced energy consumption at the nodes, leading to some nodes exhausting their energy far
sooner than some others. Such a scenario can end the functional life of the network earlier than
necessary. This highlights two weaknesses of these algorithms: they are not adaptive to different
rates of energy consumption on different nodes and they do not allow cooperation between nodes
to extend the network lifetime. Each of these weaknesses is addressed by the algorithm proposed
in this paper: Cooperative Topology Control with Adaptation (CTCA).

(a) The initial topology of the
network where no node can re-
duce its transmission power.

(b) Node C chooses to increase
its transmission power so as to
directly connect to B.

(c) Node A can now reduce its
transmission power to directly
connect only to C.

Fig. 1: An example illustrating cooperative topology control.

We illustrate the principle of cooperative topology control with a simple toy example shown
in Fig. 1. Suppose Fig. 1(a) illustrates the result of a topology control algorithm, where no node
can reduce its transmission power unilaterally without disconnecting the graph. In this figure,
the presence of an edge from one node, say A, to another node, say B, implies that A can
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transmit at a power level sufficient to reach node B. The communication radius of each node
is shown by the dashed arcs. Assuming all nodes start out with the same energy supply and
make transmissions at the same rate, we note that node A has the largest energy cost and thus
has the shortest lifetime. Node C, on the other hand, has the smallest transmission power, and
therefore, has the longest lifetime. Traditional topology control algorithms discussed above will
lead to the situation in Fig. 1(a) ending the functional life of the network when node A’s energy
is exhausted even though node C would have plenty of remaining energy. Fig. 1(b) illustrates
a topology where node C increases its transmission power so that it can now reach node B
directly. Now, node A is able to reduce its transmission power to only be directly connected to
node C, as shown in Fig. 1(c). This involves node C making a sacrifice by increasing the power
at which it makes its transmissions in order to allow node A to reduce its transmission power,
thus extending the life of node A and of the network.

The actual power consumption for sending and receiving a data packet varies significantly
depending on the radio environment of the space where the sensor nodes are located and also
the electronics of the devices. The log-distance path loss model based on the path loss as a
logarithmic function of the distance d has been confirmed both theoretically and by measurements
in a large variety of environments [4]–[6]. In this model, the path loss at distance d, PL(d) is
expressed as:

PL(d) = PL(d0) + 10γ log10(d/d0)

where the constant d0 is an arbitrary reference distance and γ is called the path loss exponent.
This implies that the energy consumed to make a transmission across a distance d is proportional
to dγ . Since γ ranges from 2.5 to 6 in most real environments [4], especially over longer distances,
a single transmission over distance d often consumes more energy than two transmissions each
over distance d/2. This motivates the goal of most topology control algorithms to choose multiple
smaller hops in place of a single longer hop with the intent to reduce overall energy consumption.
While device electronics can sometimes be such that choosing smaller hops—especially at
smaller distances—does not always guarantee lower energy consumption, there is another good
reason to choose smaller hops: reducing interference in all communications. Therefore, a general
goal of a topology control algorithm is to achieve lower transmission powers for all the sensor
nodes in order to reduce both energy consumption and interference [7]. In other words, the
topology illustrated in Fig. 1(c) is more desirable.

In this paper, we employ game theory to facilitate such topology control that allows cooperation
between nodes as illustrated in Fig. 1. Our approach is through developing an ordinal potential
game [3], [8], [9] into which our problem can be mapped, so that all nodes pursue a localized
strategy that can be expressed through a single global function, or the global potential function.
Our approach also allows an adaptive strategy so that a node does not end up with the same
power level through its entire lifetime. This is significant to extending the network lifetime
because it is almost always the case that different nodes consume energy at different rates. Our
approach to allowing adaptation is through incorporating the energy remaining on the nodes in
the neighborhood into the decisions made by each node. Since this remaining energy changes
over the life of a network, our topology control algorithm adaptively adjusts the power levels
at each node. This constantly keeps shifting energy consumption from nodes with less energy
reserves to those with more energy reserves, thus extending the life of the network.
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A. Problem Statement
Given a wireless sensor network, let graph G(t) = (N,E(t)) represent its topology at time

t, where Ni ∈ N represents a node within the network, and (Ni, Nj) ∈ E(t) represents the fact
that node Nj is within node Ni’s communication radius and can hear from Ni directly at time
t. Assume G(t) is a connected graph at time t. Topology control algorithms have traditionally
emphasized preserving connectivity as a constraint while pursuing the goal of reduced energy
consumption at each node.

However, depending on the type of application for which an ad hoc sensor network is deployed,
it is possible that a network is functional even if a certain subset of nodes runs out of energy
[10]–[12]. The functional lifetime of a network, therefore, depends on the application in use and
consequently, there is some debate on how best to define the functional lifetime of a network.
In an ad hoc sensor network with a non-hierarchical topological organization, one may assume
an application-dependent parameter, c, to define the functional lifetime as the length of time the
network topology possesses at least one connected component with n− c or more nodes (where
n is the total number of nodes in the network). When c = 0, the functional lifetime of the
network is the length of time G(t) is a connected graph, which is until any node is disconnected
or runs out of energy.

We find that a definition of functional lifetime using c = 0 is a more versatile one for two
reasons: firstly, on any application, there may be some crucial nodes which, when they die, can
disable the functionality of the network; secondly, a definition based on the c = 0 case can form
the foundation of greedy algorithms designed to extend functional lifetime for c > 0.

In this paper, therefore, we consider the functional life of the network to have ended when
one of the following two cases occurs:
• Case 1: A node reduces its current transmission power in order to save energy, but becomes

unable to reach certain nodes and, consequently, loses connection from part of the network.
• Case 2: A node runs out of energy, thus getting disconnected from the rest of the network.
If Case 1 happens, the communication links whose removal caused the network to become

disconnected can be restored back into the network to restore the functional life of the network.
On the other hand, if Case 2 happens, the network’s functional lifetime cannot be extended in
any way. Therefore, to improve the lifetime of the network, (i) Case 1 should be avoided by
always ensuring connectivity in the assignment of power levels to the nodes, and (ii) Case 2
should be pushed as far into the future as possible by reducing the rate of energy consumption
at the node that is estimated to have the smallest remaining lifetime. The problem can now be
defined as one of periodically reassigning the power at which each node makes its transmissions
so that the first occurrence of either Case 1 or Case 2 is pushed as far ahead in time as possible.

B. Contributions and Organization
Section II reviews the related work on approaches that have been employed to increase a

wireless sensor network’s lifetime through topology control. Section III analyzes the rationale
behind the approach used in this paper and presents a few definitions and lays out the foundational
concepts for the game-theoretic approach used in this paper. Section IV proves the existence of
a Nash equilibrium for the ordinal potential game used to map our problem. Our proof is based
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on showing that the difference in individual payoffs for each node from unilaterally changing
its strategy and the difference in values of the global potential function have the same sign.

The pseudo-code for the Cooperative Topology Control with Adaptation (CTCA) algorithm
is presented in Section V. A simulation-based evaluation of its performance and a comparative
analysis with other topology control algorithms are described in Section VI. Our results show
that the CTCA algorithm extends the life of a network by more than 50% compared to the best
previously-known algorithm. This section also compares the topology delivered by the distributed
CTCA algorithm to the optimal solution obtained using a centralized algorithm. We also study
the dependence of the performance of CTCA in relation to the optimal on the communication
ranges of nodes and on the node density.

Section VII concludes the paper.

II. RELATED WORK

The task of extending the life of a wireless sensor network can be tackled through multiple
complementary ways involving routing protocols, medium access strategies or any of several
other protocols that facilitate network operations. In this section, we will discuss only the
approaches most related to this paper; that is, approaches based on changing the topology of the
network by individual nodes changing the power levels at which they make their transmissions
while preserving network connectivity.

Traditional topology control algorithms such as Small Minimum-Energy Communication Net-
work (SMECN) [13], Minimum Spanning Tree (MST) [14], DRNG [1], DLSS [1] and STC [2]
usually start the topology control process with each node transmitting at its maximum transmis-
sion power to discover all of its neighbors. Local neighborhood and power-level information is
next exchanged between neighbors. The minimum transmission power of each node such that the
graph is still connected is later computed at each node without further communication between
nodes. The Weighted Dynamic Topology Control (WDTC) [15] algorithm improves upon the
work of MST, and considers the remaining energy of each node in addition to the energy
cost of communication across each pair of nodes. The algorithm, however, forces bidirectional
communication between each pair of nodes and, in addition, requires periodic communication by
each node at its maximum possible power level. Other related algorithms seek to offer a robust
topology where the graph can stand multiple channel failures; for example, a k-connected graph
is sought in [16], [17] and a two-tiered network in [18].

Other topology control algorithms may require communication between nodes throughout the
topology control process. One typical example is the work described in [19], which is based on
a selfish game on network connectivity to help reduce the transmission power on each node.
By offering a utility function which indicates a high profit if the node’s transmission power is
small and a low profit if the node’s transmission power is large, each node selfishly reduces
its transmission power to maximize its profit. On the other hand, if the node has reduced its
transmission power to such an extent that the graph becomes disconnected, the profit of each
node becomes 0. This algorithm was later improved in [3], where the requirement of global
information (to establish connectivity) is eliminated and a distributed topology control algorithm
is proposed. Among the first works on using game theory in topology control problems is [20]
which gives tight bounds on worst-case Nash equilibria for a game in which the network is
required to preserve connectivity. However, this study only considers selfish nodes which try to
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minimize their energy consumption without considering potential sacrifices nodes can make (by
expending more energy) to extend a network’s lifetime.

Another class of topology control algorithms is represented by the work reported in [21], where
the authors provide a decentralized static complete-information game for power scheduling, con-
sidering both frame success rate and connectivity. Yet other approaches to increasing the lifetime
of a wireless sensor network include grouping nodes into clusters to create a communication
hierarchy in which nodes in a cluster communicate only with their cluster head and only cluster
heads are allowed to communicate with other cluster heads or the sink node [22]–[27]. In the
work of [28], the authors tried to assign sensor nodes with different initial energy levels so that
sensor nodes with high traffic load will be assigned more energy than those with smaller loads.
By doing so, with the same amount of overall energy, the network’s lifetime may be extended.

If the network’s lifetime is measured in terms of how many transmissions can be made
before the sensor nodes run out of energy, then maximizing the network’s lifetime can be
interpreted as maximizing the throughput of the network. In the work of [29], the authors
studied the relationship between throughput of the network and its corresponding lifetime under
an SINR model. But they focus on a specific network setting where sensor nodes’ neighbors and
the communication links are predetermined and the topology of the network remains constant
throughout the network’s lifetime.

A survey of topology control algorithms can be found in [30], [31] and a survey of the
applications of game theory in wireless sensor networks can be found in [32], [33].

The CTCA algorithm proposed in this paper is the first to use a game-theoretic approach that
also adapts to changes in the remaining energy levels of nodes and which allows co-operative
behavior amongst nodes. As will be discussed in the following sections, these features allow
it to extend the life of a network by more than 50% compared to the best previously-known
algorithm.

III. DEFINITIONS AND PRELIMINARIES

In this section, we define terms and concepts that will enable us to specify the localized goals
that each node should pursue in order to achieve the global goal of increased lifetime for the
network.

Let Wi(t) denote the amount of energy remaining at node Ni at time t. Let pi(t) denote the
power at which node Ni makes its transmissions at time t. As an estimate of the additional length
of time before a node runs out of energy, we define the estimated lifetime of node Ni at time t,
denoted by Li(pi(t), t), as the ratio between the amount of remaining energy on the node at time
t and the power at which it makes its transmissions at time t. That is, Li(pi(t), t) = Wi(t)/pi(t).
Note that the estimated lifetime may or may not accurately capture the actual remaining lifetime
of a node (because its transmission powers may change later or its energy reserves may deplete
slower/faster than estimated.) When the context is clear, for brevity, we refer to the estimated
lifetime as just the lifetime.

In a system in which the rate of energy consumption is largely balanced across the nodes
(which is the goal of this paper as a means to improve network lifetime), the node with the
smallest estimated lifetime is likely the one that determines the network’s lifetime. We consider
the estimated lifetime of a network as the estimated lifetime of the node with the smallest
estimated lifetime. If Ni is the node with the smallest estimated lifetime within the network,
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(a) Node N3’s initial state, where node N1 is
not capable of reducing its transmission power
without disconnecting the graph.

(b) Situation 1: Node N3 reduces its transmis-
sion power to its potential transmission power,
but N1’s lifetime cannot be improved.

(c) Situation 2: Node N3 increases its trans-
mission power to p(N3, N2). Now, node N1 is
able to reduce its power without disconnecting
the graph.

(d) Node N1 updates its current transmission
power to its potential transmission power, and
extends its lifetime and of the network.

Fig. 2: An example illustrating how a node should choose its power level so as to increase the
network’s lifetime.

then it may be possible to improve the network’s lifetime by improving Ni’s estimated lifetime.
Fig. 1 shows an example where node A is able to reduce its transmission power with help from
node C, thus increasing its estimated lifetime and likely the lifetime of the network.

We further illustrate the definitions in this section using the topology shown in Fig. 2. Suppose
at time t, the topology of the network is as shown in Fig. 2(a). Denote by p(Ni, Nj) the minimum
transmission power at which nodes Ni and Nj have to transmit to reach each other. We refer to
the set of transmission powers that a node may switch to at time t as its available transmission
powers at time t. Then, according to the topology given by Fig. 2(a), node N3’s available
transmission powers are: p(N3, N1), p(N3, N2) and p(N3, N4), while its current transmission
power is p(N3, N1) (note that there is no need for node N3 to transmit at any power level other
than the ones in this available set).

Let P denote a mapping of nodes in the network to power levels. For example, in Fig.
2(a), the mapping implemented is given by P = {N1 → p(N1, N2), N2 → p(N2, N3), N3 →
p(N3, N1), N4 → p(N4, N3) }. Since node N3 has the potential to transmit at power p(N3, N4)
while still keeping the graph connected, we refer to power p(N3, N4) as node N3’s potential
transmission power under this node-to-power mapping P.

In general, the potential transmission power of a node is the smallest available transmission
power that the node can use such that the graph is still connected while the power levels at
all other nodes remain the same. Let p′i(P) denote the potential transmission power of node
Ni under the node-to-power mapping P. Note that a node’s potential transmission power is no
greater than its current transmission power provided that the network is currently connected. That
is, p′i(P) ≤ pi(t) if G(t) is a connected graph and P is the node-to-power mapping implemented
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at time t.
Transmitting at the potential transmission power as defined above can increase the lifetime

of a node beyond its estimated lifetime and, consequently, of the network. To estimate the
best lifetime a node can achieve without changing the transmission powers of other nodes and
without disconnecting the network, we define the potential lifetime of a node as the ratio between
the node’s current remaining energy and its potential transmission power. Let L′i(P, t) denote
the potential lifetime of node Ni at time t under the node-to-power mapping P. Let p′i(P)
denote its potential transmission power under the node-to-power mapping P. Then, L′i(P, t) =
Wi(t)/p

′
i(P).

If p′i(P) ≤ pi(t), then Li(pi(t), t) ≤ L′i(P, t). Therefore, to increase its estimated lifetime, a
node should always try to change its current transmission power to its potential transmission
power, if they are not the same. Figs. 2(a) and 2(b) illustrate such a process for node N3, where
it changes its current transmission power from p(N3, N1) in Fig. 2(a) to its potential transmission
power p(N3, N4) as illustrated in Fig. 2(b).

In Fig. 2(a), suppose node N1 is the node that has the smallest estimated lifetime within the
network. Then, N1’s estimated lifetime has to be improved in order to improve the network’s
lifetime. In Fig. 2(b), node N3 reduces its transmission power but this does not improve the
potential lifetime of node N1. This implies that N1’s estimated lifetime cannot be improved by
node N3 reducing its transmission power. On the other hand, if node N3 chooses to transmit at a
higher power level, p(N3, N2), as illustrated in Fig. 2(c), then node N1’s potential transmission
power reduces to p(N1, N3). Now, node N1 can reduce its transmission power to the new potential
transmission power as illustrated in Fig. 2(d), thus improving the network’s estimated lifetime.

Let Ri(t) denote the set of nodes Ni can reach at time t; i.e., Ri(t) = {Nj | p(Ni, Nj) ≤ pi(t)}.
Let Ii(t) denote the set of nodes that can reach node Ni at time t, i.e, Ii(t) = {Nj | p(Nj, Ni) ≤
pj(t)}. Then for any Nj ∈ Ii(t), we have Ni ∈ Rj(t). We refer to the nodes in the set Ri(t) as
the reachable neighbors of node Ni and the nodes in the set Ii(t) as the reverse-link neighbors
of Ni. For example, in Fig. 2(a), N1’s reachable neighbors are N2, N3 and N4 while N2 has
only one reachable neighbor, N3. Also, N1 is a reverse-link neighbor of N2, N3 and N4. Let
Hi(t) = Ri(t) ∪Ni and let Oi(t) = Ii(t) ∪Ni.

In Fig. 2(a), note that N1’s potential transmission power will not be reduced unless either N3

or N4 has increased its transmission power to be able to reach N2. In general, Ni’s reachable
neighbors are the only nodes who can help Ni reduce its potential transmission power; and only
the nodes who are Ni’s reverse-link neighbors may benefit from Ni’s increase in its transmission
power level.

A question worth answering at this point is about what might be the relationship between
improving the network’s lifetime and improving node N1’s estimated and potential lifetime. As
we have stated previously, the network’s estimated lifetime is dependent upon the node with the
smallest estimated lifetime. If we compare the power mapping illustrated in Fig. 2(a) and Fig.
2(d), we can see that node N3 not only has sacrificed its chance to improve its lifetime but also
has sacrificed its own estimated lifetime (increases its current transmission power from p(N3, N1)
to p(N3, N2)) in order to help improve node N1’s potential lifetime which is the smallest in Fig.
2(a). When the topology is as illustrated in Fig. 2(d), suppose node N3 is the node with the
smallest estimated lifetime. If its estimated lifetime in the topology illustrated in Fig. 2(d) is less
than that of node N1’s in the topology illustrated in Fig. 2(a), the network’s estimated lifetime
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in fact reduces rather than increases. In such a case, node N3 should not choose to increase
its transmission power to help improve N1’s lifetime, but should instead focus on improving its
own estimated lifetime.

For any node Ni within the graph, its estimated lifetime will not improve unless it switches
to its potential transmission power. That is to say, no node can help node Ni with its estimated
lifetime except for node Ni itself; but as illustrated in Fig. 2, another node may help with Ni’s
potential lifetime. In our example, node N3 helps node N1 improve its potential lifetime which
eventually allows N1 to increase its estimated lifetime by changing its transmission power to the
potential transmission power.

The above discussion leads to the following primary and secondary goals for each node in
order to improve the network’s lifetime while also conserving energy as much as possible:
• Primary goal: Let m(i) denote the node with the smallest potential lifetime amongst the

reverse-link neighbors of node Ni. Let q denote the potential lifetime of node m(i). The
primary goal of node Ni should be to increase the potential lifetime of node m(i) above q
while making sure that its own estimated lifetime does not reduce below q.

• Secondary goal: The secondary goal of node Ni should be to increase its own estimated
lifetime.

The secondary goal is achieved once a node adopts its potential transmission power as its
current transmission power (in this situation, its potential lifetime then becomes its estimated
lifetime). Note that, if the primary and the secondary goals conflict, a node should always choose
to meet the primary goal. This leads us into the design of the cooperative game that each node
can play with its reachable neighbors and its reverse-link neighbors.

One may argue that since the ultimate goal is to extend functional lifetime (the primary goal),
the secondary goal should be unnecessary. However, there are three reasons why we include the
secondary goal in our design of the algorithm.

Firstly, for any realistic algorithm, it is not possible to precisely predict the network lifetime
since it is not possible to predict with precision the future traffic load experienced by any given
sensor node. As a result, an algorithm can only seek to maximize the estimated functional lifetime
of a node and not the actual functional lifetime. Therefore, the secondary goal helps each sensor
node save energy as much as possible so that when the estimated functional lifetime deviates
from the actual functional lifetime, the node that actually determines the network’s functional
lifetime (the one that dies earliest) does not waste any energy by transmitting at a power larger
than what was necessary to stay connected. Secondly, as discussed in Section I-A, we define the
functional lifetime assuming c = 0. However, if the functional lifetime for some application is
defined assuming that the network function survives until c > 0 nodes are disconnected, a good
heuristic for extending the functional lifetime emerges if we implement the secondary goal in
conjunction with the primary goal assuming c = 0 on the surviving largest connected component
every time a node dies. Thirdly, reducing the transmission power of a sensor node may help
reduce the interference among transmissions, reducing retransmissions and also helping extend
the functional lifetime of the network.

In the above discussion, without loss of generality, we assume that there is only one node
m(i) with the smallest potential lifetime amongst reverse-link neighbors of Ni. If there is a tie
with two nodes having identical potential lifetimes, one can always break the tie in the algorithm
using a consistently applied second criterion such as the node id.
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TABLE I: A glossary of selected terms. If the time t specified within each notation is clear
within the context, it is omitted for purposes of brevity. In the glossary, however, we list each
notation in both forms (with and without t).

Notation Definition
N The set of n nodes within the network. N = {N1, N2, ..., Nn}.

G(t) Graph representing the network topology at time t. G(t) = (N,E(t))

pi(t) or pi Node Ni’s transmission power at time t.

P A mapping, P : N → R, of the nodes in the network to transmission power levels.
For example, the mapping actually implemented at time t is {N1 → p1(t), N2 →
p2(t), . . . }

P−i A mapping of all the nodes except Ni to transmission power levels.

p(Ni, Nj) The minimum transmission power needed for node Ni’s transmissions to reach node
Nj . We assume p(Ni, Nj) = p(Nj , Ni).

Ri(t) or Ri The set of nodes reachable by Ni’s transmissions at time t. Ri(t) =
{Nj | (Ni, Nj) ∈ E(t)}. This set of reachable neighbors is also called the reachable
neighborhood of Ni.

Hi(t) or Hi The set including Ni and its reachable neighbors. Hi(t) = Ri(t) ∪Ni.

Ii(t) or Ii The set of nodes at time t which can directly reach Ni with their transmissions.
Ii(t) = {Nj | (Nj , Ni) ∈ E(t)}. This set of reverse-link neighbors of Ni is also
called reverse-link neighborhood of Ni.

Oi(t) or Oi The set including Ni and its reverse-link neighbors. Oi(t) = Ii(t) ∪Ni.

Pi A mapping, Pi : Hi → R, of Ni and its reachable neighbors to transmission power
levels.

Pi,−j A mapping of Ni and its reachable neighbors except Nj to transmission power
levels.

p′i(Pi) Ni’s potential transmission power when its and its reachable neighbors’ power levels
are given by the mapping Pi.

Ai Ni’s possible transmission power choices.

Wi(t) or Wi Ni’s remaining energy at time t.

Li(ai, t) Ni’s estimated lifetime (remaining) at time t if set to transmit at power ai.
Li(ai, t) = Wi(t)/ai

L′i(Pi, t) Ni’s potential lifetime at time t when its and its reachable neighbors’ transmission
powers are given by the mapping Pi. L′i(Pi, t) = Wi(t)/p

′
i(Pi)

m(i, t) or m(i) The node with the smallest potential lifetime among Ni’s reverse-link neighbors at
time t. m(i, t) = argminNj∈Ii(t)(L

′
j(Pj , t)).

IV. THE ORDINAL POTENTIAL GAME

In this section, we present the notation and the utility function governing the ordinal potential
game into which we map the problem of extending the lifetime of the network.

A. Notation
Table IV-A presents a glossary of terms used in this section. In this paper, for brevity and

clarity, we sometimes omit the time index t whenever the corresponding instant of time is clear
from the context.
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Suppose that at time t = 0, each node is transmitting at its maximum transmission power pmax.
Then, the set of nodes that includes Ni’s reachable neighbors is Ri(0) = {Nj | p(Ni, Nj) ≤ pmax}.
Let ni denote the size of the set Ri(0). Therefore, we define the available transmission powers
for node Ni as Ai = {p1i , p2i , . . . , p

ni
i } where, for any pki ∈ Ai, there exists a node Nj ∈ Ri(0)

such that pki is the minimum transmission power required for Ni to reach Nj . Note that a node
does not need to transmit at power levels other than the ones needed to reach other nodes within
its maximum range.

Let P denote a mapping of the nodes in the network to transmission power levels. The mapping
implemented at time t is P = {Ni → p1(t), N2 → p2(t), . . . }, where pi(t) is the power at which
node Ni is set to make transmissions at time t. We write P = { fi,P−i } where fi is a mapping
of node Ni to a certain power level and P−i is a mapping of all other nodes in the network to
power levels.

Let Pi denote a mapping, Pi : Hi → R, of Ni and its reachable neighbors to power levels.
We write Pi = { fj,Pi,−j } where fj is a mapping of node Nj ∈ Hi to a certain power level
and Pi,−j is a mapping of all other nodes in Hi to power levels.

Let Li(ai, t) denote the estimated lifetime of node Ni at time t if set to transmit at power
level ai. Per the definition of estimated lifetime, Li(ai, t) = Wi(t)/ai. If ai = p′i(Pi), then
Li(ai, t) = L′i(Pi, t).

Denote by m(i, t), or m(i) for brevity, the node in Ii(t) with the smallest potential lifetime.
We define the potential lifetime of Ni’s reverse-link neighborhood at time t as the potential
lifetime of node m(i) at time t, i.e., L′m(i)(Pm(i), t).

B. The utility function
In the following, we present and justify the utility function governing the ordinal potential

game upon which our topology control algorithm is based.
As stated in Section III, the primary goal for each sensor node is to improve the potential

lifetime of its reverse-link neighborhood without also causing a reduction in the network’s
estimated lifetime. While prioritizing the primary goal, the secondary goal of the sensor node
is to improve its own estimated lifetime. Both of these goals are captured in the utility function
presented in this section.

Let ai ∈ Ai denote a power level that is available to node Ni at time t. Define the primary
utility function (corresponding to the primary goal described in Section III) for node Ni with
power level ai at time t as:

uXi (ai, t) = min

(
min

Nj∈Ii(t)
L′j({Ni → ai,Pj,−i}, t), Li(ai, t)

)
= min

(
L′m(i)({Ni → ai,Pm(i),−i}, t), Li(ai, t)

)
(1)

This is the minimum of the estimated lifetime of node Ni at power level ai and the potential
lifetime of the node whose value is the minimum amongst its reverse-link neighbors. Maximizing
this is the primary goal as explained in Section III.

Define the secondary utility function for node Ni with power level ai at time t as:

uYi (ai, t) = Li(ai, t) (2)
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This is the estimated lifetime of node Ni when transmitting at power level ai at time t. Maxi-
mizing this is the secondary goal as also explained in Section III.

Bearing in mind the two goals, primary and secondary, for each node, we define the utility
function ui for node Ni with power level ai at time t as:

ui(ai, t) = ci(ai, t)
[
uXi (ai, t) + `i(ai, t)u

Y
i (ai, t)

]
= ci(ai, t) min

(
L′m(i)({Ni → ai, ,Pm(i),−i}, t), Li(ai, t)

)
+ ci(ai, t)`i(ai, t)Li(ai, t)

(3)

where ci(ai, t) and `i(ai, t) are defined in the following paragraphs.
The term ci(ai, t) in Eqn. (3) is a binary function indicating whether node Ni, when set to

transmit at power ai, is connected to every node Nj ∈ Ri(t). More specifically,

ci(ai, t) =

{
1, if a path exists from Ni to each Nj ∈ Ri(t)

0, otherwise

If node Ni has lost connectivity with a certain node Nj by transmitting at power ai at time t, i.e.,
ci(ai, t) = 0, then, the network’s connectivity is lost and by Case 1 in Section I-A, the network’s
life has ended. This should be reflected in node Ni’s own utility function, and thus, ui(ai, t) = 0
when ci(ai, t) = 0. Note that checking for the existence of a path to every Nj ∈ Ri(t) is a
localized function and does not require global or centralized knowledge.

The term `i(ai, t) in Eqn. (3) is a binary function indicating whether the node’s own estimated
lifetime should be considered when calculating its utility at power level ai. In the following, we
will describe the conditions under which `i(ai, t) takes on the values of either 0 or 1.

As discussed in Section III, improving its own lifetime is only the secondary goal for every
sensor node. When the primary and the secondary goals of a node are in conflict, the secondary
goal of improving its own lifetime should yield to the primary goal. Therefore, for ai that leads
to this situation, `i(ai, t) = 0 indicating that the secondary goal of node Ni yields to the primary
goal. On the other hand, for the power level ai at which node Ni is able to achieve its primary
goal without conflict with the secondary goal, `i(ai, t) should take on the value of 1 and node Ni

should now focus on its secondary goal as well. In cases where node Ni is not able to achieve
the primary goal at whichever power it is transmitting, it should then focus on improving its
own estimated lifetime and therefore, the function `i(ai, t) then takes on the value of 1 for every
ai selected. The following paragraphs present a formal definition of function `i(ai, t).

Suppose at power level ai, node Ni is able to help node m(i, t) reduce its potential transmission
power, and its own estimated lifetime at power ai is larger than its reverse-link neighborhood’s
previous potential lifetime. Under such a circumstance, we refer to power level ai as a preferred
power level of node Ni. Note that, for a node-to-power mapping P, there may exist several
preferred power levels for node Ni. We denote the set of preferred power levels for node Ni

under the node-to-power mapping P as Ki(P−i). For any power level ai ∈ Ki(P−i), node
Ni’s reverse-link neighborhood’s potential lifetime is extended by node Ni transmitting at power
ai and node Ni’s lifetime at power level ai exceeds its previous reverse-link neighborhood’s
potential lifetime. Therefore, at a power level ai ∈ Ki(P−i), the primary goal for node Ni is
met and node Ni should focus on optimizing for its own estimated lifetime (the secondary goal)
through the utility function. Therefore, we can conclude that `i(ai, t) = 1 in such a case.
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If there exists no preferred power level ai at which Ni can transmit to increase its primary
utility function (indicated by Ki(P−i) = ∅), then also node Ni should focus on improving its
own estimated lifetime through the utility function. In this case, Ni’s lifetime should be still be
relevant in the local utility function ui(ai, t) and so, `i(ai, t) = 1 for any value of ai.

If neither of the above two cases is valid, then transmitting at power level ai causes a conflict
between node Ni’s primary and secondary goals. In this case, node Ni should focus on its
primary goal only and therefore, `i(ai, t) = 0.

Based on the above reasoning, `i(ai, t) is defined as:

`i(ai, t) =

{
1, if Ki(P−i) = ∅, or ai ∈ Ki(P−i)

0, otherwise

C. The ordinal potential game
We are now ready to describe the strategic game Γ = 〈N,A,U〉 as having the following three

components:
• Player set N : Ni ∈ N = {N1, N2, ..., Nn} where n is the number of nodes in the network.
• Action set A: a ∈ A = Πn

i=1Ai is the space of all action vectors, where each component
Ai represents the set of available power levels at which Ni may transmit.

• Utility function set U : For each player Ni, utility function ui : A → R as given by Eqn.
(3) which models the node’s preferences for its available power level choices. The vector
of these utility functions is U : A→ Rn.

Theorem 4.1: The game Γ = 〈N,A,U〉 is an ordinal potential game and its ordinal potential
function is given by

Φ(P, t) = C(P) min
Ni∈N

L′i(Pi, t) (4)

where C(P) is the binary connectivity function indicating whether the graph is connected with
node-to-power mapping P, i.e,

C(P) =

{
1, if the graph is connected
0, otherwise

Proof: We will prove this by applying the definition of an ordinal potential game and proving
that, at any time instant t, the difference in individual utilities for each node from unilaterally
changing its strategy and the difference in values of the global potential function have the same
sign [9], [34]. Denote the mapping of nodes to power levels as follows: when Ni is transmitting
at power level ai as P = {Ni → ai,P−i} and when Ni is transmitting at power level a′i as
P′ = {Ni → a′i,P−i}. First, for the difference in an individual node’s utilities, we have:

∆ui(t) = ui(P, t)− ui(P′, t)

Omitting t for brevity, we can rewrite this equation as:

∆ui = ui(P)− ui(P′)
= ci(ai)Li(ai)`i(ai) + ci(ai) min

{
L′m(i)(P), Li(ai)

}
− ci(a′i)Li(a′i)`i(a′i)− ci(a′i) min

{
L′m(i)(P

′), Li(a
′
i)
}
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Note that, with Ni’s power level being either ai or a′i, the power levels for the rest of the nodes
within the network remain the same. Since at any time instant t, Nj ∈ Oi(t) are the only nodes
whose potential lifetime may be affected by Ni’s power level, we can thus conclude that for
node Nj 6∈ Oi(t), L′j(P, t) = L′j(P

′, t).
Now, the difference in the values of the global potential function, ∆Φ(t), is:

∆Φ(t) = C(P) min
Ni∈N

L′i(P, t)− C(P′) min
Ni∈N

L′i(P
′, t)

Since this equation holds for any value of t, we can omit t to simplify the notation.

∆Φ = C(P) min
Ni∈N

L′i(P)− C(P′) min
Ni∈N

L′i(P
′)

= C(P) min

{
min
Nj∈Oi

L′j(P), min
Nk 6∈Oi

L′k(P))

}
− C(P′) min

{
min
Nj∈Oi

L′j(P
′), min

Nk 6∈Oi

L′k(P
′)

}
= C(P) min {Ti(P), T−i(P)} − C(P′) min {Ti(P′), T−i(P′)}

where Ti(P) = minNj∈Oi
L′j(P) is the smallest potential lifetime amongst node Ni and its

reverse-link neighborhood when the node-to-power mapping is P. Recall that Oi = Ni ∪ Ii and
therefore:

Ti(P) = min{L′i(P), min
Nj∈Ii

L′j(P)}

= min{L′i(P), L′m(i)(P)} (5)

Ti(P
′) is similarly defined. T−i(P) and T−i(P′) are also defined similarly as minNk 6∈Oi

L′k(P)
and minNk 6∈Oi

L′k(P
′), respectively. Since nodes within Oi are the only nodes whose potential

lifetime may be influenced by node Ni’s change in its transmission power, we can therefore
conclude that T−i(P) = T−i(P

′).
Without loss of generality, we assume that ai > a′i, indicating that if C(P′) = 1, then C(P) =

1. We can also conclude that Li(ai) < Li(a
′
i). According to the definition of C(P), if ai = 0,

then C(P) = 0. The possible cases of ci(ai, t) and ci(a′i, t) are (omitting t for brevity):
• Case 1: ci(ai) = ci(a

′
i) = 0⇒ C(P) = C(P′) = 0

• Case 2: ci(ai) = 1, ci(a
′
i) = 0⇒ C(P′) = 0

• Case 3: ci(ai) = ci(a
′
i) = 1

In Cases 1 and 2, the network is not connected with ai or a′i or both. In these cases, it is easy
to prove that ∆ui and ∆Φ have the same sign. We consider Case 3 in detail in the following.

In Case 3, the local graph within Ni’s range is connected whether Ni’s power level is ai or
a′i. Since all other nodes except Ni’s power levels remain the same at time t, we can conclude
that C(P) = C(P′). This leads us to two situations: in one, C(P) = C(P′) = 0, i.e, the full
graph G is not connected because of some node located outside of Ni’s range, and in the other,
C(P) = C(P′) = 1, i.e, the full graph G is connected. In the case the graph is not connected,
C(P) = C(P′) = 0 and, therefore, ∆Φi = 0. Thus, we can conclude that ∆ui and ∆Φi have
the same sign. In the following, we now focus on the situation in which the full graph G is
connected.

The Case 3 situation in which the graph is connected, i.e., C(P) = C(P′) = 1, can be further
categorized into four sub-cases:
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• Sub-case (3a):
min{Ti(P), T−i(P)} = Ti(P), and min{Ti(P′), T−i(P′)} = Ti(P

′).
• Sub-case (3b):

min{Ti(P), T−i(P)} = T−i(P), and min{Ti(P′), T−i(P′)} = Ti(P
′).

• Sub-case (3c):
min{Ti(P), T−i(P)} = Ti(P), and min{Ti(P′), T−i(P′)} = T−i(P

′).
• Sub-case (3d):

min{Ti(P), T−i(P)} = T−i(P), and min{Ti(P′), T−i(P′)} = T−i(P
′).

Case (3a): In this case, whether Ni’s power level is ai or a′i, the node with the smallest
potential lifetime lies either within Ni’s reverse-link neighborhood or is node Ni itself. Since
Ti(P) = min{L′m(i)(P), L′i(P)} and Ti(P′) = min{L′m(i)(P

′), L′i(P
′)}, we can conclude that:

∆Φ = Ti(P)− Ti(P′) = min
{
L′m(i)(P), L′i(P)

}
−min

{
L′m(i)(P

′), L′i(P
′)
}

(6)

∆ui = Li(ai)× `i(ai)− Li(a′i)× `i(a′i) + min
{
L′m(i)(P), Li(ai)

}
−min

{
L′m(i)(P

′), Li(a
′
i)
}
(7)

Since a node’s potential transmission power is no larger than its current transmission power,
we can conclude that pi(P) ≤ ai, and pi(P

′) ≤ a′i. Also, ai is at least one power level larger
than a′i and, therefore, pi(P′) ≤ a′i ≤ pi(P) ≤ ai. We conclude:

L′i(P
′) ≥ Li(a

′
i) ≥ L′i(P) ≥ Li(ai) (8)

Now, there are four sub-sub-cases based on the values of `i(ai) and `i(a′i):
• Case (3a-i): `i(ai) = `i(a

′
i) = 1

• Case (3a-ii): `i(ai) = `i(a
′
i) = 0

• Case (3a-iii): `i(ai) = 1, and `i(a′i) = 0
• Case (3a-iv): `i(ai) = 0, and `i(a′i) = 1

In the following, we consider each of the above sub-sub-cases.
Case (3a-i): According to the definition of `i(ai, t), either both power levels ai and a′i can

help improve node Ni’s reverse-link neighborhood’s potential lifetime or neither of them can.
Therefore, we have L′m(i)(P) = L′m(i)(P

′). Note that, L′i(P) ≤ L′i(P
′). Now, we can rewrite

Eqn. (6) as

∆Φ = min
{
L′m(i)(P), L′i(P)

}
−min

{
L′m(i)(P

′), L′i(P
′)
}

= min
{
L′m(i)(P

′), L′i(P)
}
−min

{
L′m(i)(P

′), L′i(P
′)
}

≤ min
{
L′m(i)(P

′), L′i(P
′)
}
−min

{
L′m(i)(P

′), L′i(P
′)
}

= 0

As for ∆ui, since Li(ai) < Li(a
′
i), and L′m(i)(P) = L′m(i)(P

′), we can rewrite Eqn. (7) as:

∆ui = Li(ai)− Li(a′i) + min
{
L′m(i)(P), Li(ai)

}
−min

{
L′m(i)(P

′), Li(a
′
i)
}

< min
{
L′m(i)(P

′), Li(ai)
}
−min

{
L′m(i)(P

′), Li(a
′
i)
}

≤ min
{
L′m(i)(P

′), Li(a
′
i)
}
−min

{
L′m(i)(P

′), Li(a
′
i)
}

= 0
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Therefore, we have ∆Φ ≤ 0 and ∆ui < 0. Thus, as for Case (3a-i), ∆Φ and ∆ui share the same
sign.

Case (3a-ii): Since `i(ai) = `i(a
′
i) = 0, it indicates that node Ni’s reverse-link neighborhood’s

potential lifetime cannot be extended when node Ni is transmitting at either power level ai or
a′i. Thus, we can conclude that L′m(i)(P) = L′m(i)(P

′). Following a similar line of deduction as
in Case (3a-i), we can conclude that ∆Φ ≤ 0.

As for ∆ui, also following the same line of deduction as in Case (3a-i), we have:

∆ui = min
{
L′m(i)(P), Li(ai)

}
−min

{
L′m(i)(P

′), Li(a
′
i)
}

≤ min
{
L′m(i)(P

′), Li(ai)
}
−min

{
L′m(i)(P

′), Li(a
′
i)
}

= 0

This implies that both ∆Φ and ∆ui are no larger than 0 and, therefore, share the same sign.
Case (3a-iii): The fact that `i(ai) = 1 and `i(a′i) = 0 indicates that node Ni’s preferred power

set is not empty and power level ai is one of the preferred power levels while power level a′i is not.
Therefore, by node Ni transmitting at power ai, its reverse-link neighborhood’s potential lifetime
can be extended. Denote node Ni’s reverse-link neighborhood’s previous potential lifetime by
L′pre. We know that L′m(i)(P) > L′pre. On the other hand, since `i(a′i) = 0 and ai > a′i, we can
conclude that by node Ni transmitting at power level a′i, its reverse-link neighborhood’s potential
lifetime cannot be improved. Thus, we have L′m(i)(P

′) = L′pre < L′m(i)(P). Also, according to
the definition of `i(ai), we can conclude Li(ai) > L′pre. Together with Eqn. (8), we can conclude
that L′i(P) ≥ Li(ai) > L′m(i)(P

′). Thus, we can rewrite Eqns. (6) and (7) as:

∆Φ = min
{
L′m(i)(P), L′i(P)

}
−min

{
L′m(i)(P

′), L′i(P
′)
}

≥ min
{
L′m(i)(P

′), L′i(P)
}
− L′m(i)(P

′)

> min
{
L′m(i)(P

′), L′m(i)(P
′)
}
− L′m(i)(P

′) = 0

∆ui = Li(ai)−min
{
L′m(i)(P

′), Li(a
′
i)
}

+ min
{
L′m(i)(P), Li(ai)

}
≥ Li(ai)− L′m(i)(P

′) + min
{
L′m(i)(P

′), Li(ai)
}

> min
{
L′m(i)(P

′), Li(ai)
}
> 0

Therefore, we have proved that, in Case (3a-iii), both ∆Φ and ∆ui are positive numbers, and
therefore, share the same sign.

Case (3a-iv): The fact that `i(ai) = 0 indicates that the preferred power level set Ki(P−i) is
not empty and power level ai is not within Ki(P−i). On the other hand, since `i(a′i) = 1, and
P−i = P′−i, we can conclude that a′i is a preferred power level and L′pre < Li(a

′
i). This also

indicates that when transmitting at power level a′i, node Ni serves as a relay node for node m(i)
enabling it to reduce its transmission power without disconnecting the network. Therefore, by
transmitting at power ai > a′i, node Ni should also be able to serve as the bridge node for node
m(i). Thus, we can conclude that L′m(i)(P) = L′m(i)(P

′). Following similar lines of deduction
as in Cases (3a-i) and (3a-ii), we conclude that ∆Φ ≤ 0.

Now, since node m(i)’s potential lifetime can be improved by node Ni transmitting at power
level ai, therefore, the only reason why `i(ai) = 0 is that by transmitting at this power, node
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Ni’s lifetime at power level ai is less than node m(i)’s previous potential lifetime, i.e., Li(ai) <
L′pre < Li(a

′
i). We therefore can rewrite Eqn. 7 as:

∆ui = min
{
L′m(i)(P), Li(ai)

}
−min

{
L′m(i)(P

′), Li(a
′
i)
}
− Li(a′i)

≤ min
{
L′m(i)(P

′), Li(a
′
i)
}
−min

{
L′m(i)(P

′), Li(a
′
i)
}
− Li(a′i)

= 0− Li(a′i) < 0

Therefore, we have proved that, in Case (3a-iv), ∆Φ and ∆ui share the same sign.
From the above arguments, we have proved that ∆Φi and ∆ui hold the same sign for all

possible sub-cases in Case (3a).
Case (3b): We have Ti(P′) < T−i(P

′) = T−i(P) < Ti(P). This indicates that by node Ni

transmitting at power ai, its primary goal has been met. Therefore, we have `i(ai) = 1, and
`i(a

′
i) = 0. Then, we have ∆Φi = T−i(P)− Ti(P′) > 0 and ∆ui = Li(ai) + Ti(P)− Ti(P′) >

Li(ai) > 0. Therefore, in Case (3b), ∆Φi and ∆ui hold the same sign.
Case (3c): In this case, Ti(P) < T−i(P) = T−i(P

′) < Ti(P
′). Therefore, we have ∆Φi =

Ti(P)− T−i(P′) < 0. Exactly as in Case (3a), there are four sub-cases depending on the values
of `i(ai) and `i(a′i). For Cases (3c-i), (3c-ii) and (3c-iv), we can follow similar lines of deduction
as in Cases (3a-i), (3a-ii) and (3a-iv) to prove that ∆ui ≤ 0 and, therefore, ∆Φi and ∆ui hold
the same sign.

As for Case (3c-iii), it can be shown that it is impossible. Following the logic discussed in
Case (3a-iii), we have Φi = Ti(P) − T−i(P′) > Ti(P) − Ti(P′) > 0, which is in contradiction
to the assumption in Case (3c-iii) that Ti(P) < Ti(P

′).
So, in all sub-cases of Case (3c), ∆Φi and ∆ui have the same sign.
Case (3d): In this case, we can conclude that ∆Φi = T−i(P) − Ti(P

′) = 0. Therefore, no
matter what the sign of ∆ui, we can conclude that ∆Φi and ∆ui have the same sign.

This concludes the consideration of all possible cases and sub-cases, in all of which we have
shown that ∆Φ(P) and ∆ui(P) have the same sign. This proves that Φ(P, t) is an ordinal
potential function of ui(P, t), and Γ is an ordinal potential game.

Since this is an ordinal potential game, seeking the optimal global potential function yields a
Nash equilibrium [9], [34]. In the next section, we propose a distributed localized algorithm that
adaptively seeks to optimize the global potential function through each node seeking to optimize
its own utility function defined in Eqn. (3).

V. THE CTCA ALGORITHM

This section presents the Cooperative Topology Control with Adaption (CTCA) algorithm in
which each node plays the ordinal potential game, discussed in the previous section, with the
goal of increasing network lifetime.

A. Pseudo-code and rationale
We use the same terminology as in the previous section, but for brevity, we omit the time t in

our notation. The pseudo-code of the CTCA algorithm is presented in Fig. 1. The initialization
phase of the algorithm (lines 01–13) enables each node to rapidly reduce its transmission power
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ALGORITHM 1: CTCA algorithm executed at node Ni

Input: Maximum transmission power Pmax
Output: G′

i = (Vi, E
′
i), the local topology of node Ni

1 Initialization phase:
2 Broadcast a Hello message with power pmax;
3 Compile Ri;
4 k ← number of reachable neighbors in Ri;
5 Compile Ai = {p(Ni, Nj) |Nj ∈ Ri};
6 Sort Ai such that Ai[1] < Ai[2] < · · · < Ai[k];
7 Broadcast neighbor info (Nj , p(Ni, Nj)) for Nj ∈ Ri with power Ai[k];
8 Receive the information sent by neighbor Nj ∈ Ri;
9 Run DLSS algorithm, determine pi, compile Ri;

10 Broadcast pi with power level Ai[k];
11 Receive pj from Nj ∈ Ri, and compile Ii;
12 Si ← AbleToReducePower(Ni, pi);
13 Broadcast Si with power pi;
14 Receive Sj from Nj ∈ Ii;

15 Power adjustment phase:
16 EnergyInfoShared ← False;
17 while Wi > 0 do
18 q ← 0;
19 if not EnergyInfoShared then
20 Broadcast Wi with power pi;
21 EnergyInfoShared ← True;
22 end
23 Send remaining energy request for Nj ∈ Ii;
24 Receive Wj from Nj ∈ Ii;
25 Wait for a random time t ∈ [0, T1];
26 pi, q ← NAPA(pi, q);
27 Wait for T2 time;
28 EnergyInfoShared ← False;
29 Wait for T3 − T2 time;
30 end
31 return Gi

(using the DLSS algorithm executed in line 08), compile Ai (the list of power levels that Ni can
switch to) and prepare for the power adjustment phase illustrated in lines 14–29.

To offer a dynamic environment where each node updates its transmission power periodically,
the algorithm operates in rounds. At the beginning of each round, each node broadcasts its
current remaining energy if it has not been broadcasted before, which is indicated by the
EnergyInfoShared flag. This process is described in lines 17–19. It will also send out a request
for its reverse-link neighbors’ current remaining energy levels and update Wj for Nj ∈ Ii based
on the received data as described in lines 21–22. The node will then wait for a random period
of time t ranging from 0 to T1 before executing the Neighbor-Assisted Power Adjust (NAPA)
function to adjust its transmission power. NAPA is the game-theoretic component of the CTCA
algorithm.

The random time interval of t ∈ [0, T1] is used to introduce randomness in the order in which
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sensor nodes perform their power adjustment routines. Time T2 in line 25 is needed because
the energy level on a node is constantly changing and it helps to insert this waiting period to
modulate how frequently a node requests energy level information from its reverse-link neighbors
and how frequently it broadcasts its current energy level in response to requests from its reachable
neighbors. Therefore, to ensure that node Ni’s reachable neighbors have a relatively up-to-date
information on node Ni’s energy level, node Ni changes its EnergyInfoShared flag to False so
that once its reachable neighbors request its information, it will send back the latest energy level.
On the other hand, node Ni should reduce the number of times that its information is sent due
to its own energy concerns. Therefore, if node Ni’s energy level has not changed noticeably
so as to affect its reachable neighbors’ actions, it will keep its EnergyInfoShared as True until
T2 time has passed. Time T3 in line 27 is needed to ensure that another round of the topology
control process will not begin until the ongoing topology control process has finished.

The detailed NAPA function is illustrated in Algorithm 2. As we have explained in Section
III, each node should always try to meet its primary goal unless it cannot be accomplished. This
process for helping improving its primary goal is illustrated in lines 16–26 in Algorithm 2. If Ni

is to increase its transmission power to help improve its reverse-link neighborhood’s potential
lifetime (as illustrated by node N3 in Fig. 2(c)), several conditions have to be met:

1) The node with the minimum potential lifetime within Ni’s reverse-link neighborhood (node
m(i)) cannot improve its potential lifetime on its own (Sm is False), as in node N1’s case
illustrated in Fig. 2(a).

2) Node m(i) is not transmitting at its minimum transmission power (pm > min(Am)).
3) m(i)’s potential lifetime can be improved with Ni transmitting at a certain larger power

ai. In this case, Nc(m) ∈ Hi, indicating that node Ni should be transmitting at power
p(Ni, Nc(m)).

4) Ni’s lifetime when transmitting at power p(Ni, Nc(m)) is larger than its reverse-link neigh-
borhood’s potential lifetime, i.e., Wi/p(Ni, Nc(m)) > L′m(i)(Pi).

Conditions (1) and (2) are implemented in line 16 of Algorithm 2, and conditions (3) and (4)
are implemented in line 18 in Algorithm 2. If all of the conditions listed above have been met,
then node Ni will choose to increase its transmission power so as to help improve its reverse-
link neighborhood’s potential lifetime. On the other hand, if the node cannot help to improve
its reverse-link neighborhood’s potential lifetime (indicated by CanHelp being False in line 28),
then it will try to meet its secondary goal of improving its own estimated lifetime. This process
is indicated by lines 29–36. In cases where a node can still improve its estimated lifetime, it
will schedule to perform the NAPA function again after a random period of time (lines 39–40).

Function AbleToReducePower in Algorithm 3 illustrates the procedure implemented by each
node to calculate its potential transmission power. It is also the function that helps a node Ni

determine its local connectivity function ci(ai, t) at power level ai. If there exists a reachable
neighboring node Nj of Ni such that Nj can communicate with the node that determines Ni’s
current transmission power (denoted by Nx), then Ni’s potential transmission power, denoted
by p′i(Pi), is one level below its current transmission power, and Si is True. In other words,
there exists a path between node Ni and node Nx when node Ni is transmitting at power level
p′i(Pi), and thus, ci(p′i(Pi), t) = 1. For any power level ai > p′i(Pi), we have ci(ai), t) = 1. On
the other hand, if such node Nj could not be found, we have p′i(Pi) = pi, and Si is False. At
this point, for any power level ai < pi and ci(ai, t) = 0. This is because at power level ai < pi,
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ALGORITHM 2: The Neighbor-Assisted Power Adjust (NAPA) function executed at node Ni

Input: current power level pi, current execution number q
Output: new power level pi, execution number q

1 if q < Q then /* Q is the maximum number of times a node may execute this
function per round */

2 q ← q + 1;
3 for Nj ∈ Ii do
4 if Sj then
5 k ← index of pj in Aj ;
6 L′

j(Pi)← Aj [k − 1];
7 else
8 L′

j(Pi)← pj ;
9 end

10 end
11 Compute node m(i)← argmin(L′

j(Pi) |Nj ∈ Ii);
12 Sm ← received Sm from node m(i);
13 pm ← received node m(i)’s current transmission power;
14 Si ← AbleToReducePower(Ni, pi) ;
15 CanHelp ← False;
16 if not Sm and pm > min(Am) then
17 Nc(m) ← Nx | p(m(i), Nx) = pm;
18 if Nc(m) ∈ Hi and Wi/p(Ni, Nc(m)) > L′

m(i)(Pi) then
19 pi ← p(Ni, Nc(m));
20 Broadcast NeighborInfo Request with power pi;
21 Receive response from newly added neighbors;
22 Update Ri;
23 Si ← AbleToReducePower(Ni, pi);
24 Inform Nj ∈ {Ri ∪ Ii} of (pi, Si);
25 CanHelp ← True;
26 end
27 end
28 if not CanHelp then
29 if pi > p′i(Pi) then
30 ptemp ← pi;
31 pi ← p′i(Pi);
32 Update Ri.;
33 Si ← AbleToReducePower(Ni, pi);
34 Broadcast (pi, Si) with power ptemp;
35 Inform Nj ∈ Ii of current (pi, Si);
36 end
37 end
38 if Si then
39 Wait for a random time t ∈ [0, T1];
40 pi, q ← NAPA(pi, q);
41 else
42 return pi, q;
43 end
44 end
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ALGORITHM 3: The AbleToReducePower function executed at node Ni

Input: current power level pi
Output: Able to reduce power flag Si

1 Nc(i) ← Nx | p(Ni, Nx) = pi;
2 Wc(i) ← node Nc(i)’s current power level;
3 Si ←False;
4 p′i(Pi)← pi;
5 if pi > min(Ai) then
6 for Nj ∈ Ri do
7 if Nc(i) ∈ Rj and Li(pi) <

Wc(i)

p(Nc(i),Nj)
then

8 Si ← True;
9 k ← index of pi in Ai;

10 p′i(Pi)← Ai[k − 1];
11 break;
12 end
13 end
14 end
15 return Si;

node Ni is transmitting at a power level lower than what is necessary to stay connected with
node Nx, and therefore, loses its local connectivity. Note that, in either of the two cases, no
communication among sensor nodes has to be conducted in order to calculate node Ni’s local
connectivity function ci(ai, t).

To ensure up-to-date information sharing amongst a node’s reachable neighborhood and its
reverse-link neighborhood, the communication routines that are executed by each node are
illustrated in Algorithm 4. These routines ensure that once a node has changed its current status
(such as current transmission power, potential transmission power and current remaining energy),
nodes whose status may be affected are informed.

As has been proved in the previous section, game Γ = 〈N,A,U〉 is an ordinal potential game,
and seeking the optimal global potential function yields a Nash equilibrium. Therefore, given
enough time, the NAPA procedure converges to an equilibrium. In our observations, we find that
Q = 4 is adequate to ensure good performance. Therefore, in our implementations, we allow
only four executions of the NAPA function per round per node.

The initialization stage of the CTCA algorithm as illustrated in Fig. 1 introduces the same
order of computational and communication complexity as the DLSS algorithm, which is O(∆2).
The communication and computation complexity of the CTCA algorithm at each round is O(∆).

VI. SIMULATION RESULTS

A. Simulation and Energy Consumption Model
The energy model used in our simulation is identical to that used in the research literature on

topology control [24], [35]. This model incorporates energy consumption due to transmission,
reception, and for radio electronics in both free space and over a multi-path channel above a
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ALGORITHM 4: Functions executed at Ni upon receiving control/request messages.

1 Upon receiving transmission power updates from Nj

2 if Nj ∈ Ii then
3 if pj < p(Nj , Ni) then
4 Remove Nj from Ii;
5 else
6 Update Nj’s entry in Ii with (pj , Sj);
7 end
8 end
9 if Nj ∈ Ri then

10 Update Nj’s entry in Ri with (pj , Sj);
11 Stemp ← Si;
12 Si ← AbleToReducePower(Ni, pi);
13 if Si 6= Stemp then
14 Broadcast Si with power pi;
15 Wait for a random time t ∈ [0, T1];
16 pi, q ← NAPA(pi, q);
17 end
18 end

19 Upon receiving NeighborInfo Request from Nj

20 if Nj 6∈ Ii then
21 Inform Nj of (Wi, pi, Si);
22 Add Nj to Ii;
23 end

24 Upon receiving remaining energy request
25 if not EnergyInfoShared then
26 Broadcast Wi with power level pi;
27 EnergyInfoShared ← True;
28 end

certain distance threshold.

ETx(d) = Eelec × k +

{
εfs × d2 × k if d < d0

εmp × d4 × k if d ≥ d0

ERx = Eelec × k (9)

where ETx(d) is the energy consumed in transmitting the signal to an area of radius d and Eelec
is the energy consumed for the radio electronics. εfs is the transmitter’s amplifier coefficient
in free space and εmp is the transmitter’s amplifier coefficient in the multi-path channel. d0 is
the distance threshold beyond which the channel is considered as multi-path. ERx is the energy
consumed in receiving the signal, and k is the number of bits in the packet. Radio parameters
are set as Eelec = 50nJ/bit, εfs = 10pJ/bit/m2, εmp = 0.0013pJ/bit/m4, and d0 = 87.8m.

Our simulation is conducted for a square 10km×10km region within which 200 nodes are
placed in random locations. Each node is equipped with 40kJ of energy and has a maximum
transmission power pmax, which corresponds to a transmission radius of 20% of the width of the
square region. The constant T3 in the CTCA algorithm is chosen to be 1000 times larger than T1,
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Fig. 3: Lifetime comparison against different algorithms

and T2 is chosen to be half of T3. Each data point in the results reported here is the average of
200 randomly generated graphs. Using the batch means method to estimate confidence intervals,
we have determined that the 95% confidence interval is within ±2% for each of the data points
reported in our results. In our simulation model, we employ the TinyOS standard [36] for sensor
node data transmission, including its packet formats.

B. Comparative analysis against other algorithms
In this section, we compare the performance of CTCA algorithm against some of the other

algorithms. Among the well-cited algorithms, our criteria for including them in this comparative
analysis are the following:
• The algorithm applies to or allows application in which communication is uni-directional,

where if node Ni is within the communication radius of node Nj , node Nj is not required
to be within the communication radius of node Ni. It is the same assumption that we make
in this paper.

• The communication and computational complexity for an adaptive algorithm is O(∆) or
lower each round.

Based on the above criteria, we have selected Directed Relative Neighborhood Graph (DRNG)
[1], Directed Local Spanning Subgraph (DLSS) [1], Step Topology Control (STC) [2], and Routing
Assisted Topology Control (RATC) [3]. In the case of the RATC algorithm, it was reported in [3]
that when sensor nodes operate under a given level of 3-hop knowledge, the algorithm yields
the best performance. Thus, we also allow up to 3-hop level of information to be exchanged
among sensor nodes in the RATC algorithm.

In our experiments, every round, each node will send a designated data packet to every other
node within the network, i.e, a node will send out n − 1 packets each round. Data packets
are routed through the minimum energy consumption path. In case of the CTCA algorithm, at
the beginning of each round, each node adjusts its transmission power according to the energy
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(a) The average transmission power per node plotted against time until
50% of the graphs in the simulation experiments lose connectivity.
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Fig. 4: A comparative performance analysis of different algorithms.

situation in its local area; as for all other algorithms, each node will send out a hello message
to check their neighbors’ availability.

In our simulations, we include the full energy costs of the overhead (such as hello messages)
associated with executing each of the algorithms considered in the comparative analysis.

Fig. 3 reports the network lifetime achieved by the different algorithms. For each point in the
graph, its x-axis value indicates the number of rounds that has passed. The y-axis value indicates
the percentage of graphs (of the 200 randomly generated graphs used as a starting point in the
experiments) that are still connected. As shown in the figure, a significantly larger fraction of
graphs stay connected when using the CTCA compared to other previously-known algorithms.
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On average, we find that the life of a network is extended by more than 50% compared to other
algorithms.

Fig. 4 reports the network’s parameters (the average transmission power per node and the
average energy cost along the minimum energy path) achieved by the different algorithms.
For static algorithms such as DLSS, DRNG, STC, and RATC, the topology of the network is
determined at the very beginning of the network’s lifetime. Therefore, their network’s parameters
remain the same throughout the network’s lifetime, as indicated by straight lines in Figs. 4(a) and
4(b). The CTCA algorithm, on the other hand, changes the topology of the network with time,
and thus, produces different parameters each round. In Figs. 4(a) and 4(b), we have reported
each algorithm’s performance until 50% of the random graphs that we have generated become
disconnected. DLSS is the only algorithm that achieves average transmission power or energy
cost per path comparable to the CTCA algorithm. However, as time progresses, all algorithms
except CTCA retain the same average transmission power per node until the network’s functional
life ends, but the CTCA algorithm adapts accordingly and preserves connectivity for much longer.
It is worth noting that, in the case of the CTCA algorithm, between the first round when a graph
is connected to the 14th round when it is only 50% likely that it is connected, the average
transmission power per node in the CTCA algorithm increases by only about 20%. The same
observation can be made for the average energy cost along the minimum energy path.

Note that, the CTCA algorithm is an algorithm that determines the topology of the network.
Therefore, in our simulation, to capture how the CTCA algorithm is able to help extend the
network’s functional lifetime, we only employ the simplest routing algorithm—routing the packet
through the minimum energy path. The performance of the CTCA algorithm may vary depending
upon the routing algorithm used to transmit data packets. An efficient routing algorithm may help
extend the network’s functional lifetime even further if the energy dissipation can be distributed
more evenly. However, whether or not the routing algorithm is an efficient one, the CTCA
algorithm accommodates the impact of the routing algorithm because it dynamically adapts to
the current energy level at each node.

C. Comparison against the optimal solution
In topology control algorithms, the weight of an edge usually reflects the cost of transmission

through that particular link. Alternatively, if we assign the weight of an edge (Ni, Nj) at time t
as:

wi,j(t) =
p(Ni, Nj)

Wi(t)
(10)

then, this weight function captures the amount of estimated lifetime consumed by the sender node
Ni if a transmission is made through link Ni → Nj . A centralized topology control algorithm to
minimize the maximum weight of an edge while preserving connectivity is trivial (e.g., based
on removing edges from the graph in order of decreasing weight until removing an edge would
destroy connectivity). Let TOpt,r denote the maximum possible estimated lifetime of the network
achieved using this optimal algorithm on the input graph in round r.

Let TCTCA,r denote the estimated lifetime of the network achieved using the CTCA algorithm
on the input graph in round r. We define the average price paid by the CTCA algorithm as:

Average price paid = avg
(
TOpt,r

TCTCA,r

)
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In our performance analysis, we compute the above average price paid by taking the average
over multiple runs each with a different random graph as the input. We use the term price in line
with the traditional terminology in game theory used in metrics comparing Nash equilibrium
solutions against the social optimum (e.g., the price of anarchy [37]). In this section, we will
use this metric (the average price paid by CTCA) as a measure of the quality of the solution
reached by the CTCA algorithm (note that this only measures the quality of the solution and not
the energy expended to reach the solution, addressed in the previous subsection in computing
actual lifetimes).

In the following set of experiments, we study the quality of the solution delivered by the
distributed CTCA algorithm in comparison to the centralized optimal solution. In our exper-
iments, we begin with sensor nodes all with the same amount of starting energy (10J) and
randomly deployed in a 1000m × 1000m square region. While the energy levels of nodes at
the beginning of the 1st round is the same, the uneven distribution of the energy consumption
on the sensor nodes leads to unevenness in the energy levels of the nodes in subsequent rounds.
Accommodating this unevenness being an important goal of this paper, we trace the performance
of the CTCA algorithm in different rounds (1st, 2nd and 6th). We choose the first round because
it is when energy levels are all the same. We choose the 2nd round because this is the first round
at the beginning of which energy levels may be different on different nodes. We choose the 6th
round because, as shown in Fig. 3, the network may have passed nearly 50% of its lifetime after
this many rounds.

1) The influence of communication radius of nodes: In our first set of experiments, we study
the influence of the sensor node’s maximum communication radius on the performance of the
CTCA algorithm. We use 200 sensor nodes deployed in the region. We conduct 500 independent
simulations and report the results in Fig. 5. Fig. 5(a) reports the average price paid by the CTCA
algorithm with different values of the communication radius of nodes in each of rounds 1, 2 and
6. Fig. 5(b) reports the percentage of times that the CTCA algorithm is able to find the optimal
solution for different communication radii in those same rounds.

Fig. 5(a) shows that when the communication radius is very small (e.g., at 100 meters or
10% of the length of each side in the square area), the performance of the CTCA algorithm
is very close to that of the optimal algorithm (with average price paid close to 1.0). This is
because, given the same sensor node density, the topology graph is already very sparse when
the communication range of the nodes is relatively small. The CTCA algorithm as well as the
optimal algorithm cannot do much to improve the lifetime in this situation. On the other hand,
as the communication range of the sensor nodes is increased, the number of choices available to
each sensor node when trying to adjust its transmission power increases. A centralized algorithm
is better able to exploit these choices because of more information available to it as compared
to the localized information available to each node in the distributed CTCA algorithm. As the
communication range increases even more, each node is able to gain sufficient information
about the region around itself even in a distributed algorithm like CTCA. Therefore, at larger
communication ranges, the disparity in the performance of the distributed CTCA algorithm
and the centralized optimal algorithm reduces again with the average price paid by the CTCA
algorithm reaching closer to 1.0.

The above phenomenon also explains why, as shown in Fig. 5(b), the CTCA algorithm is
more likely to find the optimal solution when the communication range of nodes is very low
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Fig. 5: The performance of the distributed CTCA algorithm in comparison to the centralized
optimal algorithm in different rounds plotted against the communication radius of the nodes.

compared to when the range is intermediate. The figure also shows that, as expected, the CTCA
algorithm finds the optimal solution with high likelihood when the communication range of the
nodes is high. Note that the weaker performance at intermediate ranges is an inherent limitation
of a distributed algorithm which works with only localized information and not necessarily of
the CTCA algorithm (which performs better than other distributed algorithms as shown in the
previous subsection).

It is of interest to observe that, in round 6, the disparity in the energy levels remaining on
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Fig. 6: The performance of the distributed CTCA algorithm in comparison to the centralized
optimal algorithm in different rounds plotted against sensor node density, expressed in number
of nodes per square kilometer.

different nodes becomes larger and which, in turn, triggers more frequent cooperation between
nodes and more changes in the topology. Depending on the order in which different nodes cause
these changes, the potential solution space available to the CTCA algorithm can be large. As a
result, even though the average performance of the CTCA algorithm in the 6th round is similar
to that in other rounds, it is much less likely to reach the perfect optimal solution in the 6th
round.

28



2) The influence of sensor node density: In our second set of experiments, we limit the
maximum communication radius of each sensor node to 200 meters (when the CTCA algorithm
performs close to the worst in comparison to the optimal centralized algorithm). To study the
impact of the sensor node density on the performance of the CTCA algorithm, we conducted an
experiment with sensor node densities ranging from 100 to 300 per square kilometer (i.e., 100 to
300 nodes in the region in our simulation experiments). The results are reported in Fig. 6. Fig.
6(a) reports the average price paid by the CTCA algorithm for different densities in different
rounds. Fig. 6(b) reports the percentage of times that the CTCA algorithm is able to find the
optimal solution.

In Fig. 6, we observe a similar trend as in Fig. 5 with a dip in the performance at intermediate
communication ranges in the former figure and a dip in the performance at intermediate densities
in the latter figure. The trend is explained by the same phenomena described earlier in the context
of changes in performance with changes in the communication radius of the nodes.

VII. CONCLUSION

In this paper, we proposed a game-theoretic approach for nodes in a sensor network to
cooperatively change their transmission powers to help extend the network lifetime. We have
proved the existence of a Nash equilibrium for our game and provided an algorithm, Cooperative
Topology Control with Adaptation (CTCA), which achieves such an equilibrium. Our simulation
results show that the CTCA algorithm is able to improve the lifetime of a wireless sensor network
by more than 50% compared to the best previously-known algorithms.

To better assess the performance of the CTCA algorithm, we also compare the quality of the
topology delivered by the CTCA algorithm to the optimal solution obtained using a centralized
algorithm. Our results show that with increased information available to each node about its
region (such as when the communication range is large), the CTCA algorithm performs closer
to the optimal one. Also, the more topological options available to each node (such as when the
node density is high), the more likely that the average performance of the CTCA algorithm is
closer to the optimal one.

While a distributed algorithm like the CTCA is able to perform well with more information
or options available at each node, we find that there is a significant gap between the average
performance of the CTCA algorithm and the optimal centralized one. Even though the CTCA
algorithm performs better than other distributed algorithms, this paper suggests that there may
yet be more room for new research on better distributed algorithms.

While our work has used a game-theoretic approach under the constraint that the network
remain connected, our algorithm can be adapted to other criteria that describe the functional life
of a network (such as whether or not each portion of a certain region is covered by a sensor node
within a pre-defined distance). The connectivity is captured in the term C(P) in Equation (4)
and can be replaced by a different criterion such as coverage. Our ongoing research is focused
on developing and describing a generalized version of this approach.
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