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Abstract

In this paper we develop a systematic reduction procedure for determining intermediate integrals
of second order hyperbolic equations so that exact solutions of the second order PDEs under interest
can be obtained by solving first order PDEs. We give some conditions in order that such a procedure
holds and, in particular, we characterize classes of linear second order hyperbolic equations for which
the general solution can be found.
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1 Introduction

Determining exact solutions of partial differential equations (PDEs) is of great interest not only for its
theoretical value but also for possible applications. To this end, along the years, many mathematical
approaches have been proposed (see [1] for an exhaustive review of such methods). In particular, in
1964 N. N. Yanenko proposed the method of differential constraints and applied it to gas-dynamics
[2]. The main idea is to add to the governing equations one or more further differential relations and
to look for solutions of the full system. In such a case the added equations play the role of constraints
because they select the class of exact solutions of the original system we are looking for. The first step
of such a method is to study the compatibility between the original equations and the constraints.
Usually to develop such an analysis is a hard task. For this reason further assumptions were made in
the reduction algorithm and many contributions were given in the litterature [3]-[16].

Within such a theoretical framework, the method of the intermediate integrals permits, in principle,
to obtain particular exact solutions of higher order PDEs. In fact, we consider the second order
equation

F

(

xi, u,
∂u

∂xj
,
∂2u

∂xixj

)

= 0, i, j = 1, ..., n (1)
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and we add to it the first order equation

f

(

xi, u,
∂u

∂xj

)

= 0, i, j = 1, ..., n. (2)

The equation (2) is called intermediate integral of (1) if all solutions of (2) are also solutions of (1).
Therefore, in such a case, in order to find particular exact solutions of the original second order equation
(1) we are led to solve the first order equation (2) which, in fact, plays the role of constraint. In this
sense the method of differential constraints could be considered as a generalization of the method of
the intermediate integrals to systems of PDEs. The interested reader can find more details about such
an approach in [1] where the procedure is also developed for a linear second order hyperbolic equation.

Proving the integrability of PDEs systems is of great interest not only from a theoretical point
of view [17]. Within such a framework, quite recently, in [18] a class of one-dimensional hyperbolic
wave equations with non constant speed admitting intemediate integrals have been characterized. In
particular, for some special forms of the wave speed, the general solution of the wave equation has
been obtained and, in turn, the integrability of a class of Hamiltonian systems has been proved.

Following the analysis developed in [18], the main aim of this paper is to look for intermediate
integrals of second order hyperbolic equations and, consequently, to determine exact solutions of such
equations. In particular, in section 2 we develop a procedure for characterizing intemediate integrals
for a generic second order hyperbolic equation. In section 3 some examples of hyperbolic equations for
which the approach developed previously has been useful for characterizing exact solutions are given.
In section 4 we apply our procedure in order to determine the general solution of linear second order
hyperbolic equations. Finally, in section 5 some final remarks and comments are given.

2 Reduction procedure

The main aim of this section is to provide intermediate integrals for second order hyperbolic equations.
Therefore, let us consider the hyperbolic equation

utt − a2(x, t, u)uxx = f(x, t, u, ux, ut) (3)

where a(x, t, u) is the wave speed and f(x, t, u, ux, ut) is a given function. We append to (3) the
constraint

F (x, t, u, ux, ut) = 0. (4)

We are able to prove the following

Theorem 1 The relation (4) is an intermediate integral of the equation (3) if F assumes the form

F = ut − λux − g(x, t, u) (5)

and the following condition is satisfied

(λt + λλx + 2λgu + gλu)ux + 2λλuu
2
x + gt + λgx + ggu = f (6)

where λ = ∓a(x, t, u) and g(x, t, u) is a function to be determined.
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Proof. Setting ux = q, ut = p, uxx = z, utt = r and uxt = s, in order to study the compatibility
between (4) and (3), we differentiate (4) so that, taking (3) into account, we have the following linear
system in z, r and s

Fps+ Fqz = −Fx − qFu (7)

Fpr + Fqs = −Ft − pFu (8)

r − a2z = f (9)

The solution of the equation (5) is obtained in terms of one arbitary function. Therefore (5) is an
intermediate integral of (3) only if the solution of (3) has the same arbitrariness so that we are led to
require that

det

∥

∥

∥

∥

∥

∥

Fp Fq 0
Fq 0 Fp

0 −a2 1

∥

∥

∥

∥

∥

∥

= 0. (10)

In fact, if the system (7)-(9) admits one and only one solution (i. e. if the second order derivatives
of u can be calculated univocally from (7)-(9)), then the solution of (3) should be given in terms of
arbitrary constants. Condition (10) gives

Fp − λFq = 0, λ = ±a

whose integration leads to
F = p− λq − g(x, t, u) (11)

Finally, by substitution (11) into (7)-(9), we obtain the condition (6).

Remark 1. Owing to Theorem 1, since the relation (4) is an intermediate integral only if F assumes
the form (5), in order to determine exact solutions of (3), we have to integrate the first order equation

ut − λ(x, t, u)ux = g(x, t, u) (12)

where the function g must be determined according to (6). Therefore, the solution of (3) will be
given in terms of one arbitrary function. We will show later that, in some cases, the procedure here
developed leads to obtain the solution in terms of two arbitrary functions (i. e. we find the general
solution of the equation under interest). This happens, for instance, when the second order equation
is linear.

Remark 2. As consequence of Theorem 1, owing to condition (6) and taking (12) into account, we
notice that the function f involved in the equation (3) can adopt one of the following forms

f = A0 +B0ux + C0u
2
x (13)

f = A1 +B1ut + C1u
2
x (14)

f = A2 +B2ut + Ctu
2
t (15)

f = A3 +B3ut + C3uxut +D3ux (16)

f = A4 +B4ux + C4ut +D4u
2
t (17)

f = A5 +B5ux + C5uxut (18)
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where Ai(x, t, u), Bi(x, t, u), Ci(x, t, u) and Di(x, t, u) are suitable functions given in terms of the
coefficients involved in the equation at hand. Therefore, the class of second order hyperbolic equations
admitting intermediate integrals is given by (3) supplemented by f defined according to one of the
forms (13)-(18).

Remark 3. Owing to Theorem 1, since λ = ∓a(x, t, u), from (12) we have two intermediate integrals
of (3). Thus, two different particular solutions of (3) are obtained by integrating the two reductions
(12).

In the next section, in order to illustrate better the approach here developed, we will give some
examples for which such a procedure has been useful for determining exact solutions of equations
belonging to the class (3).

3 Intermediate integrals and exact solutions

The key point of the reduction procedure described in the previous section is the condition (6). In fact,
once the function f is specified, we have to require that relation (6) is satisfied for all solutions of (12)
(i. e. ∀ux). Such a requirement leads to a set of compatibility conditions involving the coefficients
of the equation at hand as well as the unknown function g(x, t, u). Once the compatibility conditions
are solved and, in turn, g is determined, we can integrate (12).

1. As first example we consider the equation

utt − a2(u)uxx = 2aa′u2x +Φ(u)ux + h(x, t) + q(u) (19)

which was widely studied in the literature. In fact when Φ = 0 and h = 0 or when q = 0 and h = 0
equation (19) has been considered in [19] while when Φ = 0 and q = 0 it was studied in [20]. In the
present case the function f adopts the form

f = 2aa′u2x +Φ(u)ux + h(x, t) + q(u)

so that from (6) the following compatibility conditions are obtained

2λgu + λug = Φ(u) (20)

gt + λgx + ggu = h(x, t) + q(u) (21)

where λ = ±a(u). In what follows we consider the case λ = a because a similar reduction can be
obtained when λ = −a (see Remark 3).

Thus, integration of (20) leads to

g =
1√
a
(ϕ(u) +G(x, t)) , ϕ =

∫

Φ(u)

2
√
a
du (22)

where G(x, t) is a function to be specified. By substitution of (22) in (21), after some calculations, we
get the following two cases
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1.1) If G 6= const., we have

d

du

(

1√
a

)

= β0
√
a− α0a− γ0 (23)

d

du

(

ϕ√
a

)

+ ϕ
d

du

(

1√
a

)

= β1
√
a− α1a− γ1 (24)

q
√
a = ϕ

d

du

(

ϕ√
a

)

− β2
√
a+ α2a+ γ2 (25)

h = β0G
2 + β1G+ β2 (26)

where αi, βi, γi are constants. Furthermore G(x, t) must satisfy the relations

Gx = α0G
2 + α1G+ α2 (27)

Gt = γ0G
2 + γ1G+ γ2 (28)

whose compatibility conditions require

α0γ1 = α1γ0, α0γ2 = α2γ0, α1γ2 = α2γ1. (29)

1.2) If G = k0 = const., we find

h = h0 = const., q =
1

2

d

du

(

ϕ+ k0√
a

)2

(30)

while a(u) is unspecified.
Therefore, once a(u), q(u), Φ(u), h(x, t) are assigned according to (23)-(26) or to (30), exact

solutions of (19) can be obtained by solving equation (12) supplemented by (22) where G must be
calculated from (27), (28) (in the case 1.1)) or G = k0 (in the case 1.2)). In what follows we consider
the three model equations arising from (19) when q = Φ = 0 or q = h = 0 or h = Φ = 0.

i) When q = Φ = 0, it is simple matter to verify that from (24)-(26) and (27), (28) we obtain

g = − 1√
a (α0x+ γ0t)

, h =
β0

(α0x+ γ0t)
2 (31)

while a(u) must be given according to (23). Therefore, taking (31) into account, integration of (12)
will give an exact solution of (31) parameterized by one arbitrary function. For instance, if we assume
α0 = 0, from (12) we find

∫ u

u0(σ)

√

a(u) du = − 1

γ0
ln

(

t

t0

)

, x = −
∫ t

t0

a (u (σ, t)) dt+ σ

where t0 is a constant while u0(σ) denotes an arbitrary function.
As far as the case 1.2) is concerned, it is simple matter to verify that it is not compatible with the

assumption q = Φ = 0 unless a = const.
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ii) When q = h = 0, we find that the case 1.2) leads to

g = k1, Φ = k1a
′(u) (32)

where k1 is an arbitrary constant. Therefore, integration of (12) gives

u = k1t+ u0(σ), x = −
∫ t

0
a (u (t, σ)) dt+ σ (33)

where u0(σ) is an arbitrary function. Relation (33) characterizes a solution of (19) (with q = h = 0,
Φ = k1a

′(u) and a(u) unspecified) in terms of one arbitrary function. Moreover we notice that, owing
to (32)2, the equation (19) is equivalent to the first order system

ut − vx = 0

vt − a2(u)ux = k1a(u)

which is the well known non-homogeneous p-system. Furthermore it is not difficult to ascertain that
the case 1.1) is consistent with the procedure here developed only if a = const.

iii) When h = Φ = 0, in the case 1.2) we deduce that

g =
k0√
a
, q =

k20
2

d

du

(

1

a(u)

)

(34)

while a(u) is unspecified. In such a case, owing to (34)1, from (12) we have
∫ u

u0(σ)

√

a(u) du = k0t, x = −
∫ t

0
a (u (σ, t)) dt+ σ (35)

where u0(σ) is an arbitrary function. Therefore, once a(u) is given, relation (35) gives a solution of
(19) supplemented by (34)2.

Furthermore, in the case 1.1) we obtain

q =
γ2√
a
+ α2

√
a, g =

G(x, t)√
a

(36)

where, assuming a(u) 6= const. (i. e. α2
0 + γ20 6= 0), owing to (27), (28) we find

G = c0 tan (c0σ + c1) if α2
α0

= c20 (37)

G = c0
1 + e2c0σ+c1

1− e2c0σ+c1
if α2

α0
= −c20 (38)

G = − 1

σ + c1
if α2 = γ2 = 0 (39)

while, from (23) we obtain

1√
a
− c2 arctan

(

1

c2
√
a

)

= −γ0u if γ0 6= 0 and α0
γ0

= c22 (40)

1√
a
− c2

2
ln

(

1 + c2
√
a

1− c2
√
a

)

= −γ0u if γ0 6= 0 and α0
γ0

= −c22 (41)

a =
1

γ20u
2

if α0 = 0 (42)

a = (−3α0u)
−

2
3 if γ0 = 0 (43)
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In (37)-(43) ci are constants while σ = α0x+γ0t. In such a case, integration of (12) can be accomplished
once a(u) is given according to (40)-(43) and taking (36)2 into account supplemented by (37)-(39).
For instance if α0 = α2 = γ2 = 0 the functions a and G are given, respectively, by (42) and (39), so
that from (12) the following solution of (19) is obtained

u =
u0(z)

t+ t0
, x = − 1

3γ20u
2
0(z)

(

(t+ t0)
3 − t30

)

+ z

where u0(z) is an arbitrary function and we set t0 =
c1
γ0
.

As final case, we assume h = Φ = q = 0 so that equation (19) specializes to

utt = ∂x
(

a2(u)ux
)

. (44)

which by setting vx = ut and vt = a2ux is equivalent to the homogeneous p-system. Furthermore,
if we require g = 0, the compatibility conditions (20), (21) are identically satisfied and from (12) we
obtain

u = u0(ξ), ξ = x+ u0(ξ)t (45)

with u0(ξ) denoting an arbitrary function. Therefore, relation (45) gives a solution of (44) ∀a(u).
Remark 4. We notice that when a(u) = 1

u
, h = 2, Φ = q = 0, then equation (19) specializes to the

constant astigmatism equation considered in [21] where different new solutions of such equation have
been obtained. It is simple to verify that the results determined in [21] can be recovered by means of
the more general approach here developed starting from the compatibility conditions (20), (21).

Furthermore it is also of interest to remark that a parametric solution of equation (44) depending
of two arbitrary functions was obtained in [22] when the coefficient a(u) adopts the form

a = u
4n

1−2n

for any integers n.

2. A second example is given by the equation

utt = u2uxx − ut +
2

u
u2t (46)

which was considered in [23]. In the present case we have λ = ∓u while

f = −g +
2

u
g2 + (4g − u)ux + 2uu2x.

In what follows we will consider the case λ = u. Therefore, from (6) we obtain

2ugu − 3g = −u, gt + ugx + ggu = −g +
2

u
g2

whose integration leads to g = u, so that from (12) the following solution of (46) is given

u = u0(σ) e
t, x = −u0(σ)

(

et − 1
)

+ σ (47)
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where u0(σ) denotes an arbitrary function.

3. Here, we consider the equation

utt = c2uxx + q1(x)ut + q2(x)u (48)

which was studied in [24]. It results that λ = ∓c, with c = const., while

f = q2u+ q1g − λq1ux

so that from (6) we get
2gu = q1, gt + λgx + ggu = q1g + q2u. (49)

Integration of (49) leads to

g =
q1(x)

2
u+ γ(x, t) (50)

γt + λγx =
q1(x)

2
γ (51)

q2(x) =
λ

2
q′1(x)−

q21(x)

4
(52)

Therefore, once q1(x) and q2(x) are given according to (52), taking (51) into account, integration of
(12) supplemented by (50) leads to an exact solution of (48). For instance, if we assume γ = 0, by
integration of (12) we have, in the case λ = −c,

u1 = û0(σ)e
∫ q1(x)

2c
dx, σ = x− ct (53)

while, when λ = c, we obtain

u2 = ũ0(ξ)e
−

∫ q1(x)
2c

dx, ξ = x+ ct. (54)

where û0(σ) and ũ0(ξ) are arbitrary functions.
In passing we notice that when q1 = 2k0 (where k0 is a constant) so that q2 = −k20, equation (48)

specializes to the linear telegraph equation studied in [25], while when q1 = −1 and q2 = −1
4 , equation

(48) is the hyperbolic Cahn-Allen equation with free energy under the form ǫ =
(

u2

8Mu
− c
)

where Mu

denotes the mobility parameter of the order parameter u [26]. In the next section we will study such
linear cases.

4. Now we put our attention to the equation

utt − uxx = −c0ut + h(x, t, u) (55)

which has been considered in [27]. Since here f = −c0ut + h, from (6) we find

2gu = −c0 (56)

gt + λgx + ggu = −c0g + h (57)

8



where λ = ∓1. Integration of (56) and (57) gives

g = −c0

2
u+ γ(x, t) (58)

h = −c20
4
u+ h0(x, t) (59)

where h0(x, t) is an unspecified function, while γ(x, t) must satisfy the equation

γt + λγx = −c0

2
γ + h0(x, t). (60)

Because of the form of the function h(x, t) given in (59), the equation (55) assumes a linear form. In
the next section we will give the general solution of such linear equation.

4 General solution for linear equations

The main aim of this section is to characterize classes of linear second order hyperbolic equations for
which the procedure here considered permits to determine their general solution. The idea is based
on the fact that, owing to Theorem 1, the equation (3) admits the intermediate integrals

ut ∓ aux = g±(x, t, u) (61)

provided that the condition (6) is satisfied for both reductions. Thus, when the equation (3) is linear,
its general solution will be given by the linear combination of the solutions of (61).

Here we consider the equation (3) with a(x, t) and f = A(x, t)ux +H(x, t)u+B(x, t) +G(x, t)ut.
Taking (61) into account, from the compatibility condition (6) we get

±at + aax ± 2ag±u = A± aG (62)

g±t ± ag±x + g±g±u = Hu+B +Gg± (63)

After some algebra, from (62), (63), we obtain

g+ = γ(x, t)u+ α(x, t), g− = η(x, t)u+ β(x, t) (64)

where

γ =
1

2a
(A+ aG− (at + aax)) , η = − 1

2a
(A− aG+ (at − aax)) (65)

while the functions α(x, t) and β(x, t) are determined by

αt + aαx = B + (G− γ)α (66)

βt − aβx = B + (G− η) β (67)

Furthermore, the following structural conditions must be satisfied

γt + aγx = H +Gγ − γ2 (68)

ηt − aηx = H +Gη − η2 (69)

Therefore, we are able to give the following

9



Theorem 2 The general solution of the equation

utt − a2(x, t)uxx = A(x, t)ux +H(x, t)u+B(x, t) +G(x, t)ut

is given by the linear combination of the solutions of the first order equations (61) supplemented by
(64), provided that the conditions (68) and (69) are satisfied.

In the following we will give some examples for which such an approach has been useful for determining
the general solution of some linear equations.

i) As first example, we consider the equation (48). From (65) we have

γ = η =
q1

2
(70)

while from (68) and (69) we deduce

q1 = const. and q2 = −q21
4
. (71)

Furthermore, integration of (66) and (67) gives

α = α0(σ)e
q1
2
t, β = β0(ξ)e

q1
2
t (72)

where
σ = x− ct, ξ = x+ ct

while α0 and β0 are arbitrary functions. Finally, by solving equations (61) supplemented by (64) along
with (70) and (72), we have

u1 = e−
q1
4c

σ

(

−e
q1
4c

ξ

∫

α0(σ)

2c
dσ + u01(ξ)

)

, u2 = e
q1
4c

ξ

(

e−
q1
4c

σ

∫

β0(ξ)

2c
dξ + u02(σ)

)

where u01, u
0
2 are arbitrary functions. Therefore, the general solution of (48) with (71) is

u = u1 + u2 = u01(ξ) e
−

q1
4c

σ + u02(σ) e
q1
4c

ξ

where, without loss of generality, we set α0 = β0 = 0.

ii) Now we consider the equation

utt − a(x)uxx = a′(x)ux − c(x)u+ h(x, t) (73)

which was studied in [28]. In the present case

γ =
a′(x)

4
√
a
, η = −a′(x)

4
√
a

(74)

while, from (68) and (69) we obtain the condition

c(x) = −a′′

4
+

(

a′

4
√
a

)2

. (75)

10



Integration of (66) and (67) leads to

α = a−
1
4

(
∫

h (x, t (x, ξ)) a−
1
4 dx+ α0(ξ)

)

, β = a−
1
4

(

−
∫

h (x, t (x, σ)) a−
1
4 dx+ β0(σ)

)

(76)

where

ξ = t−
∫

dx
√

a(x)
, σ = t+

∫

dx
√

a(x)
.

while α0 and β0 are arbitrary functions. Therefore, once h(x, t) is given, the linear combination of the
solutions of (61) gives the general solution of (73). For instance, if we assume

h = h0(x)e
−k0t (77)

where k0 is a constant, taking (76) into account and setting α0 = β0 = 0, by integrating (61) we obtain

u1 = a−
1
4

(

h1(x)e
−k0σ + u01(σ)

)

, u2 = a−
1
4

(

h2(x)e
−k0ξ + u02(ξ)

)

where u01, u
0
2 are arbitrary functions, while

h1(x) = −
∫

(

e
2k0

∫
dx
√

a

√
a

∫

h0(x)a
−

1
4 e

−k0
∫

dx
√

adx

)

dx, h2(x) = −
∫

(

e
−2k0

∫
dx
√

a

√
a

∫

h0(x)a
−

1
4 e

k0
∫

dx
√

a dx

)

dx

Thus, the general solution of (73), supplemented by (77) and c(x) characterized by (75), is given by

u =
1

2
(u1 + u2) =

a−
1
4

2

(

h1(x)e
−k0σ + u01(σ) + h2(x)e

−k0ξ + u02(ξ)
)

(78)

whatever function a(x) is given. Furthermore, if h = 0 and c = 0, equation (73) assumes the form

utt = ∂x (a(x)ux) . (79)

In such a case, from (75) we have
a(x) = c0 x

3
√
x (80)

where c0 is a constant, so that, owing to (78), the general solution of (79) assumes the form

u =
1
3
√
x

(

u01(σ) + u02(ξ)
)

, σ = t+
3√
c0

3
√
x, ξ = t− 3√

c0

3
√
x. (81)

Remark 5. It could be of some interest to notice that in [31] a transformation mapping the equation
(79) to the Klein Gordon equation

vtt = vξξ + µ(ξ)v (82)

is found. Therefore, the general solution of (79) characterized by (81) can be also useful for solving
equations like (82).

iii) The equation
utt − uxx = A(x)ux +B(x, t, u) (83)

11



when A = α0
x

and B = h(x, t) was considered in [29], while when A = c0
x

and B = − k0
x2u was studied

in [30]. First, we point out our attention to the case A = α0
x

and B = h(x, t), where α0 denotes a
constant. In the present case we have

γ =
α0

2x
, η = −α0

2x
(84)

while conditions (65) requires
α0 = 0 or α0 = 2.

Integration of (66) and (67) gives

α = (σ + ξ)−
α0
2

(
∫

h(ξ, σ)

2
(σ + ξ)

α0
2 dξ + µ(σ)

)

(85)

β = (σ + ξ)−
α0
2

(

−
∫

h(ξ, σ)

2
(σ + ξ)

α0
2 dσ + ν(ξ)

)

(86)

where
σ = x− t, ξ = x+ t.

while µ and ν are arbitrary. Next, by solving (61), we find

u1 = (σ + ξ)−
α0
2

{

−1

2

(
∫

µ(σ)dσ +
1

2

∫
(
∫

h(ξ, σ) (σ + ξ)
α0
2 dξ

)

dσ

)

+ u01(ξ)

}

u2 = (σ + ξ)−
α0
2

{

1

2

(
∫

ν(ξ)dξ − 1

2

∫
(
∫

h(ξ, σ) (σ + ξ)
α0
2 dσ

)

dξ

)

+ u02(σ)

}

where the functions u01, u
0
2 are arbitrary. Therefore, the general solution of (83) with A = α0

x
and

B = h(x, t) is given by

u =
1

2
(u1 + u2) =

(σ + ξ)−
α0
2

2

(

u01(ξ) + u02(σ) −
1

2

∫
(
∫

h(ξ, σ) (σ + ξ)
α0
2 dξ

)

dσ

)

if α0 = 0 or α0 = 2 and where we set, without loss of generality, µ = ν = 0.

Now we consider (83) with A = c0
x

and B = − k0
x2u, where c0 and k0 are constants. In such a case

equation (83) specializes to the Klein-Gordon-Fock (KGF) equation with central symmetry. It results
that

γ =
c0

2x
, η = − c0

2x
(87)

while from (65) we have

k0 =
c0

2
− c20

4
. (88)

By solving (66) and (67) we obtain

α = µ(σ) (σ + ξ)−
c0
2 , β = ν(ξ) (σ + ξ)−

c0
2

where
σ = x− t, ξ = x+ t.

12



and µ and ν are arbitrary functions. Integration of (61) gives

u1 = (σ + ξ)−
c0
2

(

−
∫

µ(σ)

2
dσ + u01(ξ)

)

, u2 = (σ + ξ)−
c0
2

(
∫

ν(ξ)

2
dξ + u02(σ)

)

with u01 and u02 arbitrary functions. By setting without loss of generality µ = ν = 0, the general
solution of (83) when A = c0

x
and B = − k0

x2u is given by

u = u1 + u2 = x−
c0
2
(

u01(ξ) + u02(σ)
)

provided that condition (88) is satisfied.

iv) Finally we consider the equation (55) with h = − c20
4 u+ h0(x, t). It follows that

γ = η = −c0

2

while (68) and (69) are identically satisfied. Next, integration of (66) and (67) gives

α = e−
c0
4
σ

(
∫

h0(ξ, σ)

2
e

c0
4
σdσ + α0(ξ)

)

, β = e
c0
4
ξ

(

−
∫

h0(ξ, σ)

2
e−

c0
4
ξdξ + β0(σ)

)

(89)

where
σ = x+ t, ξ = x− t

while α0 and β0 arbitrary. Taking (89) into account, the solution of the equations (61) is

u1 = e
c0
4
ξ

(

−
∫

α(ξ, σ)

2
e−

c0
4
ξdξ + u01(σ)

)

, u2 = e−
c0
4
σ

(
∫

β(ξ, σ)

2
e

c0
4
σdσ + u02(ξ)

)

Finally, the general solution of the equation (55) with h = − c20
4 u+ h0(x, t) is given by

u =
1

2
(u1 + u2) =

1

2

{

e−
c0
4
t
(

e
c0
4
x u01(σ) + e−

c0
4
x u02(ξ)

)

− e−
c0
2
t

∫
(
∫

h0(ξ, σ)

2
e

c0
4
(σ−ξ)dξ

)

dσ

}

where u01(σ) and u02(ξ) are arbitrary functions, while, without loss of generality, we set α0 = β0 = 0.

5 Conclusions

In this paper we developed a reduction procedure for determining exact solutions of second order
hyperbolic equations. The approach considered permits to reduce the integration of a second order
equation to that of a first order PDE called intermediate integral. The solutions obtained, apart from
their theoretical value, can be also useful for testing numerical integration methods.

We proved that any second order hyperbolic PDE admits two intermediate integrals so that two
particular solutions given in terms of one arbitrary function can be calculated. In Theorem 1 we
characterized the compatibility conditions in order that such intermediate integrals exist.

The procedure here developed is particularly useful in the case of linear second order hyperbolic
equations. In fact, in such a case, the linear combination of the solutions of the two intermediate

13



integrals gives the solution of the second order governing equation in terms of two arbitrary functions.
Therefore any initial value problems can be solved. In Theorem 2 we characterized the class of the
linear second order hyperbolic PDEs for which it is possible to obtain the general solution by means
of the procedure here considered.

The reduction method here developed should be applied, in principle, to any second order or higher
order PDE but, as far as we know, such a procedure has been applied only for hyperbolic equations.
Therefore it could be of some interest to look for intemediate integrals, for instance, for parabolic
reaction-diffusion equations. This is our aim for future research.
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