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A B S T R A C T

Evacuating people to the safe zones is the most crucial operation in managing many disasters. A mathematical
model is presented in this paper, combining locational decisions with the max-flow problem in order to select
safe destinations which maximize the number of dispatched people. The existing frameworks for emergency
logistics usually model the evacuation process based on fixed and pre-determined destinations with a strategic
perspective. The unpredictable and turbulent nature of a disaster may; however, disrupt the predictions.
Furthermore, the primary goal in emergency situations is to dispatch people from the danger zone to a safe place,
no matter where. A mixed integer linear programming model is developed in this paper for selecting one or more
destinations in a capacitated network. The special structure of the model and its similarity to the max-flow
problem allow us to develop exact algorithms and heuristics both for the multiple and single destination location
problem. The solution methods are based on existing algorithms for the max-flow problem. Our proposed
heuristics use the idea of adding a super-sink to the network to generate upper bounds very fast. The exact
algorithms as well as the heuristics are tested on randomly generated instances as well as a real world network.
The most important statistics of their computation times are reported. They are also compared according to their
performance (gap to optimality) and their behavior amongst different categories of the graphs. Finally we have
presented a real-case addressing the problem of choosing a number of destination locations from a fixed set of
pilot pre-determined locations. The problem of deciding on the destinations is considered under 5 grades of
disaster severity and the related impacts on choosing the safe zones are analyzed.

1. Introduction

The UNISDR1 (ISDR, 2009) defines a disaster as “a calamitous event
that seriously disrupts the function of a community or society and
causes human, material, and economic or environmental losses that
exceed the community’s or society’s ability to cope with using its own
resources”. Though often caused by nature, disasters can have human
origins. A disaster occurs when a hazard impacts vulnerable people
with the effects exceeding their coping capacity (IFRC2).

Natural disasters are brought about by a natural change in the en-
vironment or by what is known as an act of God. On the other hand,
disasters like Jilin chemical plant explosions (Fu, Fu, Skøtt, & Yang,
2008) or Mina Stampede (Saudi Arabia) (Ganjeh & Einollahi, 2016) are
influenced by humans and they are often the result of negligence and
human error. Whether the disaster is natural or man-made, the manner
in which an action should be taken is too complex to be determined all
along the disaster. In both cases, casualties should be moved to a safe

place and treated immediately and the best way to meet this end is by
putting the necessary measures in place that counteract this.

Emergency management is performed with a long-term horizon and
includes three types of operations: 1. Long time before the disaster
(strategic decisions), e.g. facility location, and stock pre-positioning. 2.
Immediately after the disaster (tactical decisions), e.g. relief distribu-
tion and casualty evacuation, and 3. Long time after the disaster, e.g.
recovery and reconstructing operations. The literature is generally
broken down into these parts: facility location, relief distribution and
casualty transportation, resource allocation, and commodity flow. A
comprehensive review of these operations and the corresponding op-
timization problems can be found in Caunhye, Nie, and Pokharel
(2012).

In this paper we choose the best destinations amongst several pos-
sible locations with the objective of maximizing the number of evacuees
by integrating two problems in emergency management: the evacuation
and the location problem and we call it the Evacuation-Location
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Problem (ELP). We develop mixed-integer linear programming (MILP)
models to combine network design and flow models. Then, relying on
the special structure of the model and because of the countable set of
possible destinations, we are able to develop exact algorithms for sol-
ving them. These algorithms are based on existing max-flow algorithms
and are implemented on different instances. Heuristics are then pro-
posed which can find feasible solutions very fast. The performance of
these heuristics is compared according to both their gap to optimality
and their computation time. Other results are also extracted by cate-
gorizing the structures of the randomly generated graphs. The paper is
organized as follows: the related literature is reviewed in Section 2. We
will discuss the assumptions and implications of the mathematical
modeling for the Evacuation-Location Problem (ELP) in Section 3. In
this section, we will also develop and explain the mathematical model
of the problem. Then optimization algorithms are developed for each
model in Section 4. Computational results of implementing the exact
algorithms as well as the heuristics on randomly generated problems
are reported in Section 5. In order to further demonstrate the real-world
implications of our approach to the evacuation process, we present the
real-case of Tehran metropolis while considering different disaster’s
severity and its consequences on locating the safe destinations. We will
conclude the paper in Section 6 and give some recommendations for
future works.

2. Literature review

Post-disaster phase logistics models fall under two major categories:
(a) relief delivery/casualty transport models, (b) mass evacuation
models. Özdamar and Ertem (2015) provide extended lists and cate-
gories of models and solution methodologies in this area. Considering
the number of publications on humanitarian logistics, evacuation
modeling and planning has gained a lot of mindshare amongst trans-
portation professionals. Most previous studies in evacuation modeling
tackle the problem by extending the applications of conventional
transportation planning and traffic management models.

Mass evacuation models concentrate on car evacuation (CE) and
traffic flow management, and also, on evacuation by public transit (PT)
(Özdamar & Ertem, 2015).

In the conventional evacuation planning process, evacuees are as-
signed to fixed destinations mainly based on the criterion of geo-
graphical proximity. However, such pre-specified facilities almost al-
ways lead to a sub-optimal evacuation process due to additional
uncertainties such as congestion, road blockage, and any other hazards
associated with the emergency. By relaxing the constraint of assigning
evacuees to pre-specified destinations, the idea of choosing the eva-
cuation destination has the potential of greatly improving the evacua-
tion efficiency.

Although the transient and possibly chaotic nature of evacuation
makes it very challenging to manage the flow of people and causalities,
there lies a unique advantage in evacuation planning. In other words, as
long as an evacuee safely exits the evacuation zone in a timely fashion,
it is not so important which route is taken or at which location the
evacuee leaves the zone. This flexibility in an evacuee’s destination
selection, and its associated benefit to the planning process, is neither
well understood nor often exploited.

At the same time, in the absence of strategic infrastructures, the
importance of in-time (short term) decision making for evacuation and
habitation becomes more significant. Experience shows that this is a
completely probable situation in developing countries (for more details
on the relationship between development and disaster risks see e.g.
Pelling, Maskery, Ruiz, & Hall, 2004). An example of the need for im-
mediate evacuation planning could be Bam earthquake in Iran (2003),
in which about 40% of the patients stayed within the surrounding area
of their homes for 8–10 h. The majority of casualties (57.6%) were
transferred manually to the first place of settlement and 45.8% were
taken to the second place of settlement using blankets. The emergency

medical service system in Bam was destroyed and was not able to re-
spond adequately (Mirhashemi, Ghanjal, Mohebbi, & Moharamzad,
2007). One of the most important and ignored issues in this research
field is the selection of the best destination(s) for establishing relief
centers or providing temporary shelters immediately after the disaster.
Past experience suggests that a major problem in evacuation operations
is the insufficiency of existing routes in terms of number and capacity in
a large-scale emergency evacuation (Perry, 1985).

At the strategic level, existing literature addresses the evacuation
problem from two different aspects: analyzing the impact of behavioral
and managerial factors on evacuation (Dow & Cutter, 1998; Drabek
Thomas, 1999; Lin & Jaillet, 2014; Urbina & Wolshon, 2003) and lo-
cating safe zones and allocating evacuation zones to the disaster zones
before the disaster (Sbayti & Mahmassani, 2006).

In most cases, exploiting new transportation infrastructures is
simply too cost-prohibitive to be considered practical in case of emer-
gency. Therefore, finding ways to improve the planning and operational
aspects of the evacuation process to maximize the utility of the existing
transportation network has often been the focus of past studies. Some of
these efforts include the implementation of counter flow and contra
flow lanes (Muoz, Sun, Horowitz, & Alvarez, 2006), staggering de-
parture times (Sbayti & Mahmassani, 2006), traffic signal control,
multi-jurisdiction coordination, special routing consideration for heavy
vehicles (Franzese & Han, 2001), and so on. Yet no effort had re-
cognized or explored the aforementioned flexibility in evacuees’ desti-
nation selection until Yuan and Wang (2009) proposed the concept of
the most-desirable destination(s) for evacuees. In another study, Yuan,
Han, Chin, and Hwang (2006) present a framework for the simulta-
neous optimization of evacuation-traffic distribution and assignment.
They apply their approach in a hypothetical nation-wide simulation
case study but they don’t develop an analytical algorithm for the pro-
blem. They assume a fixed demand in the source node and no limitation
on the number of destinations.

Ahuja, Magnati, and Orlin (1993) describe the problem of “building
evacuation” modeled by network flow theory. In this approach the
building (zone) to be evacuated is represented by a network in which
the nodes correspond to relevant parts of the evacuation object (e.g.,
rooms in a building, intersections of streets in a zone), and arcs re-
present connections between these parts (e.g., doors between rooms,
streets). One or several of the nodes are distinguished as sources (e.g.,
rooms containing evacuees, the origins of the disaster occurrence) and
one or multiple others as sinks (representing the safe destinations). The
group of evacuees is modeled as the flow which passes through the
network over time. Important questions including the followings can be
answered by using methods of dynamic network flow theory
(Hamacher, Heller, & Rupp, 2013):

• How many persons can be evacuated before a given time T?

• How much time does it take to evacuate all persons in a given
evacuation scenario?

• What are the bottlenecks in the evacuation network?

Network flow models were extendedly applied to produce lower
bounds for evacuation time. To the best of our knowledge the survey of
Chalmet, Francic, and Saunders (1982) is the first work in this area.
They were later used by many other researchers (e.g. see Hoppe &
Tardos, 1994).

Hoppe and Tardos (1994) provided a polynomial algorithm for the
evacuation problem with a fixed number of sources. They also gave the
only known polynomial algorithm for the discrete quickest trans-ship-
ment problem with an arbitrary number of terminals in Hoppe and Eva
(2000). Fleischer and Tardos (1998) extended this result for continuous
time. Sayyady and Eksioglu (2010) provide a mixed integer program
with the objective of simultaneously minimizing the total evacuation
time and the number of casualties. They design a Tabu search algorithm
that finds evacuation routes for transit vehicles.
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In a critical review, Abdelgawad and Abdulhai (2009) state that the
evacuation planning process is generally modeled as a network design
problem (NDP). Conceptually, the objective of the NDP is to optimize a
given system performance measure such as maximizing the total
number of evacuees or minimizing the total system travel cost while
accounting for the route choice behavior of network users. As their
study shows, no effort was made regarding the restriction of fixed
destinations, except the work of Sbayti and Mahmassani (2006). Sbayti
and Mahmassani (2006) introduced an optimal evacuation scheduling
but have made major assumptions, by relaxing both the destination
selection procedure and evacuees compliance. Nevertheless, the final
output of their study is an optimal loading curve that would minimize
the total network clearance time.

Lim, Zangeneh, Baharnemati, and Assavapokee (2012) present a
capacity constrained network flow optimization approach. Dijkstra’s
algorithm is used in their study for finding evacuation paths, flows and
schedules which maximize the total number of evacuees for short notice
evacuation planning. To the best of our knowledge there are no papers
considering location decisions in emergency conditions as tactical and
on-line except the study done by Yuan and Wang (2009). However,
their study does not take into account the location decision variables for
improving the evacuation flow. Many studies incorporate uncertainties
of emergency logistics and solve it with a stochastic programming ap-
proach (see. e.g. Bozorgi-Amiri, Jabalameli, & Mirzapour Al-e Hashem,
2011; Tofighi, Torabi, & Mansouri, 2016).

In a recent survey Hamacher et al. (2013) combine two modeling
tools: dynamic network flow and locational analysis with the aim of
placing emergency/aiding units on the routes (arcs) of a network. They
develop two static and dynamic integer-programming models and
propose exact and approximate algorithms for solving them. On the
other hand, most humanitarian emergency logistics facility location
problems were found to be minisum, set covering, miximal covering,
and minimax facility location problems. Obnoxious facility location
problems were the least proposed problems (Boonmee, Arimura, &
Asada, 2017). From grouping the facility location types in humanitarian
logistics, according to disaster phases and the corresponding inetr-fa-
cility flows, further insights are provided about the existing and po-
tential objective functions. Fig. 1 summarizes the facility location types,
their associated flows and different objective functions implied by the
facility type and disaster phase. The representation is separated into pre
and post-disaster phases.

Different directed arcs are used in Fig. 1 to show human and com-
modity flows between the facilities. The boxes show the facility type
which has to be located before or after the disaster. Abounacer, Rekik,
and Renaud (2014) studied a facility location problem with a trans-
portation problem for disaster response. Afshar and Haghani (2012)
proposed a mathematical model that integrated a relief commodity flow
problem, a facility location problem, a vehicle routing problem, and a
transportation problem. Bayram, Tansel, and Yaman (2015) developed
a model that optimally located shelters and assigned evacuees to the
nearest shelter site considering potential disaster sites. Khayal,
Pradhananga, Pokharel, and Mutlu (2015) presented a network flow
model for dynamic selection of temporary distribution facilities. Re-
search until now advocates facility location separated from the eva-
cuation process and as a pre-disaster operation. This leads to fixed-lo-
cation shelters, distribution and medical centers during the response
phase (Fig. 1a). In a dynamic and uncertain disaster environment;
however, it is possible to consider facility location modeling in the post-
disaster phase (Fig. 1b). Temporary distribution and treatment centers
are oftentimes set up for disaster relief and casualty transportation,
respectively. Facility location problems can be supported or developed
to combine aspects such as routing problems, evacuation problems,
relief distribution problems, casualty transportation and traffic pro-
blems, inventory problems and resource allocation problems. Most
objectives have focused on minimum time, minimum cost, minimum
distance, minimum number of located facilities, and coverage by a

maximum number of demand points. New objective functions could be
developed by integrating the facility location problem with the other
above-mentioned problems (Boonmee et al., 2017) such as maximum
number of evacuees or minimum time of evacuation. In the mitigation
stage, future research could seek to manage the disaster risks by re-
locating inhabitants farther from the vulnerable area. In the post-dis-
aster stage, best shelter locations must be selected or temporary shelters
need to be rapidly identified as a tactical decision. Research could also
investigate optimal locations for temporary distribution centers (sub-
distribution centers) to ensure efficient commodity distribution, and
also to determine the optimum placement of temporary medical centers
to ensure that the wounded are treated rapidly. Finally, in the recovery
stage, special attention should be paid to garbage dumps in order to
remove any debris from the area. This has not been fully studied
(Boonmee et al., 2017).

3. Evacuation-Location Problem (ELP)

Evacuation-Location Problem (ELP) is a combination of two sub-
problems: the problem of selecting the safe zones and the evacuation
problem. In this paper the aim is to evacuate as many people as possible
from a densely populated area s called source, to a fixed number of
shelters p called destinations or sinks. By applying ELP in the post-
disaster phase, we can reduce the challenges arising from uncertainties
especially if the data about the routes and capacities are available. It
also makes the ad hoc decision making, possible in order to effectively
employ resources and handle emergency plans.

The assumption, here, is that the shelters or safe zones are not
limited by their capacity and there is no preferences among them. We
have also assumed integer capacities since the set of vehicles or people
are denumerable. All nodes except the source and the sinks are inter-
mediate (transit) nodes. We will use the capacitated max-flow network
approach to model the evacuation problem. Our max-flow network
model is modified to incorporate the locational decisions immediately
after a disaster. Though the max-flow problem and the location problem
are both solvable in polynomial time separately, this does not ne-
cessarily hold for the ELP.

3.1. Problem definition

Choosing amongst a set of available locations for evacuees’ ac-
commodation impacts the efficiency of the evacuation process both in
terms of the number of rescued people and the time of evacuation. In
reality, for many towns and cities, emergency evacuation or disaster
preparedness guides, not only provide a list of limited shelters but also
emphasize that not all the shelters are available during a disaster. They
urge the residents to check to see which shelters could potentially be
opened. For example, it is emphasized in hurricane shelter guide of Polk
County in Florida, U.S.A., that: “All shelters are not automatically ac-
tivated for each possible emergency…they are not pre-assigned by
geographic area” (B. o. C.C. Polk County, 2017). For other examples
please see B.o.C.C. Alachua County (2017) and B. o. C.C. Collier County
(2017).

This is due to the opening and equipping time and cost of the
shelters, because the pre-defined shelters are mostly public schools,
parks and/or stadiums. Without loss of generality, however, our ap-
proach covers the problem of evacuating to all possible destinations.
This version of the problem will then be solvable in polynomial time
with a reduction to multiple-sink max-flow problem (Kotnyek, 2003).

In addition to this, if the population at the disaster point(s) is less
than the total capacity of the shelters, it would be more efficient to
choose amongst the available shelters. We have addressed the real
limitations of opening all possible destination locations by assuming a
fixed number of destinations to be chosen/opened. Though for the sake
of simplicity in this first attempt in combining location and evacuation
problems, we have not assumed any differences among the locations in
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terms of the opening or equipping costs.
In the maximum flow problem, the aim is to find the maximum flow

between the source and the sink. A flow is defined on a directed graph
N=(V,A) with the capacity function ⟶ +u A:  defined on arcs. A set of
non-negative values → +x A:  is a flow if it satisfies the flow con-
servation rule, meaning that the net flow at every node equals zero
except for the sink and the source. A flow is feasible if it complies with
the capacity constraints. The value of a flow f is usually denoted by f| |.
We assume a familiarity with the mathematical formulation of the max-
flow problem, so we go straight on to the definition of the ELP.
Interested readers can refer to Ahuja et al. (1993) and Ford and
Fulkerson (2015) for more details on flow network problem.

Definition 1. Consider the emergency logistics network =N V A( , )
where V is the set of vertices, ⊆ ×A V V is the set of arcs with
capacities defined by the function ⟶ +u A:  . Suppose that

= =A m V n| | ,| | . Also, let L be the set of possible destinations (sinks)
such that = <L q n| | . Also suppose that s is the source node. The set of
arcs entering and leaving node i are denoted by = ∈ ∈−δ i j i A j V( ) {( , ) | }
and = ∈ ∈+δ i i j A j V( ) {( , ) | } respectively. = ∑ ∈∈ − u i l l LΔ { ( , )| }l i δ l( ) is
called the “inflow capacity” of node ∈k L. Without loss of generality
we assume that = = ∅ ∈− +δ s δ l l L( ) ( ) , .

We are looking for p terminal locations which maximize the amount
of flow f in the network and we call this the Evacuation-Location
Problem ELP. The MILP formulation of ELP is presented in the next
section.

3.2. Model formulation

In this part we formulate the mixed integer programming model for
the ELP based on the max-flow problem.

Fig. 1. Facility locations in humanitarian logistics and their corresponding objective functions.
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3.2.1. Model 1 Evacuation-Location Problem
Based on the notations in Table 1 we present the mixed integer

linear programming (MIP) model for Evacuation-Location Problem ELP.

Max ϑ (1)

∑ ∑− = ∀ ∈ ≠ ∉
= =

x x i V i i L0 , 1,
j

n

ij
h

n

hi
1 1 (2)

∑ =
=

x ϑ
j

n

j
1

1
(3)

∑ ∑ =
∈ =

x ϑ
l L i

n

il
1 (4)

∑ =
∈

y p
l L

l
(5)

∑ ⩽ ∀ ∈
=

x y l LΔ ·
i

n

il l l
1 (6)

= ⩽ ⩽ ⩾y x u{0,1}, 0 ,ϑ 0l ij ij (7)

Our objective is to maximize the total flow of evacuation, reflected
in Eq. (1). Eqs. (2), (3), (4), and (7) assure the feasibility of the flow.
Constraint (5) ensures that only p locations are chosen and the con-
nection between the maximum flow problem and the location decision
is made with constraint (6), where the total flow entering a selected
location must be less than or equal to the summation of the capacities of
arcs ending in that location. Though we have formulated the single
source network, the formulation can be extended to a multiple source
network by adding a super-source S which is connected to every source
…s s{ , , }c1 with the arc capacity =u S s( , ) Δj sj s.t. ⩽ ⩽j c1 .

3.2.2. Model 2. Evacuation-Location Problem for p= 1
Putting p=1 reduces the problem to the single Evacuation-Location

Problem. Eq. (5) is then equivalent to ∑ =∈ y 1l L l . So, we are looking
for one terminal location amongst q locations which maximizes the
amount of flow f in the network. In real world, this may be the case
when the population in the danger zone is not that big to be dispersed
in multiple locations, or the cost of opening of any of the safe zones is
too high. There may also be disasters with the risk of disease or viruses
outbreaks, in which the decision makers prefer to keep the evacuees in
as few places as possible, even in a single safe site.

4. Solution methodology

In this section first two upper bounds are presented based on the
multi-terminal maximum flow algorithms. We then discuss two exact

algorithms, exploiting the upper bounds and the structure of the pro-
blem. Two heuristics are described afterward which provide approx-
imate solutions for the multiple and single ELPs, respectively.

4.1. Bounds

4.1.1. Upper bound 1: Relaxing the p destinations constraint
In order to reach an upper bound which could contribute in finding

the optimum in less time we relax the constraint of choosing only p
destinations among elements of L. Supposing the possibility of opening
all locations, we can find an upper bound in polynomial time in the size
of the input by solving a single-source multi-sink max-flow network
problem (Kotnyek, 2003). For this we add a virtual sink t which is
connected to all possible destinations with infinite capacity. It results in
a single-source single-sink max-flow problem again.

Let Ne be the extended network constructed fromN by adding the super-
sink t and connecting all members of L to the super-sink as we are going to
open all locations. They are connected to t by artificial arcs with infinite
capacity. Consider Fmax

Ne to be the maximum flow value in Ne calculated by
any of the max-flow algorithms and let fl

Ne be the flow on arc l t( , ), such that
= ∑∈f f| | | |max

N
l L l

Ne e . Details can be seen in Algorithm UB1.To compute the
max-flow we used the Edmonds and Karp (1972) max-flow algorithm,
which is strongly polynomial and has the complexity of O n m( · )2 .

Algorithm UB1. Upper bound for ELP.

Input: Network = ⊆ =N V A u L V L q( , , ), ,| |
Output: fmax

Ne

′ = ∪V V t{ }, ′ = ∪ ∈A A l t l L{( , ); }, ′ = ∪ = ∞ ∈u u u l t l L{ ( , ) ; },
= ′ ′ ′N V A u( , , )e

= − = ′ ′ ′f Maximum Flow Edmonds Karp N V A u( ( , , ))max
N

ee

return fmax
Ne

4.1.2. Upper bound 2: Relaxing the capacity constraint of the sink nodes
Another upper bound of the objective function could be achieved by

relaxing the capacity of the links reaching to the destination locations
by eliminating the destination nodes from the network and substituting
them with a single super-sink t. Doing this, we will further extend the
search space by relaxing the capacity constraints for destination nodes.

Assume that Nr is the relaxed network with super sink t such that
= ′ ′ ′N V A u( , , )r such that ′ = ∪ ∈ ∧ ∈ ∧ ∈A A i t i l A i V l L{( , )|( , ) } and

′ =
⎧

⎨
⎩

≠ ∧ ∉
∞ =

∈
u i j

u i j j t j L
j t
j L

( , )
( , )

0

Let fmax
Nr be the maximum flow in Nr . Since the feasible region generated

from Nr is bigger than the one generated by N f, max
Nr will not be less than

∗f (optimum of the objective function of the ELP) and is then an upper
bound. The procedure is represented in Algorithm UB2.

Algorithm UB2. Upper bound for ELP.

Input: Network = ⊆ =N V A u L V L q( , , ), ,| | , Number of destinations to
be selected:p

Output: fmax
Nr

1 ′ = ∪V V t{ }, ′ = ∪ ∈ ∧ ∈A A i t i l A l L{( , );( , ) }, = ′ ′ ′N V A u( , , )r

2 for all ∈i j V, do
3 if ≠ ∧ ∉j t j L then
4 ←u i j u i j́ ( , ) ( , )
5 else if =j t then
6 ← ∞u i j́ ( , )

Table 1
Notations.

Sets Description

V Set of nodes including the set of sink nodes L; =V n| |
L Set of destination locations; L| |=q
A Set of arcs, =i j a( , ) ij equals 1 if node i is connected to node j,

otherwise is 0; =A m| |
−δ i( ) Set of arcs entering node i∈A; ∈ ∈j i A j V{( , ) | }
+δ i( ) Set of arcs leaving node i∈A; ∈ ∈i i A j V{( , ) | }

Parameters Description
uij The capacity of arc =i j a( , ) ij

p Number of destinations to be selected;
q Total number of possible destination locations

Variables Description
yl equals 1 if the lth location is selected, otherwise is 0
ϑ The amount of network flow
xij The flow passing through the arc =i j a( , ) ij
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7 else if ∈j L then
8 ←u i j́ ( , ) 0
9 end if
10 end for
11 = − = ′ ′ ′f Maximum Flow Edmonds Karp N V A u( ( , , ))max

N
rr

12 return fmax
Nr

Corollary 1. Suppose that S S,N Nr e and S are the feasible spaces of their
corresponding max-flow problems for networks N N,r e and N, respectively.
Since ⩾ ⩾S S SN Nr e , for flow vectors f f,max

N
max
Ne r and ∗f (as defined earlier),

the following holds:

⩾ ⩾ ∗f f f| | | | | |.max
N

max
Nr e

Example 1. Consider the primary network illustrated in Fig. 2. The
numbers on each edge show the capacity uij. The relaxed network is
shown in Fig. 2b with all candidate destinations being substituted with
the super sink t. Fig. 2c shows the max-flow for Nr for which

= = =f f f| | 8,| | 3,| | 1max
N N N

1 2
r r r , and =f| | 4N

3
r .

4.2. Exact algorithms

4.2.1. Exact Algorithm (E1) for ELP
In this part we introduce an exact algorithm which is also based on

the maximum flow algorithm of Edmonds and Karp (1972). Since the
number of possible locations is finite ( =L q| | ) the ELP can be solved by

repeating the maximum flow algorithm ⎛
⎝
⎞
⎠

q
p times. In every iteration of

the proposed algorithm, p amongst q locations will be chosen. Let P L( )
denote the set of all subsets of L (power-set of L), then we are looking
for the set = ∈ =P L γ P L γ p( ) { ( )|;| | }p . Accordingly, the problem will be

solved as a multi-sink max-flow problem. In order to do this, we will
connect each of the p locations to the virtual sink t with an arc with
infinite capacity. Here we use the Edmonds-Karp algorithm (Edmonds &
Karp, 1972). In step 6 of E1 we have the maximum flow reaching the
virtual sink. This step has the complexity order of + +n m p( 1)·( )2. As a
result, E1 for the ELP has at most the overall complexity order of

⎛
⎝
⎞
⎠

q
p n m·( )·(2 )2. See Algorithm E1 for details.

Algorithm E1. Exact solution for ELP ⎛
⎝
⎛
⎝
⎞
⎠

⎞
⎠

O
q
p n m·( )·(2 )2 .

Input: Network = ⊆ =N V A u L V L q( , , ), ,| | , Number of destinations
to be selected:p

Output: ∗ ∗f L, ( ′ ′ ′V A u, , )
1 ← ← ∅∗ ∗f L0;
2 ( ′ = ∪ ′ = ∪ = …V V t A A l t k q{ }, {( , )| 1, , }k )
3 for all combinations ∈ =γ P L s t γ p( ) . . | | do
4 ′ = ∪ = ∞ = …u u u k q{ | 1, , }l t,k , ′ = ′ ′ ′N V A u( , , )
5 ∗L ←γ
6 for all ∉ ∗l L do
7 ←ú 0l t,k

8 end for
9 = − ′ = ′ ′ ′Optflowtemp Maximum Flow Edmonds Karp N V A u( ( , , ))
10 if ≺∗f Opt flowtemp then
11 ←∗f Opt flowtemp, ←∗L γ
12 end if
13 end for
14 return ∗ ∗f L,

Fig. 2. Relaxed network of the ELP in Example 1.

M. Mazraeh Farahani et al. Computers & Industrial Engineering 115 (2018) 407–426

412



4.2.2. Exact Algorithm (E2) for ELP
In UB1 we relaxed the constraint of choosing only p destinations to

reach an upper bound. Here, we will modify UB1 to find an exact so-
lution. This algorithm has two building blocks, namely an upper bound
and a narrowing procedure. The narrowing procedure uses the upper
bound (UB1) as a basis for reducing the search nodes while guaran-
teeing the feasibility of the solution. Let Ne be the extended network
defined in UB1. Consider = …f f f( , , )max

N N
l
N

1
e e e to be the maximum flow in

UB1 with all locations opened. Let fl
Ne be the flow on arc l t( , ), such that

= ∑∈f f| | | |max
N

l L l
Ne e . Suppose that …( )f f f, , ,N N

p
N

p values

1 2
e e e

  
is a sorted vector such

that ⩾ ⩾ ⋯⩾f f fN N
p
N

1 2
e e e and …f f f, , ,N N

p
N

1 2
e e e are p largest values of

∀ ∈f l L,l
Ne . The corresponding destination ordered −p tuple is

⎯→⎯
= …∗ ∗ ∗ ∗γ l l l( , , , )p1 2 . Then, we solve the multi-sink max flow problem for

the new destination vector
⎯→⎯ ∗γ where

= ⎧
⎨⎩
∞ ∈∗

∗
u l t l Ĺ ( , )

0 Otherwisek
k

Let the resulting maximum flow be = …f f f f( , , , )In In In
p
In

1 2 . f In is feasible
but not necessarily the optimum flow. Without loss of generality we
assume that the flow vector f In is sorted in ascending order, i.e.

⩾ ⩾ ⋯⩾f f fIn In
p
In

1 2 .

Proposition 1. For node ∈l L to be capable of improving the value of f In,
it is necessary that ⩾ fΔl p

In.

Proof. By contradiction; suppose that there is a node ∈v L with inflow
capacity Δv strictly smaller than fp

In where fp
In is the pth element of f In

as defined earlier, i.e. ≺ fΔv p
In. Let ̂ = … −L l l l v( , , , , )In In

p
In

1 2 1 be the vector of
new best locations. Solving the multi-sink max-flow problem for the
network = ′ ′ ′N V A u( , , )e where ′ = ∪V V t{ }, ̂′ = ∪ ∈A A l t l L{( , ); }k

In
k
In ,

̂′ = ∪ = ∞ ∈u u u l t l L( , ) { ; }k
In

k
In gives ̂ ̂ ̂= … −F f f f( , , , )p v1 1

 to be the

maximum flow for Ne. Suppose that:

̂

̂ ̂∑

= + ∊ ∊ ⩾

= +
=

−

f f

F f f

| | | | ; 0
and

| | | | | |

In

k

p

k v
1

1


(8)

So, there should be at least one augmenting path with capacity ∊ from s
to t. As ≺ fΔv p

In and there is no link between any two destinations (since
= = ∅ ∈− +δ s δ l l L( ) ( ) , ) the augmenting path must pass through one of

the locations = … −l k p, 1, , 1p
In in Ne. Hence, there must exist an

augmenting path from s to one of the locations = … −l k p, 1, , 1p
In in Ne

and this contradicts the maximality of f In and fk
In, k= 1,… , p− 1. □

Note that if any of the destinations are connected to the other one by
an arc, this connecting arc could generate an augmenting path when its
tail is substituted, regardless of the inflow capacity of the tail.

Corollary 2. Let = …∗ ∗ ∗f f f( , , )p1 be the optimal flow vector which is sorted
in descending order i.e. ⩾ ⋯⩾∗ ∗f f p1 . Also, suppose that the corresponding
location vector is = …∗L p(1, , ) with ⩽ =p L q| | . If ∗f is the optimal solution
for ELP with =N V A u L( , , , ) then = …∗L h(1, , ) where ⩽ ⩽h p q is the
optimal location vector for ELP with the objective of selecting h destination
locations in =N V A u L( , , , ) (Note that for ∗f being optimal implies that ∗fk is
also the maximum flow at node k for = …k p1, , ).

Referring to Proposition 1 we will improve the computation time by
removing some candidate locations from the search space. This is ex-
plained in our second exact algorithm (Algorithm E2). At first we cal-
culate the upper bound flow vector as described in UB1 for Ne with all
locations opened. Then, with the sorted vector = …f f f( , , )In

l
In

l
In

́ ṕ1
at hand,

we omit the destinations with the inflow capacity smaller than
⩽ =f p L q; | |l

In
ṕ

. Then Algorithm E1 is applied to =N V A u rL( , , , ) where

= ∈ ⩾rL l L f{ |Δ }l l
In
ṕ

is the residual set of destination locations.

The optimality of Algorithm E2 is guaranteed according to
Proposition 1, although there is the possibility that no node will be
removed. Therefore its complexity depends on the structure of the
network. So, the worst case complexity of this heuristic will be of the
order of Algorithm E1.

Algorithm E2. Exact solution for ELP.

Input: Network = ⊆ =N V A u L V L q( , , ), ,| | , Number of destinations to
be selected: p

Output: ∗ ∗f L,
1 ′ = ∪V V t{ }, ′ = ∪ ∈A A l t l L{( , )| }, ′ = ∪ = ∞ ∈u u u l L{ | }lt ,

= ′ ′ ′N V A u( , , )e

2 ← =f UB N V A u t1( ( ́ , ́ , ́, ))max
N

ee

3 ≔ …f f f( , , )max
N N

p
N

1
e e e

4 ⎯ →⎯⎯⎯
≔ …L l l( , , )N N

p
N

1e e e

5 = ∪V V t{ }‵‵ , = ∪ = …A A l t k p{( , )| 1, , }k
N‵‵ e ,

= ∪ = ∞ = …u u u l t k p{ ( , ) | 1, , }k
N‵‵ e , =N V A u( , , )In

‵‵ ‵‵ ‵‵

6 = − = =f Maximum Flow Edmonds Karp N N V A u( ( , , ))In
In In

‵‵ ‵‵ ‵‵

7 = …f f f( , , )In In
p
In

1 ♢ f In is assumed to be sorted in descending

order
8 for =l q1: do
9 if ≺ fΔl p

In then

10 = ⧹rL L l
11 end if
12 end for
13 =N V A u rLE1( ( , , , ))
14 return ∗ ∗f L,

4.3. Heuristics

4.3.1. Heuristic 1. Satisfying the capacity constraints
In heuristic H1 we directly use the procedure for generating f In in

Algorithm E2 as a heuristic for the ELP. The initial solution of
Algorithm E2 which is generated by applying and modifying Algorithm
UB1 is a feasible flow which not only satisfies the capacity constraints
but also chooses exactly p locations from L. See Procedure H1 for de-
tails. This heuristic has the complexity of the order of

+ + + + + +( ) ( ) ( ( ))n m q n m p O Sort f1 ·( ) 1 ·( ) max
N2 2 e using Edmonds-

Karp algorithm (Edmonds & Karp, 1972) for the maximum flow cal-
culation, where O Sort f( ( ))max

Ne is the order of the algorithm used for
sorting the upper bound flow vector of the destination nodes.

Procedure H1. Heuristic Solution for ELP

Input: Network = ⊆ =N V A u L V L q( , , ), ,| | , Number of destinations to
be selected: p

Output: Maxflow BestLoc,
1 ′ = ∪V V t{ }, ′ = ∪ ∈A A l t l L{( , )| }, ′ = ∪ = ∞ ∈u u u l L{ | }lt ,

= ′ ′ ′N V A u( , , )e

2 ← =f UB N V A u L p1( ( ́ , ́ , ́, , ))max
N

ee

3 ≔ …f f f( , , )max
N N

p
N

1
e e e ♢ fmax

Ne is assumed to be sorted in

descending order
4 for =i p1: do
5 ←BestLoc i f( ) ( )Inverse

i
Ne

6 end for
7 for all ∉i BestLoc do
8 ′u (i,t)← 0
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9 end for
10 = − = ′ ′ ′Maxflow Maximum Flow Edmonds Karp N V A u( ( , , ))e

11 return Maxflow BestLoc,

For a counterexample that demonstrates H1 will not always lead to
an optimal solution, see Fig. 3. Assume that we are going to choose two
destinations from the set of all destinations l l l{ , , }1 2 3 with the objective of
maximizing the number of evacuees from the source s as depicted in
Fig. 3a. The numbers on the edges correspond to their capacity. Ap-
plying H1 for the 3-sink max-flow problem in Fig. 3 we get to =f| | 8max

Ne ,
=f| | 2l

Ne
1

, =f| | 3l
Ne
2

and =f| | 3l
Ne
3

which is represented in Fig. 3b The
numbers in Fig. 3b correspond to the maximum flow on every edge.
Edges with zero flow are deleted for clarity. According to H1, l2 and l3
are the two selected destinations. Solving the max-flow problem for the
multi-sink network including two sinks l2 and l3 the max-flow value is 6
units, the corresponding flow vector of which is shown in Fig. 3c. We
solve the problem once again using the exact Algorithm E1, which re-
sults in selecting another set of destinations, i.e. l1 and l3 and the
maximum flow will be equal to 7 units, as demonstrated in Fig. 3d.

4.3.2. Heuristic 2. Approximate solution for the single destination (p= 1)
ELP

We introduce another heuristic here which again uses the idea of
adding a super-sink to the network, but in a different way than H1. It is
also based on our second upper bound, Algorithm UB2 which can only
be applied for =p 1.

Referring to Algorithm UB2 let fi
Nr be the flow on arc i t( , ) in Nr , such

that = ∑ ∈f f| | | |max
N

i i l A i
N

:( , )
r r . We transfer the information of the second

upper bound to the original network N. fmax
Nr satisfies the flow con-

straints of the original network for all the nodes except those connected
to the sink. The maximum feasible flow at every second last node i (i.e.
the nodes directly connected to the destinations ∈k L) is fi

Nr . In order
to satisfy all capacity bounds we dispatch min f u( , )i

N
ikr units of flow

from second last node i toward destination k for all ∈k L. This is ex-
plained in Procedure H2.

It is possible that a second last node is connected to several sinks,
Procedure H2 will not work for choosing several locations because in

step 5 of Procedure H2 we are again confronted with a multiple des-
tination ELP. In this case, at every second node i it is not clear which k is
considered for fulfilling the capacity bounds, as we have to consider a p-
tuple combination of locations. So Procedure H2 is only proposed for
ELP with p= 1.

While this heuristic gives a feasible solution, the result may not
always be optimal. In networks that the second last nodes are con-
nected, this solution is suboptimal, because the heuristic neglects the
augmenting paths which go from one second last node through another
one for reaching the sink. As a counterexample for the optimality of
Procedure H2 for ELP see Fig. 4.

Procedure H2. Heuristic Solution for ELP.

Input: Network = ⊆ =N V A u L V L q( , , ), ,| | , Number of destinations to
be selected: =p 1

Output: Maxflow BestLoc,
1 fmax

Nr =UB2 =N V A u L p( ( , , , , ))
2 ≔ ∑∈ ∈ ∧ ∈f fmax

N
i N l L i l A i

N
: ( , )

r r

3 f i l( , ) ←0 ∀ ∈i V and ∈l L
4 ≔ ∑ ∈f f i l( , )l i i l A:( , )

5 fl ←0 ∀ ∈l L
6 for =l q1: do
7 for i = 1:n do
8 if ∈i l A(( , ) ) and ≠( )f 0i

Nr then
9 ←f i l min u f| ( , )| ( ,| |)il i

Nr

10 ← −f f f i l| | | | | ( , )|i
N

i
Nr r

11 end if
12 end for
13 end for
14 for =i n1: do
15 while ≻f 0i

Nr do
augment path (i-s)

16 end while
17 end for

Fig. 3. Counterexample demonstrating that H1 may not always result in optimum solution.
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18 Update fl
19 = ∈Maxflow max f l L( ),Best Loc l
20 return Maxflow BestLoc,

The original network N is represented in Fig. 4a. The objective is to
choose the location which maximizes the network flow, satisfying the
capacities shown by numbers on the edges. The relaxed network is
developed in Fig. 4b. According to Algorithm UB2 for which the

=f| | 5max
Nr units of flow and =f| | 2N

1
r for the path − − =s t f( 1 ),| | 1N

2
r for

the path − −s t( 2 ) and =f 2N
3

r for the path − −s t( 3 ). We continue im-
plementing Procedure H2 for candidate destinations l l l{ , , }1 2 3 ; for ex-
ample for l1 we have:

for node 1: = = ⇒ = ⇒ =u f f l min f1,| | 2 | (1, )| (1,2) | | 1l
N N

1 1 1 1
r r

1 .
for node 2: = = ⇒ = ⇒ =u f f l min f1,| | 1 | (2, )| (2,1) | | 0l

N N
1 1 1 2

r r
2 .

At last, =f 1N
1

r and no augmenting path exists toward the desti-
nations, we have to augment the excess flow on node 1 toward node s.

Fig. 4. Counterexample demonstrating that H2 may not always result in optimum solution.

Fig. 5. Map of Mitte-center Berlin.
Photo credit:http://www.stadtentwicklung.berlin.de.

Table 2
Computation times(s) of solution algorithms for Mitte-center Berlin (p= 5).

n UB1 UB2 E1 E2 H1

10 0.006 0.006 0.322 0.278 0.019
15 0.009 0.011 0.741 0.756 0.009
20 0.016 0.02 1.394 1.313 0.016
25 0.006 0.01 2.169 1.834 0.013

Ave. 0.009 0.012 1.157 1.045 0.014

Table 3
Gap to optimality of solution algorithms for Mitte-center Berlin (p= 5).

q %GapUB1 %GapUB2 %GapH1

10 10 38.9 0
15 55 97.5 0
20 105.23 119.02 0
25 120.54 184.2 0

Ave. 72.693 109.905 0
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Table 7
Percentage of the gap to the optimal solution for ELP =p q( 0.2 ).

p= 0.2q

UB1 UB2 H1 Cplex⁎

n Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD

q= 10
multicolumn1l100 349.00 12.64 425.34 297.30 421.36 21.30 510.69 218.65 0.26 0.09 1.02 0.00 0.00 0.00
200 373.38 12.35 436.97 218.34 386.56 19.45 429.21 198.60 0.01 0.20 0.30 0.00 0.00 0.00
300 294.74 15.27 345.32 180.17 303.84 24.70 375.04 204.05 0.02 0.35 0.11 0.00 0.00 0.00
400 297.06 14.31 318.11 167.21 318.65 18.67 387.11 276.54 0.85 0.13 1.35 0.00 0.00 0.00
500 225.29 25.05 276.01 176.25 298.36 19.24 312.54 173.20 0.95 0.11 1.12 0.20 0.00 0.00

q= 15
100 311.54 13.65 347.31 217.62 398.45 24.75 463.12 287.64 0.93 0.10 1.18 0.00 0.00 0.00
200 235.01 14.64 297.11 194.35 305.98 15.13 394.41 206.64 1.70 0.17 2.01 0.00 0.00 0.00
300 173.25 16.01 231.00 104.33 239.57 28.15 301.12 176.34 1.49 1.34 2.19 0.07 56.47 26.75
400 184.20 11.34 191.36 121.54 226.05 22.12 268.94 111.38 1.83 1.02 3.20 0.10 83.87 19.12
500 103.74 12.00 137.16 78.06 195.23 21.89 263.60 99.21 2.09 1.34 2.98 0.18 93.25 13.05

q= 20
100 187.65 11.35 201.87 109.51 237.10 16.38 278.54 181.35 3.41 1.09 4.75 1.94 0.00 0.00
200 139.34 9.65 168.21 94.38 197.25 38.25 237.10 103.74 4.51 0.87 6.37 2.08 0.00 0.00
300 103.44 16.37 149.02 69.40 160.19 25.40 198.32 112.67 3.34 1.27 5.11 2.51 94.03 12.36
400 100.34 11.60 160.71 77.21 151.97 19.78 187.30 102.30 2.71 0.90 3.21 0.97 112.87 18.65
500 86.32 10.17 98.24 53.10 133.15 19.74 175.30 83.27 2.24 0.92 3.87 0.98 289.38 25.03

q= 25
100 120.12 23.58 184.10 95.06 138.14 24.18 150.31 98.35 4.65 0.66 6.50 1.50 184.36 25.67
200 87.64 27.20 100.65 63.74 111.37 10.68 126.37 89.81 5.26 1.06 6.30 1.25 248.07 18.74
300 83.80 19.37 112.35 65.14 104.85 11.25 131.20 73.41 4.31 1.11 5.78 0.97 327.12 28.60
400 69.35 20.41 103.70 48.39 104.41 9.87 127.09 81.73 3.73 1.05 4.39 0.90 394.27 26.78
500 57.61 18.37 78.31 43.11 91.20 13.84 108.47 71.25 2.98 0.97 4.09 0.08 473.08 28.43

⁎ Cplex run-time was fixed to 1 h, for two trials.

Table 8
Percentage of the gap to the optimal solution for ELP =p q( 0.4 ).

p= 0.4q

UB1 UB2 H1 Cplex∗

n Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD

q= 10
100 78.35 27.18 123.08 53.02 98.57 18.39 189.20 49.35 0.06 0.05 1.60 0.00 0.00 0.00
200 93.28 19.58 151.67 38.91 107.39 21.09 168.74 51.40 0.03 0.01 0.95 0.00 0.00 0.00
300 95.25 18.27 194.67 28.13 115.61 19.65 203.14 52.94 0.02 0.01 0.78 0.01 0.00 0.00
400 89.33 22.37 131.64 32.18 119.28 17.64 201.53 49.25 0.10 0.02 0.90 0.00 78.64 38.50
500 101.35 17.54 168.31 29.68 117.62 23.08 231.00 42.68 0.08 0.05 1.02 0.03 93.25 27.14

q= 15
100 67.67 18.09 127.58 37.45 89.60 16.85 201.31 35.07 1.02 0.35 2.04 0.08 0.00 0.00
200 75.79 21.14 217.34 28.11 71.22 20.64 241.30 34.22 1.40 0.25 3.00 0.00 0.00 0.00
300 61.47 12.57 110.68 42.09 71.53 17.00 137.40 23.70 1.30 0.91 1.99 0.06 112.17 36.80
400 65.36 19.47 141.01 28.97 71.64 21.30 267.91 34.08 1.08 0.30 2.53 0.10 132.40 22.05
500 72.00 12.35 108.30 33.25 74.52 18.57 197.03 52.10 0.82 0.41 1.84 0.09 158.36 18.69

q= 20
100 79.40 15.90 183.34 37.25 85.38 28.05 190.12 55.47 1.03 0.35 2.50 0.00 0.00 0.00
200 86.93 18.58 124.78 29.74 93.47 19.84 203.78 71.24 0.98 0.21 1.06 0.00 0.00 0.00
300 73.67 14.32 141.46 19.81 78.05 21.68 190.25 39.15 2.12 0.95 3.81 0.02 198.11 39.54
400 77.26 14.35 140.85 20.13 83.08 14.69 175.04 32.58 3.47 1.02 5.21 0.07 237.14 23.80
500 83.42 10.86 132.11 42.18 89.70 17.12 183.67 27.64 3.78 0.97 4.95 0.12 221.37 17.15

q= 25
100 101.26 23.47 168.35 41.01 113.95 19.50 210.64 53.47 3.08 2.19 16.58 0.00 0.00 0.00
200 84.19 19.48 195.60 38.15 94.32 25.38 144.54 39.67 5.26 3.29 14.47 0.60 178.11 23.75
300 76.21 13.70 123.41 26.60 92.34 13.98 187.20 39.18 4.15 2.08 7.91 0.00 192.30 16.58
400 96.91 11.58 148.11 46.28 108.95 18.36 164.30 58.27 6.58 3.73 9.19 0.44 219.11 18.15
500 94.30 13.22 175.14 32.08 105.95 20.47 198.70 43.81 7.10 2.18 12.87 1.11 235.60 16.12

∗ Cplex run-time was fixed to 1 h, for two trials.
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Indeed, the flow vector on path − −s l( 1 )1 equals 1. As a result:

∑= = = =
∈

f f i l f f| | | ( , )| 2,| | 0,| | 1l
i V

l l11 2 3

And hence = =Maxflow f| | 2Best Loc l1 . But it is shown in Fig. 4c. that the
optimal flow equals 3 for optimum location l1 for single destination ELP.

5. Computational results

5.1. Case Study: Mitte-center Berlin

In this section, first we test our algorithms, namely UB1, UB2, E1,
E2, and H1 on a real world transportation network. In the next sub-
section; however we will implement and compare all of the algorithms
on a range of problem groups. A set of networks from the Berlin area is
provided in Bar-Gera (2005) and was used in Jahn, Ohring, Schulz, and
As (2005). We have used one of the data sets for Mitte-center Berlin,
which best fits the assumptions of our model, because it is a simple
graph with constant integer arc capacities. Mitte-center district has an
area of 39 sq.km, a map of this district can be seen in Fig. 5.

The data set consists of 398 nodes and 871 links with constant in-
teger capacities. All solution methods are performed for all problem
instances where =q {10,15,20,25} destination locations are chosen ran-
domly from the nodes. The number of destinations to be selected is set
to 5. Tables 2 and 3 summarize the results.

Considering the performance and the computation time of the al-
gorithms for this real case, they all run very fast due to the size of the
problem. Though H1 is not necessarily an exact algorithm, it finds the
optimum for all values of q. However, the density of the network is low
(it is about 0.5%) compared to many real networks. The exact
Algorithms E1 and E2 are also efficient for an evacuation-location plan
for this real world network, regarding their computation times.

5.2. Experiment setup

We apply the algorithms introduced above in extensive numerical
experiments. In this section the performance of the proposed upper
bounds, heuristics and exact Algorithms UB1, UB2, E1, E2, and Proce-
dures H1 and H2 is compared in terms of the gap to optimality and the
computation time both for multiple and single destination ELP. The
solutions as well as the upper bounds are calculated for randomly
generated graphs. Random graphs with 100, 200, 300, 400 and 500
vertices with an edge density of 40% and with a maximum capacity of
1000 units are generated. The number of possible destinations is set to

= =L q| | {10,15,20,25}. The possibility of each pair of nodes being
connected is set to 0.4 (to reach the density of 40%). The capacities are
also assigned from uniformly-distributed integers in [0,1000]. The re-
sulting graphs are then tuned to guarantee the conditions of Definition
1. The tuning process includes the omission of self-loops, multiple edges
between two nodes and the links between the sinks. The set of possible
destinations for each of the instance problems is also generated ran-
domly as a subset of V and four values are considered for the number of
destinations to be selected as the ratios of q as well as the single des-
tination case; i.e. =p q q q{1,0.2 ,0.4 ,0.8 }. These were randomly generated
by MATLAB. Each algorithm or heuristic is implemented for 30 dif-
ferent configurations of the networks for each of the problem cate-
gories. The most important statistics of the results are reported here; the
average, the standard deviation, the minimum and the maximum gap to
the optimal solution and the computation time of the iterated im-
plementation for 30 different configurations.3

All algorithms were implemented on an Intel® Core™ i7 processor
with 4.00 GB of DDR RAM in the environment of 64-bit Microsoft
Windows 10 and were coded in MATLAB R2011b.

Table 9
Percentage of the gap to the optimal solution for ELP =p q( 0.8 ).

p= 0.8q

UB1 UB2 H1 Cplex∗

n Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD

q= 10
100 14.10 7.03 20.51 4.82 23.76 18.39 47.30 49.35 0.01 0.05 1.60 0.00 0.00 0.00
200 16.98 5.81 25.28 3.89 26.46 21.09 33.75 11.42 0.05 0.01 0.95 0.00 0.00 0.00
300 18.70 4.54 29.06 3.13 25.02 19.65 41.67 11.76 0.02 0.01 0.78 0.00 0.00 0.00
400 19.14 5.92 32.91 6.44 23.01 17.64 41.35 10.94 0.56 0.02 0.90 0.00 38.65 18.20
500 18.64 8.77 24.04 4.24 28.45 23.08 47.24 9.48 0.02 0.05 1.02 0.03 48.61 17.39

q= 15
100 3.39 2.81 7.42 0.44 7.89 4.55 16.92 35.07 0.26 0.35 2.04 0.08 0.00 0.00
200 3.20 2.32 8.94 0.41 7.59 5.58 20.28 34.22 0.15 0.25 3.00 0.00 0.00 0.00
300 3.14 1.82 7.64 0.40 7.49 4.59 11.55 23.70 0.26 0.91 1.99 0.06 88.79 32.02
400 0.61 1.55 2.21 0.08 3.45 5.76 22.51 34.08 0.04 0.30 2.53 0.10 64.85 19.18
500 1.40 1.78 4.30 0.18 4.72 5.02 16.56 52.10 0.04 0.41 1.84 0.09 93.15 16.26

q= 20
100 0.02 2.47 1.94 0.00 4.50 3.42 13.82 1.00 0.03 0.35 2.50 0.00 0.00 0.00
200 0.08 2.04 4.62 0.02 2.40 2.42 14.81 1.08 0.01 0.21 1.06 0.00 59.25 18.47
300 0.01 4.87 2.66 0.00 1.49 2.64 13.83 0.48 0.07 0.05 1.03 0.00 96.39 26.49
400 0.01 0.60 1.23 0.00 1.38 1.79 12.72 0.92 0.04 0.02 0.12 0.00 115.13 15.95
500 0.01 1.56 0.45 0.00 1.59 2.09 13.35 0.97 0.07 0.23 1.10 0.02 107.56 11.49

q= 25
100 0.01 2.16 6.60 0.00 3.41 4.56 9.81 0.32 0.01 2.19 3.88 0.00 0.00 0.00
200 0.01 1.84 6.23 0.00 1.31 4.53 6.73 0.30 0.01 1.03 3.39 0.60 103.60 20.66
300 0.01 1.30 3.80 0.01 0.40 2.50 8.30 0.31 0.23 0.91 1.85 0.00 114.83 14.42
400 0.03 1.07 3.98 0.00 0.29 2.91 6.28 0.09 0.44 1.27 2.15 0.00 149.29 15.79
500 0.01 1.23 4.03 0.00 0.50 2.35 5.96 0.02 0.52 0.87 1.21 1.11 136.95 14.02

∗ Cplex run-time was fixed to 1 h, for two trials.

3 All instances can be downloaded here: github.com/MionaFarm/Random-Evacuation-
Networks.
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Since the MILP formulation of the problem in Model1 is at hand we
also tried to solve the model by IBM_ILOG_CPLEX 12.3 (mathematical
solver), however due to the size and complexity of the problem the run
time of the solver was fixed to one hour for two trials.

5.3. Numerical results

The numerical results are represented in different categories ac-
cording to the problem parameters. The computation times are reported
in Tables 4–6 for p= 0.2q, p=0.4q and p=0.8q respectively. The
performance of the aforementioned algorithms is reported in Tables 7–9
for all values of p. For the single destination ELP the same results are
represented in Tables 10 and 11. Tables 10 and 11 also include the
results for H2, as this heuristic can only be applied for p=1. In all

tables n is the number of nodes and q is the number of possible desti-
nations for the ELP.

For the upper bounds, the gap represents the percentage above the
optimal solution. For all tested instances the average computation time
of Algorithm E1 is clearly longer than the computation times of
Procedure H1 and both upper bounds. This is not a counter-intuitive
result, since Algorithm E1 always iterates through all possible combi-

nations of locations ⎛
⎝
⎞
⎠

q
p and finds the maximum flow vector. Algorithm

E1; however, always runs in a shorter time than Cplex, keeping in mind
that the latter even fails to find the optimal for most instances in one
hour.

The other exact algorithm, E2, is able to find the optimum in less
time than Algorithm E1 for these random instances, yet the difference

Table 11
Percentage of the gap to the optimal solution for ELP =p( 1).

UB1 UB2 H1 H2 Cplex∗

n Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD Max. Min. Ave. SD

q= 10
100 51.95 8.25 79.57 10.34 550.78 65.20 714.91 69.40 0.29 0.09 1.02 0.01 0.30 0.44 1.61 0.01 0.0 0.0
200 44.30 7.23 68.51 9.32 624.67 79.38 810.82 81.17 0.10 0.20 1.30 0.01 0.15 0.23 0.83 0.03 0.00 0.00
300 40.89 6.35 62.17 8.45 689.37 76.10 894.80 91.47 0.30 0.35 2.11 0.00 0.01 0.08 0.26 0.00 0.00 0.00
400 37.64 6.70 60.08 8.79 672.31 73.57 876.76 78.76 0.85 0.13 1.35 0.00 0.03 0.04 0.16 0.00 0.00 0.00
500 36.89 6.24 57.80 11.21 697.00 65.79 908.21 97.69 1.09 0.41 8.62 0.20 0.12 0.24 0.84 0.04 0.00 0.00

q= 15
100 59.67 9.28 81.47 11.37 619.97 75.45 804.72 80.42 6.60 0.45 8.24 2.03 12.15 4.73 17.36 2.45 0.00 0.00
200 53.26 8.42 73.05 10.52 775.13 96.91 1006.12 105.13 12.06 0.74 14.03 3.73 8.51 2.98 11.79 0.89 0.00 0.00
300 47.41 6.90 63.62 11.38 809.56 101.67 1050.81 143.50 10.56 5.54 15.29 2.31 8.60 3.03 11.93 1.28 0.00 0.00
400 47.35 7.63 65.29 7.38 829.48 89.64 1076.66 113.78 12.99 4.22 22.34 2.43 8.63 3.04 11.97 1.21 0.00 0.00
500 47.79 7.69 65.87 9.79 836.83 91.38 1086.21 114.95 14.83 5.54 20.80 2.75 6.38 1.96 8.54 0.98 0.00 0.00

q= 20
100 61.86 8.60 82.06 10.69 646.27 79.09 867.40 145.01 24.22 4.51 33.16 7.83 17.71 6.40 24.75 2.48 0.00 0.00
200 55.27 7.82 73.66 9.92 796.20 99.82 1080.30 168.88 32.02 3.61 44.46 8.39 17.05 6.08 23.74 0.97 0.00 0.00
300 54.27 7.70 72.38 10.02 802.12 87.16 1088.71 169.83 23.71 5.25 35.67 10.12 15.96 5.56 22.08 1.29 0.00 0.00
400 50.65 7.47 68.20 9.57 824.40 89.03 1120.35 173.37 19.22 3.73 22.41 3.93 14.43 4.82 19.73 1.28 53.06 23.47
500 51.43 6.37 66.40 8.47 841.60 106.10 1144.78 176.11 15.89 3.81 27.01 3.97 16.55 5.84 22.98 1.00 67.34 34.25

q= 25
100 63.98 11.16 90.21 22.68 699.72 86.48 843.31 153.52 14.39 3.26 40.82 1.56 19.90 7.45 22.51 2.73 48.18 12.38
200 57.09 10.10 80.83 22.15 796.50 99.87 980.74 168.93 16.25 4.98 39.56 1.31 21.51 8.22 24.38 1.07 52.51 13.69
300 55.39 9.84 78.52 19.64 840.29 105.92 1042.91 175.90 13.33 5.19 36.30 1.02 18.36 6.71 20.71 2.15 60.24 22.31
400 54.36 9.68 77.12 21.94 841.86 98.20 1045.14 176.15 11.55 6.47 32.50 0.95 20.43 7.71 23.12 1.41 72.50 13.25
500 55.78 9.90 79.05 22.05 854.36 107.87 1062.89 178.14 9.22 4.59 25.69 0.11 20.51 7.74 23.22 1.37 77.31 12.35

∗ Cplex run-time was fixed to 1 h, for two trials.

Fig. 6. Comparative average performance of the
algorithms for =q 15 and =p q0.2 .
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between the average of its computation time and the one for the exact
Algorithm E1 varies for different values of p and q (Tables 4–6). Upper
bounds Algorithms UB1 and UB2 both run in very shorter times, com-
pared to E1 and E2. Anyhow, in general, the closer q/p is to 1, (e.g. see
the %GapUB1 for q= 10 and p= 8 in Table 6) the less the gap to the
optimal solution. Where =q p/ 1, the problem reduces to the general
multi-terminal max-flow problem.

Overall, Heuristic H1 outperforms the exact solution algorithms in
terms of computation time and at the same time its average gap to
optimality stays below 7.1%, for all problem instances (the maximum
average gap to optimality of H1 is equal to 16.58%, for a network with
500 nodes and 25 candidate destination locations). It even succeeds in
finding the optimum for numerous instances, as can be seen in Table 4
for instances with zero gap to optimality. The comparative average
performance of the algorithms is represented in Fig. 6 as an illustrative
example for =q 15 and =p q0.2 . As can be seen in Fig. 7, while the
running time of Algorithms E1 and E2 grows with a steep slope for

bigger qs in our random instances, the running time of Procedure H1
follows a steady running time trend with a slightly greater than zero
gap to the optimum.

The distribution of the ratio of computation time of Algorithm E2 to
the computation time of Algorithm E1 should desirably be as small as
possible, because a less distributed ratio shows a more uniform com-
parative behavior of Algorithms E2 and E1 for different values of p.
Besides, smaller ratios indicate better computation times for Algorithm
E2, compared to Algorithm E1. Fig. 8 is a box plot that shows an up-
trend of this ratio with the increase of p (the number of locations to be
selected). On the other hand, according to the experiments performed
in this paper, H1 is able to find feasible solutions very fast while its gap
to optimal solution reduces from 7.1 for p= 0.4q to 0.52 for p=0.8q
for q=15 and n=500 (see Tables 8 and 9) and at the same time the
distribution of the ratios of the running time of the Procedure H1 to that
of Algorithm E1, stays very close to zero meaning that Procedure H1 is
running efficiently for our random instances (see Fig. 9).

The computational results for the single destination (p= 1) ELP are

Fig. 7. Comparison of the running times of the pro-
posed algorithms for different values of q.

Fig. 8. Boxplot for comparison of E2 and E1 computation time.

Fig. 9. Boxplot for comparison of H1 and E1 computation time.
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presented in Tables 10 and 11. It is noticeable from Table 10 that
though all of the solutions run greatly faster in the single destination
case, E1 and Cplex are still dominated by the other algorithms in terms
of the computation time.

The gap to optimality of each of the proposed solution methods for
the single destination-location problem is reported in Table 11. As can
be seen from the results, in contrast to the results for the multiple
destination ELP, the efficient computation time of the exact algorithms
makes it justified to apply them for larger networks. The reason behind
the huge gap of upper bounds UB1 and UB2 is that they relax the
constraint of choosing only one destination. Nonetheless, they can be
considered as the first attempt for finding the optimum, due to their
efficient computation time.

Furthermore, T-tests were performed to examine the significance of
differences in performance or computation time of the proposed algo-
rithms. The results of the tests confirm that Algorithm E2 is significantly
faster than Algorithm E1 (p-value=0.013). Therefore, Algorithm E2
can be preferred above Algorithm E1. On the other hand, there is no

significant difference between Algorithms UB1 and UB2 in terms of
computation time (p-value=0.13), but as Algorithm UB1 is by defini-
tion tighter than Algorithm UB2 (see Section 4.1), it is preferred above
Algorithm UB2.

For the special case of p= 1 comparisons based on the T-test were
conducted for Algorithms H1 and H2 at the significance level of
=α 0.05. The test result confirms that Procedure H2 is significantly

faster than Procedure H1 with p-value=0.00. However, Procedure H1
is significantly better than Procedure H2 in terms of the gap to op-
timality with p-value=0.00. Therefore, whether to use Algorithms E2,
H1 or H2, depends on the preference of the user in terms of the balance
between computation time and solution quality.

5.4. Further discussion

One of the factors affecting the availability of the safe locations
during an evacuation process is the severity and spread of the disasters.
Finally, to further demonstrate the value of incorporating the locational
decisions during the evacuation process, we consider a real case with
two different sets of decrease and increase parameters αij and βij to
reflect the extent of the disaster. Decrease parameter αij can reflect the
instantaneous influence of disasters on the capacities of the arcs, a
smaller αij means a greater decrease in the capacity of the arc. Increase
parameter βij can reflect the influence of the disasters on the number of
the corrupted arcs, a larger βij means more arcs or routes have been
proposed to destruction. Therefore, different sets of αij and βij can re-
flect the impacts of disasters in different areas.

We consider Tehran municipal metropolis, the capital of Iran with a
population of more than 12 million, which according to the earthquake

Fig. 10. Map of municipal districts of Tehran, the candidate safe zones and the potential disaster points.

Table 12
Interval of capacity-decrease and spread-increase parameters under different grades of disasters.

Area I Area II Area III Area IV

Disaster grade 0 α=1, β=0 α=1, β=0 α=1, β=0 α=1, β=0
Disaster grade 1 ∈ ∈α β(0.9,1.0), (0.00,0.05) α=1, β=0 α=1, β=0 α=1, β=0
Disaster grade 2 ∈ ∈α β(0.8,0.9), (0.05,0.10) ∈ ∈α β(0.9,1.0), (0.00,0.05) α=1, β=0 α=1, β=0
Disaster grade 3 ∈ ∈α β(0.7,0.8), (0.10,0.15) ∈ ∈α β(0.8,0.9), (0.05,0.10) ∈ ∈α β(0.9,1.0), (0.00,0.05) α=1, β=0
Disaster grade 4 ∈ ∈α β(0.6,0.7), (0.15,0.20) ∈ ∈α β(0.7,0.8), (0.10,0.15) ∈ ∈α β(0.8,0.9), (0.05,0.10) ∈ ∈α β(0.9,1.0), (0.00,0.05)

Table 13
The results of implementing Algorithm E1 for Tehran network.

Disaster
severity grade

Running-time for
Algorithm E1

Total no. of
evacuees

Selected destinations

Grade 0 22.015625 1,049,721 [1,5,9,12,15]
Grade 1 20.015625 1,002,075 [1,5,9,8,15]
Grade 2 19.390625 821,047 [1,2,5,9,10]
Grade 3 19.078125 551,678 [1,2,3,4,5]
Grade 4 18.734375 295,337 [10,2,3,4,5]
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scenarios developed under the JICA-CEST project, has high seismic
potential with many active faults (Khorsi, Bozorgi-Amiri, & Ashjari,
2013). Tehran Disaster Mitigation and Management Organization
(TDMMO) has planned and implemented a pilot emergency evacuation
program for two municipal regions. It has also an emergency habitation
plan with 15 predefined safe zones in and around the city. The muni-
cipal zones and the pre-defined safe locations are shown Fig. 10.

The emergency habitation plan includes several steps e.g. setting up
tents or cabins, providing basic supplies, drinking water, food, heating
or cooling facilities and other basic equipment. As stated by the experts
of the organization in several interviews, in case of a disaster, they do
not consider opening all pre-defined locations in practice. We have
implemented our model to make decisions to evacuate from two pilot
zones while incorporating the locational decisions about choosing
amongst the pre-defined safe zones. In order to address the extent of the
disaster, we divide the logistics network with 92 nodes (representing
the main intersections) and 2547 arcs with given integer capacities, into
four areas (arcs are assumed to belong to the area of their head). The
objective is to maximize the number of evacuees by choosing five safe
zones. In each area, the decrease and increase parameters are generated
randomly at different intervals. We have followed the parameter set-
tings of Yuan and Wang (2009) to define four grades of disasters se-
verity as shown in Table 12.

The characteristics of the network are extracted from the data sets
provided by TDMMO, except some minor modifications to adapt the
data to the assumptions of the model. The results of implementing
Algorithm E1 for Tehran network, are reported in Table 13. The last
column of the table reports the array of the selected safe zones ac-
cording to their indices in =L‖ ‖ {15} The results show that the increase
in severity and spread of the disaster not only reduces the total number
of evacuees but also changes the destination safe zones, to the extent
that there is only 1 destination in common between 0 and 4 disaster
grades.

6. Conclusion and further remarks

We have demonstrated the new potentials of the max-flow problem
in modeling real world evacuation problems, especially in emergency
logistics. Incorporating locational considerations when optimizing
network flow is a better reflection of real world evacuation situations.
As the first attempt in this area and benefiting from the flexibility in an
evacuee’s destination selection in the planning process, we have de-
veloped a mixed integer linear programming model. This model aims to
find a number of safe locations amongst a set of candidate destinations
which maximize the flow of evacuees. Exploiting the structure of the
model we were able to solve the model to optimality using established
max-flow algorithms. However, for the sake of improving the compu-
tation time, two heuristics as well as two upper bounds, were proposed
for the problem. They were implemented on randomly generated
graphs and were compared in terms of average computation time and
the gap to optimality.

To further illustrate the real world implications of the evacuation
process and the impacts of the severity of the disasters, we have also
implemented one of the exact algorithms (Algorithm E1) on the logis-
tics network of Tehran.

The general idea of combining the locational decisions with that of
network flow optimization yet remains motivating, both theoretically
and empirically. In this paper we considered flow maximization as the
objective function; however other objective functions in network opti-
mization have the same importance in evacuation planning. To name a
few, minimization of the transit time of a fixed flow F when there is a
fixed population or supply in the source node or minimization of both
time and cost of openings of destination nodes. Also, the objectives of
the quickest flow problem and earliest arrival problem can be con-
sidered in combination with location decisions. Moreover, the idea can
be extended to dynamic network problems, where the capacities are not

assumed to be constant at the first step, or change due to disastrous
circumstances.
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