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Abstract

In this work, we present an algorithmic framework based on Benders decomposition for the Capacitated
p-Cable Trench Problem with Covering. We show that our approach can be applied to most variants of
the Cable Trench Problem (CTP) that have been considered in the literature. The proposed algorithm is
augmented with a stabilization procedure to accelerate the convergence of the cut loop and with a primal
heuristic to derive high-quality primal solutions. Three different variants of the CTP are considered in a
computational study which compares the Benders approach with two compact integer linear programming
formulations that are solved with CPLEX. The obtained results show that the proposed algorithm signifi-
cantly outperforms the two compact models and that it can be used to tackle significantly larger instances
than previously considered algorithms based on Lagrangean relaxation.
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1. Introduction

The cable trench problem which has been recently introduced by Vasko et al. [20] is a combinatorial
optimization problem that combines the minimum spanning tree problem and the shortest path problem.
Its objective is to connect a set of nodes of an undirected graph G = (V,E) to a predefined central vertex at
minimum overall costs. Thereby, fixed costs occur for each used edge in addition to edge costs that depend
on the number of paths between the central vertex and any of the other nodes using an edge. While any
feasible solution is a spanning tree of the input graph, including the latter costs render the problem NP-hard
[20] on the one hand and also induce that a minimum spanning tree of G is usually not an optimal solution
to the CTP. Vasko et al. [20] motivated the problem from an application in telecommunication network
design where a set of buildings (clients) need to be connected to a central server. Fixed edge costs occur for
establishing connections between the buildings (i.e., for trenching) and additional costs occur per cable that
is laid in each established trench, hence the name cable trench problem.

Since then, several variants of the CTP have been considered in the literature for modeling and solving
different optimization problems arising in the design of telecommunication or electricity networks, see, e.g.,
Marianov et al. [16, 17]. Further applications arise in medical image analysis for vascular reconstruction
[12, 13]. The main additional aspects of these more general variants are (i) the consideration of multiple
central servers whose locations need to be chosen as part of the optimization problem and (ii) the introduction
of a covering aspect in the sense that cables do not need to be laid to each node. Instead it suffices to connect
a so-called secondary server that is close to the set of clients it will supply.
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In this article, we introduce an algorithmic framework based on Benders decomposition [4] that can be
used to solve most of the cable trench problems considered in the literature. To this end, we introduce
and study the Capacitated p-Cable Trench Problem with Covering (Cp-CTPC) that generalizes previously
considered problem variants. Cp-CTPC is defined on a directed graph G = (V,A) where the node set V
contains a set of clients J with demands qj ≥ 0, ∀j ∈ J , and sets of potential primary and secondary servers
S and I, respectively, such that S ⊆ I ⊆ V . For each potential secondary server i ∈ I, parameter Qi ∈ N
indicates its maximum capacity, i.e., the maximum demand of clients from J it can supply. Distances dij ≥ 0
are given between each potential secondary server i ∈ I and each client j ∈ J . A client j ∈ J can be served
by secondary server i ∈ I if the associated distance is smaller than the given maximum covering radius r ≥ 0.
Parameter p ∈ N indicates the number of primary servers that shall be installed. Each installed primary
server automatically acts as a secondary server and may therefore supply clients within the coverage radius
up to its maximum capacity.

Finally, trenching (installation) costs fuv ≥ 0 for using a connection from u to v and cable costs cuv ≥ 0
for installing one cable between u and v are given for each arc (u, v) ∈ A.

A feasible solution to the Cp-CTPC consists of selecting precisely p primary servers and an arbitrary
number of secondary servers each of which is connected by a dedicated cable to precisely one selected primary
server. Each client j ∈ J must be supplied by an open secondary server i ∈ I within the given covering
radius, i.e., dij ≤ r. Thus, from a topological perspective, the graph induced by such a solution is a forest
consisting of p connected components. Thereby, each connected component forms an arborescence rooted at
one of the chosen primary servers. For each chosen secondary server i ∈ I, let Psi denote the arc set of the
directed path from the primary server s, to which secondary server i is connected. One cable dedicated to
supply i needs to be placed on each arc (u, v) ∈ Psi. Thus, the number of cables placed on each arc (u, v)
corresponds to the number of such paths to secondary servers routed along (u, v). The total client demand
assigned to each secondary server i ∈ I cannot exceed its capacity Qi. The objective is to simultaneously
minimize the costs for establishing the network connections (trenching costs) and for connecting each chosen
secondary server to a primary server (cable costs).

An exemplary instance and a feasible solution to this instance are given in Figure 1. In this example,
each client has a demand of one and each server has a capacity of five. The primary servers (nested squares)
and secondary servers (squares) are located on demand nodes and the ratios given on the figure represent
the proportion of clients served within the range of each server.

Outline. In the remainder of this section, we discuss related literature and show that the Cp-CTPC gener-
alizes most of the previously considered cable trench problems and provide more details regarding the above
mentioned applications in telecommunications and medical image analysis. Two Integer Linear Program-
ming (ILP) formulations for the Cp-CTPC based on multi- and single-commodity flows are introduced and
discussed in Section 2. These are generalizations of similar formulations considered in [16, 17] for the special
cases of the Cp-CTPC. The formulations by [16, 17] have been used to develop Lagrangean relaxation based
optimization algorithms whereas we propose to project out the flow variables in our multi-commodity flow
formulation using Benders decomposition. Our Benders decomposition approach is introduced in Section 3
where we also detail our stabilization approach in order to speed up the solution process. Section 4 contains
a detailed description of our primal heuristic that will be used to derive high-quality primal solutions within
the developed branch-and-cut algorithm. The results of our extensive computational study are presented
and discussed in Section 5. In this section, we also give a detailed description of further implementation
details of our algorithmic framework and of the considered benchmark instances. Finally, our conclusions
are drawn in Section 6 where we also summarize potential future research topics.

Related works, special cases, and applications. As mentioned above, the cable trench problem has been first
introduced by Vasko et al. [20] in the context of planning cost-optimal telecommunication networks. Vasko
et al. assumed that there is only one primary server whose location is known and focused on the case when
both the trenching and cable costs are proportional to the length of an edge. They showed that the problem
is NP-hard in general and also showed that the CTP may reduce to one of the following two polynomially
solvable special cases: (i) the shortest path problem when the trenching costs are equal to zero and (ii)
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Figure 1: An example instance to the Cp-CTPC. Arcs included in a feasible solution to this instance are indicated in bold.

the minimum spanning tree problem when the cable costs are equal to zero. A compact, single-commodity
flow based ILP formulation and a heuristic algorithm for solving CTP instances were proposed. Besides
explaining the latter algorithm on a small numerical example, no computational study has been performed.

The CTP is obtained as the special case of the Cp-CTPC when there is only one possible primary server
(i.e., p = 1 and |S| = 1), all other nodes are potential secondary servers and clients at the same time (i.e.,
I = J = V \ S), the covering radius is zero and all distances dij are strictly greater than zero if i 6= j (i.e., a
secondary server needs to be placed at each client), and all capacity constraints are non-binding (e.g., when
qj = 1, ∀j ∈ J , and Qi ≥ 1, ∀i ∈ I).

Marianov et al. [16] introduced the p-cable-trench problem (p-CTP) in which p facilities (primary servers)
need to be located such that each other node of the input graph (i.e., each client) is connected to one
such facility. A multi-commodity flow formulation has been introduced and subsequently used to develop
two Lagrangean relaxation based approaches for the p-CTP that are based on relaxing either the flow
conservation constraints or the linking inequalities between flow and arc variables. These approaches have
been augmented with a two-stage Lagrangean heuristic to obtain primal solutions. A computational study has
been performed on benchmark instances derived from the p-median problem sets with up to 300 nodes and for
p ∈ {0.1|V |, 0.2|V |} for instances obtained from the OR-library Beasley [2] and for fixed values of p (usually
around 0.1|V |) for a second instance set based on a set of discrete location problems originally proposed
by Sob [1]. Optimal solutions obtained from solving the proposed ILP formulation with CPLEX have been
reported for instances with at most 200 nodes. Results also show that the first Lagrangean approach based
on relaxing the flow-conservation constraints seems more efficient both in terms of computing time as well
as with respect to resulting optimality gaps. Marianov et al. [16] also concluded that even though the dual
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bounds from this first approach are not too tight (gaps of at most 7.0%, 14.2%, and 24.1% for instances with
100, 200, and 300 nodes, respectively), the quality of the derived primal solutions seems to be quite good
in general. Recently, Lalla-Ruiz et al. [14] proposed a matheuristic approach for the p-CTP and showed
that the obtained upper bounds are typically better than the one reported in Marianov et al. [16]. Besides
considering the concrete values of parameter p, the p-CTP is obtained as a special case of the Cp-CTPC
when S = I = J = V and when all other parameters are set as in the previously mentioned transformation
to the CTP.

Recently, Marianov et al. [17] studied the p-cable trench problem with covering (p-CTPC). In contrast
to the more general Cp-CTPC studied in this article, all nodes may be primary or secondary servers and
neither customer demands nor capacity restrictions on (secondary) servers are considered. Marianov et al. [17]
considered an application in network design where an antenna (secondary server) needs to be placed within
the coverage radius of each client that will communicate with this antenna using a wireless communication
protocol. Each antenna is then connected to a central router (primary server) using (fiber-optic) cables. The
solution approach proposed is similar to the one in Marianov et al. [16]: A multi-commodity ILP formulation
has been introduced which was then used to derive two Lagrangean relaxations. Primal solutions were
computed using a Lagrangean heuristic and subsequent local search. In addition, an alternative heuristic
based on solving a set covering formulation has been proposed. The authors applied their methods to those
instances from Marianov et al. [16] that are based on the OR-library with at most 200 nodes as well as to a
real world scenario. Computational results indicate that the problem variant with coverage is significantly
harder to solve than the p-CTP considered in Marianov et al. [16].

The p-CTPC is the special case of the Cp-CTPC when all capacity constraints are redundant, i.e., when
Qi ≥

∑
j∈J:dij≤r qj , ∀i ∈ I. Consequently, in contrast to the Cp-CTPC, when modeling and solving the

p-CTPC, it suffices to ensure that a secondary server is opened within the coverage range of each client, but
one does not need to explicitly consider the assignments between secondary servers and their clients.

Schwarze [19] introduced the multi-commodity cable trench problem in which the trenching costs on
edges are reduced if cables of multiple different utilities share the same trench. Such a cost reduction may
apply if different operators coordinate their activities and hence share the trenching costs for connections
that are created in joint activities. The problem was modeled as an ILP based on multi-commodity flows and
several strengthening valid inequalities are proposed. A computational study has been performed to analyze
the impact of the valid inequalities and the influence of parameters controlling the amount of cost sharing
through jointly using trenches on instances originally proposed for the capacitated minimum spanning tree
problem by Gouveia [10].

Further applications of the CTP (and its variants) can be found within the area of medical image analysis
for vascular reconstruction [12, 13]. Given a set of blood vessel locations in R3 as well as their thickness,
which both can be obtained from a computer tomography scan, the goal is to infer the structure of the
associated vascular tree. Solution methods exploit physiological constraints and the assumption that the
vascular system is structured such that perfusion is performed with approximately minimal effort. Jiang et al.
[13] were the first to suggest modeling this problem as CTP, where trenches represent blood volume and
metabolism and cables represent blood flow resistance. Cost coefficients are derived from various physical
properties like length and thickness of the vessels. The availability of a fixed root location is assumed, which
forms the origin of the blood flow (e.g., the heart or main artery, corresponding to the primary server).
Each discrete vessel location of the resulting vascular tree is assumed to supply its surrounding tissue via
capillaries (corresponding to secondary server and client). The authors applied a greedy heuristic to compute
a feasible solution. Vasko et al. [21] proposed a metaheuristic approach to solve large-scale CTP instances
for vascular reconstruction.

For simplification purposes, Jiang et al. [13] and Vasko et al. [21] did not consider false positives, i.e.,
additional blood vessel locations that appear due to measurement errors. However, both highlight their
importance and recommend them to be addressed in future work. As the Cp-CTPC represents a general-
ization of the CTP, an interpretation in the context of the vascular reconstruction problem appears natural.
Clearly, the concept of the coverage radius follows the requirement that all tissue needs to be supplied by
some nearby blood vessel. Moreover, the capacity may be interpreted as the fact that each blood vessel can
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effectively supply only a limited amount of its surrounding tissue. The formulation as Cp-CTPC also enables
various other meaningful applications, e.g., the joint estimation of multiple, disjoint vascular systems (e.g.,
arterial and venous trees, as already suggested [13]) or scenarios where the root of the vascular tree is not
precisely known.

In addition to the CTP variants, the Cp-CTPC studied in this article can also be considered as a
generalization of the well-known p-median location problem originally defined by Hakimi [11]. The p-median
problem requires the location of p facilities on a given network and allocation of customers to the selected
facilities in such a way that the total distance (cable length in our context) between the customers and their
facilities is minimized. The Cp-CTPC reduces to the p-median problem when capacity restrictions are not
binding, locations of secondary servers are fixed, and the coverage radius as well as the construction costs
are equal to zero.

2. ILP formulations

As mentioned above, Lagrangean relaxation approaches based on multi-commodity flow formulations have
been proposed in [16, 17] for different variants of the cable trench problem. In this section, we introduce
such a model for the Cp-CTPC. The formulation which is given by (1)–(11) considers graph G0 = (V0, A0)
which is obtained from G by adding an artificial root node 0 and arcs from this root to all potential primary
servers, i.e., V0 = V ∪{0}, A0 = A∪{(0, s) | s ∈ S}. Each solution to the Cp-CTPC will then be represented
as an outgoing arborescence in G0 with root 0 and exactly p arcs incident to 0 are chosen that will indicate
the selected primary servers. Binary decision variables xuv ∈ {0, 1}, ∀(u, v) ∈ A0, will indicate whether arc
(u, v) is included in a solution and flow variables giuv ∈ {0, 1}, ∀i ∈ I, ∀(u, v) ∈ A0, will be equal to one if and
only if a secondary server is installed at node i and the path from the artificial root 0 to i contains arc (u, v).
Moreover, variables yi ∈ {0, 1}, ∀i ∈ I, indicate whether a secondary server is installed at node i whereas
assignment variables zij ∈ {0, 1}, ∀j ∈ J , ∀i ∈ Ij , are equal to one if and only if client j is served by (assigned
to) secondary server i. Thereby, for each client j ∈ J , notation Ij = {i ∈ I | dij ≤ r} is used to refer to all
secondary servers to which j may be assigned to. In what follows, we also use notation Ji = {j ∈ J : dij ≤ r}
for each secondary server i ∈ I, to denote the set of clients within the radius. Furthermore, for a set of nodes
W ⊆ V0, let δ+(W ) = {(u, v) ∈ A0 | u ∈ W, v /∈ W} and δ−(W ) = {(u, v) ∈ A0 | u /∈ W, v ∈ W} denote
the outgoing and ingoing cutset, respectively. For singleton sets W = {u} we also write δ+(u) and δ−(u)
instead of δ+({u}) and δ−({u}), respectively.

(MCF) min
∑

(u,v)∈A

fuvxuv +
∑
i∈I

∑
(u,v)∈A

cuvg
i
uv (1)

s.t.
∑

(v,u)∈δ+(v)

givu −
∑

(u,v)∈δ−(v)

giuv =


yi if v = 0

−yi if v = i

0 otherwise

∀i ∈ I, ∀v ∈ V0 (2)

giuv ≤ xuv ∀i ∈ I, ∀(u, v) ∈ A0 (3)∑
(u,v)∈A0

xuv ≤ 1 ∀v ∈ V (4)

∑
v∈S

x0v = p (5)∑
i∈Ij

zij ≥ 1 ∀j ∈ J (6)

∑
j:i∈Ij

qjzij ≤ Qiyi ∀i ∈ I (7)

giuv ∈ {0, 1} ∀i ∈ I, ∀(u, v) ∈ A0 (8)
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xuv ∈ {0, 1} ∀(u, v) ∈ A0 (9)

zij ∈ {0, 1} ∀j ∈ J, ∀i ∈ Ij (10)

yi ∈ {0, 1} ∀i ∈ I (11)

The objective function (1) minimizes the sum of trenching and cable costs. Equations (2) are flow
conservation constraints ensuring that one unit of flow is sent to each open secondary server (and therefore
one cable is routed to it). Linking constraints (3) ensure that we can only install cables on arcs for which
we also pay the trenching costs while indegree constraints (4) make sure that the overall solution is an
arborescence in G0 that is rooted at the artificial root 0 and therefore a forest in G. Exactly p primary
servers will be selected due to equation (5). Inequalities (6) state that each client must be assigned to a
secondary server while constraints (7) restrict the total demand assigned to each secondary server by its
capacity limit.

It is well known that a stronger formulation is obtained by adding the strong linking constraints

zij ≤ yi ∀j ∈ J, ∀i ∈ Ij (12)

We also add equations (13) that are obtained from the fact that every primary server is a secondary
server by definition.

gv0v = yv ∀v ∈ I (13)

Next, we detail modifications that are necessary to apply formulation (1)–(11) to the previously mentioned
special cases of the Cp-CTPC. To solve instances of the p-CTPC introduced by Marianov et al. [17], we remove
assignment variables z as well as inequalities (6) and (7). Instead, constraints (14) are added to ensure that
each client is assigned to a secondary server.∑

i∈Ij

yi ≥ 1 ∀j ∈ J (14)

No further modifications (except considering all nodes to be potential primary and secondary servers)
are necessary for applying formulation (1)–(11) to the p-CTPC, the p-CTP, or the CTP, respectively.

An alternative formulation (15)–(20) with a smaller number of flow variables is obtained by using single-
commodity flow variables 0 ≤ guv ≤ |I|, ∀(u, v) ∈ A0, each indicating the number of cables in the trench
associated with the same arc.

(SCF) min
∑

(u,v)∈A

fuvxuv +
∑

(u,v)∈A

cuvguv (15)

s.t.
∑

(v,u)∈δ+(v)

gvu −
∑

(u,v)∈δ−(v)

guv =


∑
i∈I yi if v = 0

−yv if v ∈ I
0 if v ∈ V \ I

∀v ∈ V0 (16)

g0v ≤ (|I| − p+ 1) · x0v ∀v ∈ V (17)

guv ≤ (|I| − p) · xuv ∀(u, v) ∈ A (18)

(4)− (7), (9)− (11)

guv ∈ {0, . . . , |I| − p} ∀(u, v) ∈ A0 (19)

g0v ∈ {0, . . . , |I| − p+ 1} ∀v ∈ V (20)
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Equations (16), (17), and (18) are the flow conservation and linking constraints that have been transferred
to the single-commodity case. The rest of the model corresponds to the multi-commodity flow formulation
(MCF) detailed above and we therefore refrain from repeating all details.

As above, inequalities (12) can be used to obtain a stronger formulation while (14) will be used instead
of (6) and (7) if the capacity constraints are not binding, i.e., to address the special cases considered earlier
in the literature.

3. Benders decomposition approach (BF)

The relatively large number of flow variables in formulation (1)–(11) is problematic when attempting
to solve medium or large-scale instances. Although the single-commodity flow formulation (15)–(20) uses a
significantly smaller number of variables and constraints, it will typically suffer from weak linear programming
(LP) relaxation bounds. Thus, too many branch-and-bound (B&B) nodes need to be enumerated for solving
instances to proven optimality and this will make the formulation impractical to use on large instances.
Therefore, we attempt to make use of the stronger LP bounds obtained from the multi-commodity flow
formulation while avoiding the need of explicitly considering the associated flow variables. To this end,
we start from formulation (1)–(11) and project out the flow variables in a Benders fashion. In contrast to
the previously proposed formulations, connectivity of the solution is ensured using the arc design variables.
Thus, the resulting Benders master problem is defined by (21)–(23).

min
∑

(u,v)∈A

fuvxuv +
∑
i∈I

wi (21)

s.t. (4)− (7), (9)− (11)∑
(u,v)∈δ−(W )

xuv ≥ yi ∀W ⊆ V , i ∈W ∩ I (22)

wi ≥ Θi(yi,x) ∀i ∈ I (23)

Thereby, for each secondary server i ∈ I, a new variable wi is introduced whose value encodes the total
cable costs for connecting i to its assigned primary server (in case secondary server i is installed). Cutset
constraints (22) which can be interpreted as Benders feasibility cuts ensure that each secondary server is
connected to the artificial root. The Benders optimality cut (23) for each secondary server i ∈ I is obtained
by solving the Benders subproblem (24)–(27) for the current values (ȳi, x̄) of variables (yi,x)).

Θi(ȳi, x̄) = min
∑

(u,v)∈A

cuvguv (24)

s.t.
∑

(v,u)∈δ+(v)

gvu −
∑

(u,v)∈δ+(v)

guv =


ȳi if v = 0

−ȳi if v = i

0 if v ∈ V \ {i}
∀v ∈ V0 (25)

guv ≤ x̄uv ∀(u, v) ∈ A0 (26)

guv ≥ 0 ∀(u, v) ∈ A (27)

It is easy to observe that, the Benders subproblem is a minimum-cost flow problem with source 0 and
target i where the arc costs and capacities of each arc (u, v) ∈ A0 are set to cuv and x̄uv, respectively.
Our implementation solves the minimum-cost flow problems by simply solving the linear program above
with CPLEX. We also note that the Benders subproblem is feasible for each i ∈ I if the current candidate
solution (ȳ, x̄, w̄) satisfies all cutset constraints (22). The latter observation can be easily derived from the
max-flow-min-cut theorem.
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Let π ≤ 0 and ρ be the vectors of dual variables associated to constraints (25) and (26), respectively.
Then, the dual of (24)–(27) is given by (28)–(30). Since one of the flow conservation constraints (25) is
redundant, we thereby assume without loss of generality that ρ0 = 0.

Θi(ȳi, x̄) = max
∑

(u,v)∈A

x̄uvπuv − ȳiρi (28)

s.t. ρu − ρv + πuv ≤ cuv ∀(u, v) ∈ A0 (29)

πuv ≤ 0 ∀(u, v) ∈ A0 (30)

Thus, if Θi(ȳi, x̄) > w̄i, we add the Benders optimality cut∑
(u,v)∈A

π̄uvxuv − ρ̄iyi ≤ wi

to the Benders master problem.

Finally, we notice that besides including the strong linking constraints (12), one can improve the LP
relaxation bounds obtained by strengthening the cutset constraints (22) to∑

(u,v)∈δ−(W )

xuv ≥ 1 ∀W ⊆ V , ∃j ∈ J : Ij ⊆W (31)

whenever W contains all possible secondary servers of at least one client.

Separation and stabilization. Earlier studies in literature reveal that in some cases it is possible to signif-
icantly improve the performance of cutting plane algorithms via careful choice of separation points [3, 8].
Such techniques can be seen as a form of stabilization akin to those applied in column generation. Our im-
plementation includes a simple stabilization scheme similar to the in–out approach presented by Ben-Ameur
and Neto [3]. Instead of generating cuts based on the optimal LP solution to the relaxed master problem, a
separation point (xsep,ysep) in the space of x and y variables is computed as convex combination between
the optimal LP solution (x̄, ȳ) and a stabilizing interior point (x̃, ỹ). In our implementation, (x̃, ỹ) is chosen
as (1, . . . , 1). The advantages of this approach are two-fold: Firstly, the generated inequalities are likely to
cut off more infeasible points as the separation point is closer to the feasible region. Secondly, combination
with the chosen stabilization point encourages feasibility w.r.t. constraints (22), allowing optimality cuts to
be separated much earlier, potentially avoiding many time-consuming cutting-plane iterations in which only
feasibility cuts can be separated.

Algorithm 1 shows a pseudocode representation of the stabilized separation procedure for the Benders
formulation. Given (x̄, ȳ, w̄), separation is performed for multiple iterations with different separation points
(xsep,ysep). The parameter λk determines the closeness of the separation point to the optimal point at each
iteration. For the first iteration, we chose λ0 = 0.5. In each subsequent iteration, λk is moved closer to one
by midpoint bisection of the interval [λk, 1]. Optimality cuts are only separated if the current (xsep,ysep)
yields no feasibility cuts. The number of iterations is limited by a cut limit c̄ and an iteration limit k̄. We
set c̄ = 0.1|I| and k̄ = 5. If the number of generated cuts does not exceed the cut limit c̄ after k̄ iterations,
we perform separation for (x̄, ȳ), but still add ε× (1, . . . , 1), ε = 10−6, to the separation point. It has been
observed that this strategy significantly increases the strength of the separated optimality cuts. A similar
technique is applied when separating feasibility cuts, which is done by applying the maximum flow algorithm
of Cherkassky and Goldberg [5]. It is well known that in this case adding a small value ε to all arc capacities
yields connectivity cuts that are of minimum cardinality.

For both feasibility and optimality cuts, separation is only performed for nodes i ∈ V where ȳi ≥ 0.1.
Note that when cuts are generated from alternative separation points during the stabilization loop (Steps
1–9), violation is still checked w.r.t. the original point (x̄, ȳ, w̄), as a feasible separation point might still
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Data: An optimal LP solution (x̄, ȳ, w̄).
Result: A set of violated inequalities C.

1 C ← ∅
2 λ0 ← 0.5
3 while k < k̄ ∧ |C| < c̄ do
4 (xsep,ysep)←λk (x̄, ȳ) + (1− λk) (x̃, ỹ)
5 Cf ← separateFeasibilityCuts(xsep,ysep)
6 if Cf = ∅ then
7 Co ← separateOptimalityCuts(xsep,ysep)
8 end
9 C ← C ∪ Cf ∪ Co

10 λk+1 ← (λk + 1)/2
11 k ← k + 1

12 end

13 if |C| < c̄ then
14 (xsep,ysep)← (x̄, ȳ) + ε · (1, . . . , 1)
15 Cf ← separateFeasibilityCuts(xsep,ysep)
16 if Cf = ∅ then
17 Co ← separateOptimalityCuts(xsep,ysep)
18 end
19 C ← C ∪ Cf ∪ Co
20 end

Algorithm 1: Stabilized separation procedure for the Benders approach.

produce a violated cut. Finally, since in some cases the stabilization loop is very time consuming, we only
execute the loop every fifth iteration, which in preliminary experiments has been found a good trade-off
between decreasing the number of cutting plane iterations until convergence and the extra time spent.

The importance of avoiding naive separation with (x̄, ȳ) as separation point has to be stressed. As an
example, consider an instance of the p-CTP with |V | = 100, |A| = 400, p = 5 and r = 0 (details on the used
benchmark instances are given in Section 5). If no ε is added during the separation of Benders cuts, our
implementation requires 166 seconds to solve the instance to optimality. Adding ε decreases the solution
time to 12 seconds, while applying the stabilization further decreases it to 4 seconds.

4. Primal heuristic

Augmenting a branch-and-bound procedure by a primal heuristic is often crucial to find good integer-
feasible solutions early on during the search process and therefore effectively prune nodes of the branch-and-
bound tree. This holds especially true for the Benders decomposition approach, where the simple structure
of the master problem does not provide sufficient information to the otherwise powerful LP-based heuristics
of a modern ILP solver such as CPLEX.

Algorithm 2 shows the pseudocode of our primal heuristic which constructs a feasible Cp-CTPC solution
from an LP solution with fractional variable values. It uses only the values of the trench variables x from
the LP solution and can therefore be applied directly to all of the formulations discussed in the previous
sections.

In the heuristic, a solution is represented as triple (S′, I ′, A′|I|), consisting of the sets of selected primary
servers S′ ⊆ S, selected secondary servers I ′ ⊆ I and arcs A′|I| ⊆ A|I| used to connect each secondary server.
The latter can also be interpreted as the set of cables connecting some possibly active secondary server i ∈ I.

The heuristic consists of two phases. In the first phase (Step 4 of Algorithm 2) p primary servers S′

are selected based on the highest LP solution values of their associated artificial root arcs. Ties are broken
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arbitrarily. The second phase consists of Steps 6–17 of Algorithm 2. Thereby, at each iteration, the partial
solution is augmented by one secondary server from I∗ = I \ I ′. Besides the (partial) solution (S′, I ′, A′|I|),
the trenching costs f ′ of the current solution and the set of uncovered clients J∗ ⊆ J is updated at each
iteration.

Firstly, Step 7 computes combined arc costs c′ based on the current trenching costs f ′ and cable costs c,
scaled by the given LP solution x̄. In Step 8, for each i ∈ I∗ the shortest path Pi from any s ∈ S′ to i is
computed based on c′. Note that this step can be performed efficiently by a single execution of Dijkstra’s
algorithm [7], using the artificial root node 0 ∈ V0 as source and with arcs (0, s) ∈ A0, s ∈ S \S′ temporarily
hidden. For each i ∈ I∗, c′(Pi) denotes the path’s length based on c′. In Step 9, for each unselected secondary
server i ∈ I∗, the largest set of currently uncovered clients J ′i ⊆ Ji ∩ J∗ that i can cover without exceeding
its capacity Qi is computed. This set is obtained by simply assigning uncovered clients to i in ascending
order w.r.t. qi.

Next, a score σi is computed for each i ∈ I∗, such that σi := c′(Pi)/|J ′i | for J ′i 6= ∅, and σi := ∞
otherwise. The secondary server i ∈ I∗ with the smallest score is added to the solution. Finally, all data is
updated according to this selection. The procedure is repeated until the solution covers all clients. Note that
the number of iterations performed by the main loop is bounded by |I|. Therefore, if total coverage is not
achieved after |I| iterations, the instance is clearly infeasible. The worst-case time complexity of Algorithm 2
is thus O(|I| · (|A|+ |V | log |V |)).

Data: An Instance of the Cp-CTPC and trenching-part x̄ of LP solution.
Result: A feasible solution (S′, I ′, A′|I|) to the Cp-CTPC.

1 (S′, I ′, A′|I|)← (∅, ∅, ∅|I|)
2 J∗ ← J, I∗ ← I
3 f ′ ← f

4 S′ ← selectPrimaryServers(x̄)
5 I∗ ← I∗ \ S′
6 while J∗ 6= ∅ do
7 c′uv ← (cuv + f ′uv) · (1− x̄uv) ∀(u, v) ∈ A
8 Pi ← computeShortestPath(S′, i, c′) ∀i ∈ I∗
9 J ′i ← computeMaximumCoverage(i, J∗, Ji, Qi) ∀i ∈ I∗

10 σi ← computeScore(i, J ′i , Pi) ∀i ∈ I∗
11 i′ ← selectSecondaryServer(I∗,σ)

12 J∗ ← J∗ \ J ′i′
13 I∗ ← I∗ \ {i′}
14 I ′ ← I ′ ∪ {i′}
15 A′i′ ← Pi′

16 f ′uv ← 0 ∀(u, v) ∈ Pi′
17 end

Algorithm 2: Primal heuristic.

5. Computational study

In this section, we first detail the benchmark instances used to test our algorithms in Section 5.1. Sub-
sequently, we report and discuss the results that we obtain from computational experiments for solving
different variants of the Cp-CTPC. All formulations and algorithms introduced in the previous sections have
been implemented in C++ and compiled with GCC 4.8.3. The implementation uses the OGDF library [6]
for data structures and CPLEX 12.6.3 for solving the mathematical formulations including the Benders
subproblems, i.e., the minimum-cost flow problems. All experiments have been performed single-threaded
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on an Intel Xeon CPU with 2.5 GHz. A time limit of two hours and memory limit of 5 GB have been set.
When computing average running times, those instances that cannot be solved due to the memory limit are
treated the same way as the instances that hit the time limit, that is, the running time is counted as two
hours.

We performed experiments for five different values of p (p ∈ {5, 10, |V |/10, |V |/5, |V |/3}) for each instance
in our benchmark set. In each of the tables of this section, every row reports average results over a subset
of instances. By default, instances with the same number of nodes but which are based on different original
graphs are grouped together. Thereby, column |A| gives the corresponding average number of arcs (note
that due to the random instance generation in [2], the number of arcs per graph slightly varies between the
instances with the same number of nodes). Additional criteria for grouping instances are chosen based on
the results reported in each table. Column #inst. lists the number of instances grouped together. For each
of our methods MCF, BF, and SCF, column #solv. reports the number of instances solved, g[%] gives the
average relative optimality gap (computed as (UB − LB)/UB, where LB and UB denote the best lower
and upper bound values, respectively), and t[s.] lists the average running time in seconds. If the time limit
is exceeded for all instances of one group, the average running time is replaced by TL. Conversely, a “-” in
all three columns is used to indicate that all the root LP relaxation of all instances of one group could not
be solved due to the memory or time limit. The results of the best method are marked in bold for each row.

5.1. Data generation

To test the performance of our methods, we created a set of benchmark instances that are based on the
uncapacitated p-median data from OR-Library [2] and which are created in a similar way as in Marianov
et al. [17]. The data set contains 40 instances with |V | varying between 100 and 900, and p varying between
5 and |V |/3. For each instance, we are given a set of arcs and their lengths. As suggested by [2], we refine the
original data to eliminate multiple arcs between the same ordered pair of nodes and calculate the shortest
path distance value between each node pair i, j by using the all pairs shortest path algorithm of Floyd [9].
The distance dij is obtained for each node pair i, j by multiplying this shortest path value by 0.75 and
rounding it up to the nearest integer. For every arc (u, v) ∈ A, cable costs cuv are generated uniformly
at random from the interval [1, d0.75luve] where luv is the length of the arc. Demand and capacity values
are obtained in a similar fashion as in Lorena and Senne [15]. Demand values of each node are generated

uniformly at random in the interval [1, 20] and the capacity values are set to d
∑

i∈V qi
M×α e for α ∈ {0.8, 0.9}

and M ∈ {0.05|V |, 0.1|V |, 0.2|V |}. As the original instances do not distinguish different node types, we set
I = J = S = V .

Finally, we need to identify meaningful radius values r to impose in our computational experiments.
To this end, we first observe that an upper bound rpC for reasonable values of r is obtained by solving
an uncapacitated p-center problem on the network with primary servers being the potential centers. If we
would consider rpC as the radius value to solve the p-CTPC, an optimal solution would use primary servers
only. Therefore, we consider smaller radius values in our experiments, more precisely, we use r = β × rpC
for β ∈ {0.1, 0.2, 0.3}. In order to solve the p-center problem, we use the classical set covering formulation
(SCr) given by (32)–(34) and follow a search methodology similar to the one proposed by Minieka [18] to
select the radius value at each step. More specifically, we start solving SCr for r = 1, increment the r value
by one if Zr > p and repeat solving SCr with incremented values of r until we get Zr ≤ p which will be
satisfied for the first time by r = rpC .

(SCr) Zr = min
∑
i∈I

yi (32)

s.t.
∑
i∈Ij

yi ≥ 1 ∀j ∈ J (33)

yi ∈ {0, 1} ∀i ∈ I (34)

Assuming a radius coverage value of r for a Cp-CTPC problem instance, we observe that a lower bound
of the number of necessary secondary servers can be obtained by using any lower bound to Zr. Let L be a
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lower bound on Zr. We conclude that at least L− p secondary servers that are not primary servers need to
be installed and thus, cables must be placed on at least L − p arcs. Thus, the initial formulations to solve
the Cp-CTPC can be tightened by introducing the corresponding constraint (35).

∑
i∈I\S

yi ≥ L− p (35)

5.2. Results on the p-CTP

We first apply our methods to the p-CTP, i.e., we consider instances with r = 0 and for which all capacity
constraints are redundant. As mentioned in Section 2 we also remove assignment variables z when solving
the p-CTP.

An overview on numbers of solved instances and remaining optimality gaps after reaching the time-
or memory limit is given in Figure 2. We observe that our Benders decomposition algorithm BF clearly
outperforms the two considered alternatives, i.e., solving the MCF or SCF formulation with CPLEX. BF
manages to solve approximately 75% of the considered instances and the remaining optimality gaps are
typically smaller than 20% for the unsolved instances. In contrast, MCF could only solve slightly less than
40% of the instances and fails to derive reasonable gaps for all other instances. SCF cannot solve any
instances to proven optimality due to its weak LP bounds and the resulting huge number of branch-and-
bound nodes that need to be considered. While it outperforms MCF for the largest and most difficult
instances considered, its performance cannot compete with BF.
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Figure 2: Graphical summary of test results on the p-CTP. Results show the relative numbers of instances solved within a
certain time and the relative numbers of instances for which the final optimality gap is below a certain threshold.

Detailed results are reported in Table 1. We observe that MCF is able to solve all instances with at
most 300 nodes while its root relaxation cannot be solved for any instance with at least 400 nodes (due to
the given memory limit). BF converges significantly faster than MCF on instances with |V | ≤ 300 and is
able to solve several significantly larger instances (up to 700 nodes). We also observe that in general the
computational difficulty decreases as p increases for all considered methods. For instance, BF has difficulties
in solving problems with p ∈ {5, 10} and |V | ≥ 400 while it is able solve all the problems with up to 700
nodes optimally for p ∈ {|V |/5, |V |/3}.

Recall that the Lagrangean relaxation based method by Marianov et al. [16] has been tested on similar
instances with at most 300 nodes and for p ∈ {|V |/10, |V |/5, |V |/3}. While differences in instance creation
do not allow a direct comparison to our methods, the fact that the final optimality gaps obtained by their
method typically exceed 10% for |V | = 300 and p ∈ {|V |/5, |V |/3} demonstrated the high potential for
solving p-CTP instances of the Benders decomposition algorithm developed in this article.

Finally, we observe that average gaps computed by SCF are significantly larger than those of BF except
for the instances with |V | = 900 and p = 300.
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5.3. Results on the p-CTPC

In the second part of our computational study, we conduct experiments on our methods to solve the
p-CTP with coverage introduced by Marianov et al. [17]. Obtained results are summarized in Figure 3 and
in Tables 2 and 3. To keep their size reasonable, we give only results for p = {5, |V |/5, |V |/3} in these tables.
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Figure 3: Graphical summary of test results on the p-CTPC for different values of β. Results show the relative numbers of
instances solved within a certain time and the relative numbers of instances for which the final optimality gap is below a certain
threshold.

From Figure 3, we first observe that BF outperforms both MCF and SCF for the considered p-CTPC
instances. Considering the numbers of solved instances, the difference between BF and MCF does not seem
to be as large as for the p-CTP, in particular for β ∈ {0.2, 0.3}. For instances that could not be solved to
optimality, the typical gaps obtained from BF are, however, typically significantly smaller than of MCF. We
also conclude that the computational difficulty seems to increase with increasing coverage radii, i.e., with
increasing values of β. Since the fraction of instances solved within the given time and memory limits is
much smaller than for the p-CTP, we also conclude that the computational difficulty increases considerably
by including the coverage restrictions.

These observations are confirmed by the results given in Tables 2 and 3. The results verify that BF
scales generally much better w.r.t. the radius size than MCF on problems with |V | = 100 to 200. For
|V | = 300, MCF outperforms BF for large values of p (p ∈ |V |/5, |V |/3}) while BF performs better for p = 5.
Similar to our observations when solving the p-CTP instances, MCF hits the memory limit for the p-CTPC
instances with at least 400 nodes and SCF cannot solve any of the problems optimally within the time limit.
Moreover, BF outperforms SCF in all the instances except the ones with 900 nodes, p = 300, and β = 0.1
on the average. Finally, we observe that BF can solve all instances with p = |V |/3 and β = 0.1 with at most
700 nodes.
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5.4. Results on the Cp-CTPC

Finally, we report the results of our computational experiments for solving Cp-CTPC instances in Figure 4
as well as Tables 4 and 5. We consider instances with different capacity levels of secondary servers represented
by M and α combinations. Table 4 lists aggregated results for fixed values of p, i.e., p = {5, 10}, while Table 5
lists aggregated results for values of p that are defined as percentage of |V |, i.e., p = {|V |/10, |V |/5, |V |/3}.
In both tables, results have been averaged over all considered radius sizes.
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Figure 4: Graphical summary of test results on the Cp-CTPC for different values of β. Results show the relative numbers of
instances solved within a certain time and the relative numbers of instances for which the final optimality gap is below a certain
threshold.

Figure 4 shows similar trends as for the previously discussed case without capacity constraints, i.e.,
the p-CTPC. BF slightly outperforms MCF with respect to the numbers of solved instances, and clearly
outperforms MCF when considering the remaining optimality gaps. Again the difficulty of instances increases
with increasing size of the coverage radius.

From Tables 4 and 5, we observe that the root node relaxation of MCF cannot be solved for instances with
more than 300 nodes due to the memory limit and that SCF cannot solve any instance to optimality. These
conclusions hold for all three problem variants considered in our computational study. Table 4 reveals that
BF solves more instances with |V | ≤ 300 to proven optimality than MCF and almost always terminates with
smaller average gap values than MCF. On the other hand, from Table 5, we observe that MCF solves a larger
number of instances with |V | = 300 than BF when the number of primary servers is large. Nevertheless,
BF still performs better with respect to the average gap values. Thus, we conclude that BF dominates the
other approaches for the fixed, small values of p and also for relative, large values of p up to |V | = 200. For
the second case, it is not clear whether MCF or BF achieves an overall better performance. BF is, however,
the only considered method that can be reasonably applied to instances with more than 300 nodes. We note
that even BF is not able to solve instances with p ∈ {5, 10} and |V | ≥ 400 while it could solve between 9%
and 100% of the instances with up to 700 nodes for larger p values. Moreover, we also realize that instances
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with smaller capacities (i.e., larger M and α) tend to be solved faster.

6. Conclusions

This work considers the Capacitated p-Cable Trench Problem with Covering (Cp-CTPC) that generalizes
most variants of the Cable Trench Problem (CTP) that have been considered in the literature. An algorithmic
framework based on Benders decomposition for solving the Cp-CTPC is presented. This framework contains
a stabilization procedure to speed up the convergence of the cutting plane loop and a primal heuristic to
compute high-quality primal solutions. Simple modifications that allow to apply the framework to most
previously considered variants of the CTP are detailed. Two flow-based integer programming formulations
are introduced as alternatives to the Benders framework.

An extensive computational study is performed in which the Cp-CTPC and two further variants of the
CTP are considered. Results show that the proposed framework clearly outperforms the two alternatives
given by directly solving the flow-based formulations. It is also shown that the framework allows to tackle
and solve significantly larger instances than those previously considered.

This study also opens several directions for future research. In particular, it would be interesting to con-
sider a formulation of the Cp-CTPC in which one variable for each possible assignment between a secondary
server and its clients is considered instead of the standard way to model the capacity constraints used in
this work. Such a model would clearly dominate the current formulation from the theoretical perspective
and it would be utile to analyze its practical performance by developing a corresponding Branch-Price-and-
Benders-Cut approach. Finally, from an application point of view it could be relevant to consider a problem
variant that additionally considers capacity constraints on the arcs.
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Table 1: Test results of solving the p-CTP. Reported values are averaged and aggregated by |V |.

MCF BF SCF
|V | |A| #inst. p #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 5 5 5 0.00 7 5 0.00 5 0 25.76 TL
100 396 5 10 5 0.00 5 5 0.00 3 0 20.30 TL
100 396 5 10 5 0.00 6 5 0.00 3 0 20.40 TL
100 396 5 20 5 0.00 5 5 0.00 2 0 15.21 TL
100 396 5 33 5 0.00 6 5 0.00 2 0 12.46 TL
200 1585 5 5 5 0.00 385 5 0.00 81 0 44.54 TL
200 1585 5 10 5 0.00 187 5 0.00 36 0 41.82 TL
200 1585 5 20 5 0.00 108 5 0.00 23 0 38.92 TL
200 1585 5 40 5 0.00 99 5 0.00 18 0 36.80 TL
200 1585 5 66 5 0.00 99 5 0.00 16 0 31.30 TL
300 3561 5 5 5 0.00 1631 5 0.00 545 0 43.75 TL
300 3561 5 10 5 0.00 1318 5 0.00 410 0 43.05 TL
300 3561 5 30 5 0.00 533 5 0.00 227 0 40.80 TL
300 3561 5 60 5 0.00 392 5 0.00 192 0 37.75 TL
300 3561 5 100 5 0.00 398 5 0.00 253 0 37.23 TL
400 6338 5 5 - - - 3 0.06 5305 0 50.13 TL
400 6338 5 10 - - - 4 0.28 3204 0 46.71 TL
400 6338 5 40 - - - 5 0.00 1255 0 41.77 TL
400 6338 5 80 - - - 5 0.00 749 0 39.60 TL
400 6338 5 133 - - - 5 0.00 759 0 39.29 TL
500 9900 5 5 - - - 0 9.68 TL 0 51.09 TL
500 9900 5 10 - - - 1 1.75 7007 0 50.48 TL
500 9900 5 50 - - - 5 0.00 2433 0 41.91 TL
500 9900 5 100 - - - 5 0.00 1346 0 41.62 TL
500 9900 5 166 - - - 5 0.00 1909 0 40.86 TL
600 14263 5 5 - - - 0 19.38 TL 0 52.02 TL
600 14263 5 10 - - - 0 13.30 TL 0 51.67 TL
600 14263 5 60 - - - 3 0.04 6023 0 46.74 TL
600 14263 5 120 - - - 5 0.00 3102 0 44.97 TL
600 14263 5 200 - - - 5 0.00 3993 0 39.83 TL
700 19394 4 5 - - - 0 25.00 TL 0 57.39 TL
700 19394 4 10 - - - 0 22.89 TL 0 58.01 TL
700 19394 4 70 - - - 2 7.88 6800 0 49.43 TL
700 19394 4 140 - - - 4 0.00 4929 0 44.76 TL
700 19394 4 233 - - - 4 0.00 6458 0 38.42 TL
800 25345 3 5 - - - 0 30.12 TL 0 56.33 TL
800 25345 3 10 - - - 0 23.77 TL 0 56.38 TL
800 25345 3 80 - - - 0 16.32 TL 0 50.95 TL
800 25345 3 160 - - - 0 12.65 TL 0 43.86 TL
800 25345 3 266 - - - 0 2.40 TL 0 42.10 TL
900 32103 3 5 - - - 0 29.59 TL 0 57.40 TL
900 32103 3 10 - - - 0 27.76 TL 0 53.89 TL
900 32103 3 90 - - - 0 14.84 TL 0 50.46 TL
900 32103 3 180 - - - 0 21.53 TL 0 43.80 TL
900 32103 3 300 - - - 0 43.22 TL 0 34.59 TL
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Table 2: Test results of solving the p-CTPC (|V | = 100− 500). Reported values are averaged and aggregated by |V |.

MCF BF SCF
|V | |A| #inst. p β #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 5 5 0.1 5 0.00 52 5 0.00 34 0 28.71 TL
100 396 5 5 0.2 5 0.00 1183 5 0.00 137 0 32.91 TL
100 396 5 5 0.3 3 0.31 3264 5 0.00 502 0 33.73 TL
100 396 5 10 0.1 5 0.00 20 5 0.00 18 0 23.28 TL
100 396 5 10 0.2 5 0.00 120 5 0.00 38 0 29.62 TL
100 396 5 10 0.3 5 0.00 243 5 0.00 127 0 31.51 TL
100 396 5 33 0.1 5 0.00 8 5 0.00 5 0 15.50 TL
100 396 5 33 0.2 5 0.00 16 5 0.00 15 0 17.42 TL
100 396 5 33 0.3 5 0.00 26 5 0.00 25 0 21.58 TL
200 1585 5 5 0.1 2 0.89 4787 3 0.29 4101 0 43.24 TL
200 1585 5 5 0.2 1 3.37 6601 2 1.27 4837 0 46.50 TL
200 1585 5 5 0.3 0 6.76 TL 1 3.30 6274 0 48.71 TL
200 1585 5 20 0.1 5 0.00 519 5 0.00 407 0 39.08 TL
200 1585 5 20 0.2 4 0.22 2073 4 0.16 1682 0 41.40 TL
200 1585 5 20 0.3 2 0.79 6181 4 0.22 2620 0 44.14 TL
200 1585 5 66 0.1 5 0.00 122 5 0.00 31 0 30.74 TL
200 1585 5 66 0.2 5 0.00 255 5 0.00 334 0 32.08 TL
200 1585 5 66 0.3 5 0.00 400 5 0.00 609 0 34.49 TL
300 3561 5 5 0.1 0 1.29 TL 2 0.59 6317 0 43.01 TL
300 3561 5 5 0.2 0 3.60 TL 1 1.70 6267 0 45.62 TL
300 3561 5 5 0.3 0 5.30 TL 0 7.20 TL 0 47.41 TL
300 3561 5 30 0.1 5 0.00 1087 5 0.00 1959 0 40.71 TL
300 3561 5 30 0.2 1 0.47 6976 1 0.66 6480 0 42.45 TL
300 3561 5 30 0.3 0 2.69 TL 0 1.08 TL 0 45.96 TL
300 3561 5 100 0.1 5 0.00 477 5 0.00 1260 0 36.80 TL
300 3561 5 100 0.2 5 0.00 746 5 0.00 2458 0 36.50 TL
300 3561 5 100 0.3 5 0.00 2693 1 0.56 7195 0 38.80 TL
400 6338 5 5 0.1 - - - 0 5.83 TL 0 47.08 TL
400 6338 5 5 0.2 - - - 0 10.23 TL 0 49.34 TL
400 6338 5 5 0.3 - - - 0 18.70 TL 0 54.32 TL
400 6338 5 40 0.1 - - - 3 0.23 5229 0 42.14 TL
400 6338 5 40 0.2 - - - 0 4.86 TL 0 44.97 TL
400 6338 5 40 0.3 - - - 0 9.55 TL 0 47.16 TL
400 6338 5 133 0.1 - - - 5 0.00 3864 0 39.89 TL
400 6338 5 133 0.2 - - - 1 0.31 6929 0 41.45 TL
400 6338 5 133 0.3 - - - 0 1.60 TL 0 44.33 TL
500 9900 5 5 0.1 - - - 0 8.44 TL 0 49.87 TL
500 9900 5 5 0.2 - - - 0 13.27 TL 0 52.79 TL
500 9900 5 5 0.3 - - - 0 27.37 TL 0 55.69 TL
500 9900 5 50 0.1 - - - 2 0.22 6612 0 42.30 TL
500 9900 5 50 0.2 - - - 0 6.64 TL 0 45.44 TL
500 9900 5 50 0.3 - - - 0 12.04 TL 0 48.28 TL
500 9900 5 166 0.1 - - - 5 0.00 1905 0 40.87 TL
500 9900 5 166 0.2 - - - 0 1.00 TL 0 41.84 TL
500 9900 5 166 0.3 - - - 0 2.31 TL 0 45.73 TL
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Table 3: Test results of solving the p-CTPC (|V | = 600− 900). Reported values are averaged and aggregated by |V |.

MCF BF SCF
|V | |A| #inst. p β #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

600 14263 5 5 0.1 - - - 0 17.47 TL 0 53.98 TL
600 14263 5 5 0.2 - - - 0 23.21 TL 0 52.86 TL
600 14263 5 5 0.3 - - - 0 38.03 TL 0 58.48 TL
600 14263 5 60 0.1 - - - 0 1.67 TL 0 45.72 TL
600 14263 5 60 0.2 - - - 0 7.62 TL 0 49.32 TL
600 14263 5 60 0.3 - - - 0 13.90 TL 0 52.94 TL
600 14263 5 200 0.1 - - - 5 0.00 4016 0 39.82 TL
600 14263 5 200 0.2 - - - 0 1.32 TL 0 40.84 TL
600 14263 5 200 0.3 - - - 0 2.67 TL 0 45.30 TL
700 19394 4 5 0.1 - - - 0 19.61 TL 0 56.90 TL
700 19394 4 5 0.2 - - - 0 27.04 TL 0 57.40 TL
700 19394 4 5 0.3 - - - 0 41.52 TL 0 61.92 TL
700 19394 4 70 0.1 - - - 0 11.22 TL 0 49.07 TL
700 19394 4 70 0.2 - - - 0 5.05 TL 0 49.93 TL
700 19394 4 70 0.3 - - - 0 13.83 TL 0 54.54 TL
700 19394 4 233 0.1 - - - 4 0.00 6344 0 39.32 TL
700 19394 4 233 0.2 - - - 0 2.23 TL 0 42.89 TL
700 19394 4 233 0.3 - - - 0 2.28 TL 0 42.96 TL
800 25345 3 5 0.1 - - - 0 22.60 TL 0 56.58 TL
800 25345 3 5 0.2 - - - 0 27.51 TL 0 58.63 TL
800 25345 3 5 0.3 - - - 0 43.80 TL 0 60.62 TL
800 25345 3 80 0.1 - - - 0 12.70 TL 0 47.53 TL
800 25345 3 80 0.2 - - - 0 6.97 TL 0 49.94 TL
800 25345 3 80 0.3 - - - 0 16.62 TL 0 54.21 TL
800 25345 3 266 0.1 - - - 0 10.47 TL 0 41.27 TL
800 25345 3 266 0.2 - - - 0 4.30 TL 0 42.74 TL
800 25345 3 266 0.3 - - - 0 4.30 TL 0 42.81 TL
900 32103 3 5 0.1 - - - 0 22.80 TL 0 56.53 TL
900 32103 3 5 0.2 - - - 0 28.17 TL 0 58.05 TL
900 32103 3 5 0.3 - - - 0 41.21 TL 0 61.21 TL
900 32103 3 90 0.1 - - - 0 15.88 TL 0 47.70 TL
900 32103 3 90 0.2 - - - 0 18.20 TL 0 47.68 TL
900 32103 3 90 0.3 - - - 0 15.99 TL 0 50.99 TL
900 32103 3 300 0.1 - - - 0 34.67 TL 0 33.92 TL
900 32103 3 300 0.2 - - - 0 16.97 TL 0 42.05 TL
900 32103 3 300 0.3 - - - 0 5.58 TL 0 42.19 TL
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Table 4: Test results of solving the Cp-CTPC. Reported values are averaged and aggregated by |V |, p = {5, 10} and β =
{0.1, 0.2, 0.3}.

MCF BF SCF
|V | |A| #inst. M α #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 30 5 0.8 28 0.10 994 30 0.00 187 0 30.19 TL
100 396 30 5 0.9 28 0.08 1006 30 0.00 190 0 30.08 TL
100 396 30 10 0.8 28 0.10 961 30 0.00 201 0 30.16 TL
100 396 30 10 0.9 28 0.09 880 30 0.00 159 0 30.05 TL
100 396 30 20 0.8 29 0.05 1049 30 0.00 223 0 30.53 TL
100 396 30 20 0.9 27 0.05 1147 30 0.00 415 0 30.04 TL
200 1585 30 10 0.8 7 2.95 5972 16 1.33 4247 0 45.37 TL
200 1585 30 10 0.9 8 2.91 5876 16 1.23 4129 0 45.44 TL
200 1585 30 20 0.8 7 2.86 5936 16 1.33 4085 0 45.36 TL
200 1585 30 20 0.9 9 2.53 5795 17 1.41 4113 0 45.42 TL
200 1585 30 40 0.8 7 3.40 5956 15 1.68 4481 0 45.17 TL
200 1585 30 40 0.9 8 3.00 5771 15 3.21 4594 0 45.24 TL
300 3561 30 15 0.8 1 7.02 7167 3 2.32 6815 0 45.13 TL
300 3561 30 15 0.9 2 5.57 7032 4 2.23 6821 0 45.25 TL
300 3561 30 30 0.8 1 6.82 7074 4 2.26 6802 0 44.99 TL
300 3561 30 30 0.9 1 3.54 7053 3 2.23 6890 0 44.95 TL
300 3561 30 60 0.8 2 8.63 7072 4 2.81 7010 0 45.39 TL
300 3561 30 60 0.9 1 5.04 7055 3 3.01 6944 0 45.48 TL
400 6338 30 20 0.8 - - - 0 5.55 TL 0 49.73 TL
400 6338 30 20 0.9 - - - 0 5.71 TL 0 49.69 TL
400 6338 30 40 0.8 - - - 0 5.50 TL 0 49.43 TL
400 6338 30 40 0.9 - - - 0 5.65 TL 0 49.57 TL
400 6338 30 80 0.8 - - - 0 6.52 TL 0 50.22 TL
400 6338 30 80 0.9 - - - 0 8.54 TL 0 49.92 TL
500 9900 30 25 0.8 - - - 0 8.42 TL 0 51.69 TL
500 9900 30 25 0.9 - - - 0 8.16 TL 0 52.15 TL
500 9900 30 50 0.8 - - - 0 8.49 TL 0 51.93 TL
500 9900 30 50 0.9 - - - 0 8.07 TL 0 51.76 TL
500 9900 30 100 0.8 - - - 0 9.42 TL 0 52.25 TL
500 9900 30 100 0.9 - - - 0 9.64 TL 0 52.28 TL
600 14263 30 30 0.8 - - - 0 16.59 TL 0 54.43 TL
600 14263 30 30 0.9 - - - 0 15.98 TL 0 54.26 TL
600 14263 30 60 0.8 - - - 0 16.05 TL 0 53.89 TL
600 14263 30 60 0.9 - - - 0 14.97 TL 0 53.66 TL
600 14263 30 120 0.8 - - - 0 19.16 TL 0 54.34 TL
600 14263 30 120 0.9 - - - 0 17.56 TL 0 54.32 TL
700 19394 24 35 0.8 - - - 0 19.67 TL 0 57.82 TL
700 19394 24 35 0.9 - - - 0 19.58 TL 0 57.37 TL
700 19394 24 70 0.8 - - - 0 20.21 TL 0 57.75 TL
700 19394 24 70 0.9 - - - 0 19.67 TL 0 58.02 TL
700 19394 24 140 0.8 - - - 0 21.20 TL 0 58.17 TL
700 19394 24 140 0.9 - - - 0 21.14 TL 0 58.34 TL
800 25345 18 40 0.8 - - - 0 21.65 TL 0 58.23 TL
800 25345 18 40 0.9 - - - 0 21.59 TL 0 57.94 TL
800 25345 18 80 0.8 - - - 0 21.53 TL 0 57.94 TL
800 25345 18 80 0.9 - - - 0 21.65 TL 0 57.69 TL
800 25345 18 160 0.8 - - - 0 22.83 TL 0 58.72 TL
800 25345 18 160 0.9 - - - 0 22.39 TL 0 58.62 TL
900 32103 18 45 0.8 - - - 0 20.92 TL 0 57.25 TL
900 32103 18 45 0.9 - - - 0 20.81 TL 0 57.11 TL
900 32103 18 90 0.8 - - - 0 21.10 TL 0 57.30 TL
900 32103 18 90 0.9 - - - 0 20.96 TL 0 57.14 TL
900 32103 18 180 0.8 - - - 0 22.99 TL 0 57.45 TL
900 32103 18 180 0.9 - - - 0 22.42 TL 0 57.40 TL
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Table 5: Test results of solving the Cp-CTPC. Reported values are averaged and aggregated by |V |, p = {|V |/10, |V |/5, |V |/3}
and β = {0.1, 0.2, 0.3}.

MCF BF SCF
|V | |A| #inst. M α #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 45 5 0.8 45 0.00 115 45 0.00 48 0 23.34 TL
100 396 45 5 0.9 45 0.00 146 45 0.00 49 0 23.33 TL
100 396 45 10 0.8 45 0.00 95 45 0.00 47 0 23.28 TL
100 396 45 10 0.9 45 0.00 94 45 0.00 46 0 23.25 TL
100 396 45 20 0.8 45 0.00 180 45 0.00 42 0 23.15 TL
100 396 45 20 0.9 45 0.00 98 45 0.00 42 0 23.43 TL
200 1585 45 10 0.8 42 0.12 1348 43 0.06 861 0 37.71 TL
200 1585 45 10 0.9 41 0.15 1444 43 0.06 875 0 37.69 TL
200 1585 45 20 0.8 41 0.14 1278 43 0.06 919 0 37.67 TL
200 1585 45 20 0.9 42 0.12 1227 43 0.06 801 0 37.70 TL
200 1585 45 40 0.8 41 0.12 1286 42 0.06 1033 0 37.62 TL
200 1585 45 40 0.9 42 0.10 1253 43 0.06 970 0 37.58 TL
300 3561 45 15 0.8 26 0.98 3933 19 0.70 4908 0 39.97 TL
300 3561 45 15 0.9 25 1.11 4166 18 0.74 4961 0 39.89 TL
300 3561 45 30 0.8 25 0.84 4017 19 0.70 4927 0 40.00 TL
300 3561 45 30 0.9 25 0.81 3912 19 0.67 4909 0 40.03 TL
300 3561 45 60 0.8 26 0.77 3827 21 0.67 4883 0 39.93 TL
300 3561 45 60 0.9 27 0.69 3724 21 0.68 4731 0 39.91 TL
400 6338 45 20 0.8 - - - 15 1.62 6005 0 42.92 TL
400 6338 45 20 0.9 - - - 15 1.61 6086 0 42.98 TL
400 6338 45 40 0.8 - - - 15 1.71 6043 0 42.94 TL
400 6338 45 40 0.9 - - - 15 1.60 6019 0 42.85 TL
400 6338 45 80 0.8 - - - 14 1.73 6015 0 42.85 TL
400 6338 45 80 0.9 - - - 14 1.55 5981 0 42.98 TL
500 9900 45 25 0.8 - - - 10 2.26 6504 0 44.32 TL
500 9900 45 25 0.9 - - - 9 2.32 6557 0 44.41 TL
500 9900 45 50 0.8 - - - 9 2.25 6497 0 44.35 TL
500 9900 45 50 0.9 - - - 10 2.25 6477 0 44.31 TL
500 9900 45 100 0.8 - - - 9 2.31 6512 0 44.25 TL
500 9900 45 100 0.9 - - - 10 2.24 6448 0 44.43 TL
600 14263 45 30 0.8 - - - 5 3.29 6878 0 47.58 TL
600 14263 45 30 0.9 - - - 4 3.44 6869 0 47.14 TL
600 14263 45 60 0.8 - - - 4 3.33 6887 0 47.54 TL
600 14263 45 60 0.9 - - - 5 3.27 6878 0 46.91 TL
600 14263 45 120 0.8 - - - 5 3.28 6832 0 46.94 TL
600 14263 45 120 0.9 - - - 5 3.61 6819 0 47.37 TL
700 19394 36 35 0.8 - - - 6 3.65 7004 0 47.86 TL
700 19394 36 35 0.9 - - - 6 4.23 6929 0 47.60 TL
700 19394 36 70 0.8 - - - 6 4.09 6941 0 47.48 TL
700 19394 36 70 0.9 - - - 8 4.08 6864 0 47.61 TL
700 19394 36 140 0.8 - - - 7 3.40 6917 0 47.31 TL
700 19394 36 140 0.9 - - - 8 3.81 6890 0 47.52 TL
800 25345 27 40 0.8 - - - 0 9.95 TL 0 47.68 TL
800 25345 27 40 0.9 - - - 0 16.04 TL 0 47.54 TL
800 25345 27 80 0.8 - - - 0 10.96 TL 0 47.20 TL
800 25345 27 80 0.9 - - - 0 10.20 TL 0 47.55 TL
800 25345 27 160 0.8 - - - 0 13.32 TL 0 47.38 TL
800 25345 27 160 0.9 - - - 0 7.02 TL 0 47.80 TL
900 32103 27 45 0.8 - - - 0 17.41 TL 0 46.32 TL
900 32103 27 45 0.9 - - - 0 20.53 TL 0 46.45 TL
900 32103 27 90 0.8 - - - 0 18.92 TL 0 45.75 TL
900 32103 27 90 0.9 - - - 0 18.95 TL 0 45.20 TL
900 32103 27 180 0.8 - - - 0 15.49 TL 0 46.54 TL
900 32103 27 180 0.9 - - - 0 17.73 TL 0 45.76 TL
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[6] M. Chimani, C. Gutwenger, M. Jünger, G. Klau, K. Klein, and P. Mutzel. The open graph drawing
framework (OGDF). Handbook of Graph Drawing and Visualization, pages 543–569, 2011.

[7] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):
269–271, 1959.
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