
Wien2wannier: From linearized augmented plane waves to
maximally localized Wannier functions
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Abstract

We present an implementaion of interface between the full-potential linearized augmented plane wave package
Wien2k and the wannier90 code for the construction of maximally localized Wannier functions. The FORTRAN
code and a documentation is made available and results are discussed for SrVO3, Sr2IrO4 (including spin-orbit
coupling), LaFeAsO, and FeSb2.
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1. Introduction

In recent years, we have seen a revival of Wannier’s idea [1] to express the single electron excitations
in a periodic potential in terms of “orthogonal ‘atomic’ wave functions”, later coined Wannier functions.
While the calculation of bandstructures as, e.g., within density functional theory (DFT) [2] is most efficiently
performed in the basis of extended wave functions indexed by reciprocal-space vectors k, the complementary
Wannier picture is often useful - if not essential. The latter does not only provide insight into the nature
of chemical bonding, but the localized Wannier orbitals are more suitable to describe physical phenomena
where the local aspect is important. These range from the dielectric polarization [3], e.g., in the context
of ferroelectrics [4,5], and orbital polarization [6] to molecular dynamics [7] and transport through nano
structures [8,9].

Also to describe electronic correlations beyond the local density approximation (LDA) to DFT, Wannier-
like orbitals are very helpful. Here they allow us to limit the interactions to a computationally manageable
subspace, such as the local interactions between electrons on the same transition-metal atom in the d-
orbitals. The on-site term represents not only the largest constribution to the interaction, but typically gives
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raise to the dominant electronic correlations. This is because inter-site interaction terms yield mainly the
Hartree contribution if the number of neighbors is large [10], and this is already included in LDA. The
concept of Wannier functions has hence found its use also in materials specific many-body calculation with
the LDA+dynamical mean field theory (DMFT) approach [11]. The first LDA+DMFT calculations made
use of downfolded linearized muffin tin orbitals (LMTO) [12] and Nth order muffin tin orbitals (NMTO)
[13] which exploit the local character of the basis functions. For other bandstructure methods with bases of
extended orbitals a transformation to Wannier functions is needed.

While the conversion from Bloch to Wannier functions is essentially a Fourier transformation, there
remains an arbitrariness in choice of the phases of the Bloch functions; i.e., this conversion is not unique.
This arbitrariness can be used to construct localized orbitals. Marzari and Vanderbilt [14,15] developed a
procedure to fix the phases (and further k-dependent unitary transformations) so that the resulting Wannier
orbitals minimal spread around their centers. Together with coworkers, they developed a corresponding
program package wannier90 [16].

Since then the maximally localized Wannier functions (MLWF) have been implemented for many DFT/LDA
program packages ranging from plane waves to LMTO [17,18] and linearized augmented plane waves (LAPW)
in the FLAPW [19] and FLEUR code [20]. Alternatives to MLWF have been proposed as well, including the
recent Wannier function projection [21,22] where the overlap of the Bloch functions with the d- or f -orbitals
within the atomic or muffin tin spheres defines the Wannier functions. This approach has been implemented
for LMTO [22] and by Aichhorn et al. [23] for the FLAPW of the Wien2K code [24]. While this approach
is somewhat easier to implement, the final Wannier functions are no longer uniquely defined and may differ
considerably. With a clever choice of the functions to project onto, results very similar to MLWF can be
obtained.

In this paper, we present an interface [25] between Wien2K [24] implementation of the FLAPW method
and the wannier90 code [16]. This iterface generates the wannier90 input files (.eig, .mmn, .amn) from the
Wien2K electronic structure. Futhermore, we provide a code for the generation of MLWFs in direct space,
primarily useful for visualization. The interface consists of FORTRAN90 programs (tested for gfortran
and ifort; hitherto not parallelized) with additional shell and python scripts to simplify the work-flow. A
manual is available at [25]; the work-flow will be briefly described in Section 2.4 The runtime of the main
program (w2w) was 4.6 s for a simple test system such as SrVO3 with 64 k-points, running under Linux
with a 64-bit Intel Xeon 3 GHz 4GB RAM. For visualization, an output to XCrysSDen [26] is also provided.

The following sections are organized as following: In Section 2, we discuss the theoretical background and
equations, in particular the projection onto maximally localized Wannier function (MLWF) in Section 2.1
and the LAPW of Wien2K in Section 2.2. Some practical considerations are presented in Section 2.3. The
workflow of our Wien2Wannier interface is outlined in Section 2.4. In Section 3, we present exemplarily some
applications of the code. We start with the simple bandstructure of SrVO3 in Section 3.1 to demonstrate how
the choice of the energy window affects the shape of WFs and the corresponding tight-binding Hamiltonian.
Sr2IrO4 with an idealized structure illustrates in Section 3.2 the construction of WFs in a system with strong
spin-orbit coupling leading to orbitals with complex phases. In Section 3.3, LaFeAsO is used to show the
utility of WFs for backfolding of the electronic bandstructures, in order to obtained the simplest possible
k-space representation of the electronic structures. Finally, in Section 3.4, we show the application of the
code to a material with low site-symmetry by the example of FeSb2.

2. Theory

2.1. Wannier functions

Following Refs. [14,15] we define the Wannier orbitals wnR(r) in the R’th unit cell through a unitary
transformation U (k) of the Bloch eigenstates ψnk(r) of the periodic Hamiltonian:

wmR(r) =
V

(2π)3

∫
BZ

e−ik·R

(∑
n

U (k)
nmψnk(r)

)
. (1)
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In the following the overall phases of the Bloch functions are assumed to be arbitrary, except of the periodic
gauge constraint ψmk+G = ψmk for G being a reciprocal lattice vector. According to the Bloch theorem the
function ψnk factorizes into a product of the plane wave exp(ik · r) and a periodic function unk:

ψnk = eik·runk. (2)

We are looking for that U (k) which yields MLWFs, i.e., minimizes the spread (variance)∑
m

〈wmR(r)|r2|wmR(r)〉 − 〈wmR(r)|r|wmR(r)〉2. (3)

As the Wannier orbitals are expressed in terms of the Bloch wave functions in Eq. (1), we need to calculate
the following overlap integrals on a uniform k-mesh in the Brillouin zone (BZ):

M (k,b)
mn = 〈umk|unk+b〉 (4)

= 〈ψmk|e−ib·r|ψnk+b〉 (5)

For further details on how to determine the MLWF from these overlap integrals, we refer the reader to
[14,15].

Moreover, for the disentanglement procedure described in [15] and a good starting guess, also overlap
integrals with a set of fixed trial orbitals gn

A(k)
mn = 〈ψmk|gn〉 (6)

have to be calculated. The evaluation of M
(k,b)
mn and A

(k)
mn in the LAPW basis is the subject of the rest of

this section.

2.2. Linearized augmented plane-waves

In the LAPW method, the direct space is divided into two regions: the interstitial space I and the non-
overlapping muffin-tin (MT) spheres Sβ around the nuclei at Rβ . The Bloch functions are expanded into
plane waves in I and into partial atomic waves in the MT spheres

ψσk(r) =


1√
V

∑
G

Cσk (G)ei(k+G)r r ∈ I∑
`m

(
aβσk,`mu

βσ
1,`(rβ) + bβσk,`mu̇

βσ
1,`(rβ) + cβσk,`mu

βσ
2,`(rβ)

)
Y`m(r̂β) r ∈ Sβ ,

(7)

where Y`m are the spherical harmonics and u1, u̇1, and u2 are numerically determined functions of the radial
variable rβ = |r − Rβ |, which are defined separately for each MT sphere β, orbital quantum number `
and, in spin-polarized calculations, spin projection σ. For simplicity we do not show the dependence of the
expansion coefficients Cσk , aβσk,`m, bβσk,`m, and cβσk,`m on the band index. Both LAPWs and augmented plane
waves plus local orbitals (APW+lo) basis sets can be used for our interface. While further details can be
found in Ref. [27] we point out two features of the expansion: (i) it is not possible to obtain the periodic
part unk inside the spheres in a simple straight-forward way from the above expansion of the Bloch function
and therefore we used Eq. (5) in actual calculations; (ii) the Bloch function is uniquely defined by Cσk (G)
since the other expansion coefficients are in fact functions of Cσk (G), defined by the continuity conditions at
the surfaces of the MT spheres.

The calculation of M
(k,b)
mn naturally splits into the interstitial part and the MT part. To evaluate (5) inside

the MT sphere β, the plane-wave exp(−ib · r) is expanded into products of spherical harmonics and Bessel
functions using the well known formula

e−ib·r = 4πe−ib·Rβ

∑
`

i`j`(brβ)
∑
m

Ȳ`m(−b̂)Y`m(r̂β). (8)

Substituting Eqs. (7) and (8) into Eq. (5), one obtains an expression for the contribution of M
(k,b)
mn within

the MT spheres in terms of products of radial integrals
∫ Rβ

0
dr r2uβσp,`1(r)j`2(br)uβσq,`3(r); angular integrals
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〈〈Ȳ`1m1Y`2m2Y`3m3
〉〉, known as Gaunt numbers; and an additional weight factor given by the corresponding

products of the expansion coefficients.

The interstitial contribution M
(k,b)
mn on the other hand reads

〈 1

V

∑
GG′

C̄mk (G′)Cnk+b(G)〈ei(G−G
′)·r〉I , (9)

where the 〈〉I integration runs over the unit cell with the MT spheres removed, which gives

〈ei(G−G
′)·r〉I = V δG,G′ − 3Vβ

∑
β

e−i(G−G
′)·Rβ

sin(x)− x cos(x)

x3

where x = ρβ |G−G′|, Vβ =
4

3
πρ3β ,

(10)

and ρβ is the radius of the MT sphere at Rβ .
The periodic gauge has to be enforced when the integration in Eq. (1) wraps around the Brillouin zone

boundary, namely a reciprocal vector G must be chosen such that k+ b−G lies within the Brillouin zone.

The construction of A
(k)
mn is rather simple if we allow trial orbitals to be non-zero only inside the MT

sphere, i.e. of the form

gn =
∑
β

∑
`m

gβ`m(n)uβ1,`(rβ)Y`m(r̂β), (11)

where the list of non-zero coefficients gβ`m(n) is provided as input. Using (7) we obtain

A
(k)
n′n =

∑
β

∑
`m

(
ān

′

k,`m〈u
β
1,`|u

β
1,`〉r + b̄n

′

k,`m〈u̇
β
1,`|u

β
1,`〉r + c̄n

′

k,`m〈u
β
2,`|u

β
1,`〉r

)
gβ`m(n), (12)

where 〈〉r denotes the radial integral with r2dr.

2.3. Practical considerations

In the following we briefly describe the steps taken in computing WFs. We start by generating a uniform
k-mesh in the Brillouin zone (running KGEN with only the identity matrix in the list of symmetry opera-
tions) followed by generating the eigenstates using LAPW1. In case of calculations with spin-orbit coupling
LAPWSO should be executed. Spin-orbit calculation must be run as formally spin-polarized even if the
polarization is zero. Before running the wien2wannier interface code the initialization run of wannier90 must
be executed to generate the case.nnkp file. The inputs to wien2wannier specifies the bands in the initial
Hilbert space, the number of the bands in the target Hilbert space and the expansions (11) of the target
orbitals. The wien2wannier generates the necessary files case.eig, case.mmn and case.amn, which serve as
an input for the MLWF construction by wannier90. In case of spin-orbit coupled calculations, a separate
run of wien2wannier is executed for each of the two components of the spinor wave function. The corre-
sponding elements of the resulting case.mmn(amn) files are added up to form the total overlap matrices
between the spinor functions. The postprocessing of the wannier90 results is, to a large extent, independent
of the bandstructure code. However, for plotting the WFs in direct space information on underlaying basis
functions is necessary. We have modified the LAPW7 code of the Wien2K package to generate direct space
WF maps, which uses the transformation between the initial Bloch states and resulting WFs extracted from
the wannier90 calculation.

2.4. Computational details

The calculations reported in the following Section were performed with Wien2k [24] code employing the
LDA exchange-correlation functional for SrVO3, Sr2IrO4, LaFeAsO and the generalized gradient correction
(GGA) for FeSb2; in all cases the APW+lo basis set [28] was employed. To construct the Wannier orbitals
we followed the sequence: (i) self-consistent bandstructure calculation using the irreducible part of the BZ;

4



(ii) generation of a uniform k-mesh throughout the entire BZ (wien2k) and of the corresponding k,k+b-list
(wannier90); (iii) calculation of the Bloch eigenstates and eigenvalues on the new k-mesh (wien2k); (iv)

evaluation of the M
(k,b)
mn and A

(k)
mn elements (wien2wannier); (v) generation of MLWFs (wannier90); (vi)

post-processing of MLWFs to generate tight-binding bandstructures, hopping integrals, plots of Wannier
orbitals (wannier90+wien2k). In case of calculations with spin-orbit coupling the Bloch functions have two
non-zero components, indexed with the spin quantum number, with a definite mutual phase. Once the two

components are generated, the contributions to M
(k,b)
mn and A

(k)
mn of each component are computed separately

along the lines of the previous section and added up at the end. To plot the Wannier orbitals we extract

the U
(k)
mn matrices of Eq. (1) from the wannier90 processing and combine it with the wien2k utility for the

generation of the Bloch state on direct space grids.

3. Results

3.1. SrVO3

SrVO3 is a thoroughly studied material with a rather simple band structure (see Fig. 1) consisting of
isolated groups of bands derived from O-p, V-d-t2g and V-d-eg orbitals. Therefore it is very well suited as a
testing case. We focus on the V-d-t2g states, which (being partially filled) are of most interest. We compare
two different settings, i.e., consisting of two choices of the Hilbert space to be represented by the Wannier
functions. Namely, the space spanned by (i) t2g bands only and (ii) all the V-d and O-p bands. In both
cases, the t2g Wannier functions are orthogonal to the O-p Bloch or Wannier states. In the former case (i)
also the hopping integral between the t2g and O states is still zero at the price of more extended Wannier
orbitals with a substantial weight at the O sites. Naturally, the larger energy window (ii) clearly allows the
construction of more localized WFs as demonstrated in Fig. 2. The Wannier orbitals (i) have visible density
on the neighboring O sites, reflecting the mixed character of the t2g bands. In contrast, the orbitals (ii)
constructed from the larger energy window do not have any appreciable (visible) density at O sites (on the
scale of the figure) since the latter would be now assigned to the O-p orbitals, which are explicitly presented
by O-centered Wannier orbitals.

The spatial extent of the Wannier orbitals is also reflected in the hopping integrals, which were calculated
by the wannier90 code. With the small energy window (i) the t2g bands are well described when at least nn-
and nnn-hoppings is considered (see Fig. 1), which in the {xy, yz, zx} basis read

t100[meV] =


−268 0 0

0 −30 0

0 0 −268

 , t101[meV] =


7 10 0

10 7 0

0 0 −93

 . (13)

The remaining directions follow from symmetry considerations. The longest nnn t2g-t2g hopping corresponds
to a length of of 5.4 Å. Using the more localized orbitals (ii) we can achieve similar accuracy (see Figure 1)
by considering only V-V nn-hopping and V-O nnn-hopping, which translate into a direct spatial cut-off of
only 4.3 Å. The obvious price to be paid are larger matrices (14× 14 for (ii) vs 3× 3 in case (i)). We point
out when no spatial cut-offs are introduced, both choices (i) and (ii) represent the t2g bands to the same
arbitrarily high accuracy, determined by the size of the k-mesh used to construct the MLWFs.

3.2. Sr2IrO4

Sr2IrO4 has been recently the subject of intense investigations due to the close connection between the
spin-orbit coupling and its Mott-insulating ground state. We use it as a example of a material where spin-
orbit coupling substantially modifies the band structure and leads to Wannier orbitals, in which both spin
projections are mixed. For sake of simplicity we have performed the calculations using an idealized double-
perovskite structure, while the real material is characterized by a tilting of the IrO6 octahedra. In the
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Fig. 1. (color online) LDA band structure of SrVO3 (circles) with dominant contributions marked with color: O-p (blue),
V-d-t2g (red), and V-d-eg (black). Tight-binding bands obtained from MLWFs for (i)[left panel] only the t2g band (ii)[right

panel] all V-d and O-p bands, with spatial cut-offs as described in the text (the Fermi level is at 8.16 eV).

Fig. 2. (color online) LDA band structure of Sr2IrO4 (back circles) together with the MLWF tight-binding fit to the J = 1/2
bands for different direct space cut-offs; the Fermi level is at 8.2 eV. (left) The xy Wannier orbital plotted as an isosurface of

the charge density |w(r)|2and colored by the sign of w(r)2. The left panel corresponds to the large energy window (ii) and the
right panel to the small energy window (i) for the same isovalue. (right)
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Fig. 3. (color online) LDA band structure of Sr2IrO4 (back circles) together with the MLWF tight-binding fit to the J = 1/2

bands for different direct space cut-offs (the Fermi level is at 8.2 eV).

following, we discuss the LDA band structure of Sr2IrO4, which represents a crude approximation to cor-
relation effects due to local interactions. Within this picture the electronic structure (see Fig. 4) can be
understood by considering the crystal-field splitting, spin-orbit coupling and the inter-site hopping via the
manifold of Ir-d bands. The crystal-field splitting, being the largest of the three, opens a gap between the
t2g and eg bands, rendering the latter empty, while the formed accommodate one hole per Ir atom. The t2g
orbitals may be labeled with a pseudo-spin I = 1. The spin-orbit coupling further splits the t2g manifold
into a quadruplet and doublet with pseudo-spin J = 3/2 and J = 1/2, respectively. Since the spin-orbit
splitting is rather large the inter-site hopping leads only to moderate mixing of the states with different J .
Therefore we may expect the isolated band doublet at the top of the t2g manifold to be predominantly of
J = 1/2 character. We hence construct the MLWFs for these two bands.

For testing purposes, we have prepared Bloch states on k-grids of sizes 3× 3× 3, 5× 5× 5, and 7× 7× 7.
As trial functions we have used the Jeff = 1/2 orbitals, which adopt the following spinor form with respect
to the local coordinate axes pointing towards the O atoms:

|φ+〉 ∼

 −2Y21

Y2−2 − Y22

 , |φ−〉 ∼

 Y2−2 − Y22
2Y2−1

 , (14)

where we omit the unimportant normalization factor. The results for the three different k-grids were almost
identical with minor deviations only for the smallest grid. Due to a clever choice of trial functions, the original
spread of the Wannier orbitals as defined in wannier90 actually changed by less than 0.5% during the MLWF
optimization. This is consistent with the fact that the resulting MLWFs are essentially Jeff = 1/2 functions
as shown in Fig. 4. In particular, the Wannier orbital, to a very good approximation, consists of a real xy
orbital in one spin channel and a complex (x ± iy)z orbital in the other (±) spin channel. Note that the
relative phase of the two components is not arbitrary and the corresponding charge density (sum of the spin
components) has (approximate) cubic symmetry as expected for a Jeff = 1/2 orbital.

In Fig. 4 we show convergence of the tight-binding bands to the original band structure with increasing
maximum hopping distance. The band dispersion is governed by the nearest- and next-nearest-neighbor
hopping and the bands are essentially converged when five coordination spheres are considered, which
includes also the out-of-plane hoppings giving rise to the z-axis dispersion. The hopping amplitudes are

7



Fig. 4. (color online) Ir J = 1/2 Wannier orbital w+,[0,0,0](r) visualized as a |w|2 isosurface. The almost real ↓-spin component

is blue, the ↑-spin component is colored with cosine of its phase (red=real positive, green=real negative, yellow=imaginary),
see color legend bar.
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Fig. 5. (color online) The tight-binding hopping integrals of the one-band model as a function of inter-site distance for different
BZ grid sizes (the lines are guides for eyes).
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Fig. 6. (color online) LDA band structure of LaFeAsO (red cross symbols) compared with tight-binding bands obtained from

MLWFs (green solid lines) for the dpp model (left) and the d model (right); the Fermi level is set to zero.

summarized in Fig. 5.

3.3. LaFeAsO

In 2008, Kamihara et al. discovered superconductivity in F-doped LaFeAsO [29], immediately followed
by the same finding in related materials. This opened a new field of research inviting many theoretical
approaches to be applied, which in turn called for simplified models of the electronic structure capturing
the essential chemistry of these systems. These new superconductors commonly have two-dimensional iron
pnictide or iron chalcogenite layers, and the low-energy electronic structure around the Fermi level (EF )
consists of heavily entangled bands dominated by the Fe 3d states (see Fig.6). While the multi-band character
renders tight-binding fit impractical, the exact transformation using Wannier functions provides a controlled
way of constructing tight-binding models representing the bandstructure to arbitrary accuracy, see Fig.6 and
[30–37].

Two types of tight-binding models have been considered for iron pnictides: the d model on the basis of
Fe 3d-like orbitals, and dp or dpp model using the Fe 3d, pnictogen/chalcogen p, and oxygen p orbitals. In
both cases the corresponding bands are reproduced exactly, as shown in Fig.6, but the behavior of the two
models differs if electron-electron interactions are explicitly included. As in the case of SrVO3, the shape
and spread of the Fe 3d orbitals depends on whether the d or dp model is used, see Fig.7 and Table 1.

One of the advantages of a tight-binding model, which represents the band dispersion of ab initio cal-
culation, is that we can sometimes “unfold” the Brillouin zone. The unit cell of LaFeAsO contains two Fe
and As atoms, where one of the As atoms sits above and the other below the Fe plane. Therefore, there are
ten Fe 3d bands. It turns out that the translation symmetry of the tight-binding model is higher and the
bandstructure can be unfolded to a five band scheme, corresponding to an effective unit cell with one Fe site.
The corresponding bandstructure is shown in Fig.8. The missing translation symmetry between the two Fe
sites of the crystallographic unit cell means that the WFs on the two sites are not connected by a simple
translation, but by a more general symmetry operation. Obviously, not all operators have the property of
the tight-binding Hamiltonian that this does not matter; and therefore the five band model cannot replace
the ten band one in general.

9



z2 xz yz x2-y2 xy As-pz As-px As-py O-pz O-px O-py

dpp 1.82 2.13 2.13 2.41 1.74

dpp 1.08 1.34 1.34 1.30 1.01 1.93 1.98 1.98 1.27 1.30 1.30

Table 1

Spread of maximally localized Wannier functions for d model and dpp model (in units of Å).

Fig. 7. (color online) Isosurface contours of the x2-y2 MLWO for the dpp model (left) and the d-only model (right). The
amplitudes of the contour surface are +0.07 Å−3/2 (red) and -0.07 Å−3/2 (blue).

In table 2, we list the hopping parameters of the d model. They are very similar to previous studies such
as Ref. [30], Ref. [35], of Ref.[37]. It should be noted that since Fe 3d bands hybridize with La 5d, there can
be slight difference, depending on whether we use the so-called “inner” window or not, see [37].

10



(µ,ν)[∆x,∆y] [1,0] [1,1] [2,0] [2,1] [2,2] σy I σd

(z2,z2) −66 −8 −33 17 −15 + + +

(z2,xz) −72 0 0 −2 0 −(z2,yz) − −

(z2,yz) 72 −144 0 −3 −27 −(z2,xz) − +

(z2,x2-y2) 0 160 0 9 −15 − + +

(z2,xy) −297 0 −3 −20 0 + + −

(xz,xz) −198 133 5 −6 2 +(yz,yz) + +

(xz,yz) 133 0 24 −16 0 + + −

(xz,x2-y2) 167 0 0 14 0 +(yz,x2-y2) − −

(xz,xy) −252 137 0 −9 8 −(yz,xy) − +

(yz,yz) −198 321 5 −24 67 +(xz,xz) + +

(yz,x2-y2) 167 20 0 17 4 +(xz,x2-y2) − +

(yz,xy) 252 0 0 26 0 −(xz,xy) − −

(x2-y2,x2-y2) 154 118 −25 −30 −26 + + +

(x2-y2,xy) 0 0 0 −11 0 − + −

(xy,xy) 313 −68 −18 2 1 + + +

Table 2

Hopping integrals t(∆x,∆y;µ, ν) in units of meV. [∆x,∆y] denotes the in-plain hopping vector being different for different

columns and (µ, ν) the orbitals being different for the rows. The last three columns σy , I, and σd denote the symmetry
transformations necessary to calculate t(∆x,−∆y;µ, ν), t(−∆x,−∆y;µ, ν), and t(∆y,∆x;µ, ν), respectively. Here ‘±’ means

that the corresponding hopping is equal to ±t(∆x,∆y;µ, ν) in the same row, and ‘±(µ′, ν′)’ states that the hopping equals
±t(∆x,∆y;µ′, ν′) in another (µ′, ν′) row. Note that there is another symmetry relation t(∆x,∆y;µ, ν) = t(−∆x,−∆y; ν, µ).
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Fig. 8. Band dispersion of the dpp (left) and d model (right) for LaFeAsO with the first Brillouin zone being extended to the

second Brillouin zone, so that the unit cell contains only one Fe atom. Both Γ and Γ′ points correspond to Γ in the original
band structure in Fig.6.

3.4. FeSb2

FeSb2 is a small band gap semiconductor which is intensively studied [38] for its unusually good ther-
moelectric properties. In order to describe the Coulomb interaction within the Fe-3d shell and the strong
hybridization between the Fe-3d and the Sb-4p electrons on an equal footing, a Wannier projection onto a 22
band pd subspace is required. FeSb2 has an orthorhombic structure belonging to the space group 58(Pnnm),
in which the Fe sites are located at the centers of largely distorted Sb octahedra. This distortion results in
a low point group symmetry at the Fe site.

The LDA bandstructure, shown (grey solid lines in Fig. 10), is rather complicated, with about 10 bands
in the energy interval of ±2eV around the Fermi level. The Wannier functions were constructed from 41
Bloch states on a 10x10x10 k−grid, by projection onto the subspace of 22 MLWF in the energy region
[-6eV,+6eV], using the disentanglement procedure of wannier90.

We performed Wannier projections with different frozen energy windows and found that already the
window [-6eV,3.9eV] allows for a good description of all the 22 bands in the whole energy interval of ±6eV
around the Fermi level. The corresponding MLWFs are well localized with the spread ranging from 0.8Å2 to
1.2Å2 for Fe-3d orbitals and from 3.6Å2 to 5.0Å2 for the Sb-4p orbitals. The largest spread of ' 1.2Å2 was
obtained for the two Fe-eg-like Wannier functions which point more towards the direction of the ligands (see,
e.g., first panel in the first row of Fig. 9), while the other three (Fe-t2g-like) Wannier orbitals are slightly
more localized with a spread of 0.8Å2 ÷ 1.0Å2 (second and third panel of Fig. 9). The pictures of the three
Sb-4p orbitals are reported with the same scale in the second row of Fig. 9. The contributions of the different
MLWFs to the bandstructure is shown as a so-called fat-band plot in Fig. 10, revealing a strongly mixed
d-p character of all bands.

By truncating the Hamiltonian in the MLWF basis set in direct space, we find that retaining hoppings
up to 7.3Å provides an accurate description of the LDA bands. A closer analysis shows that the strongest
hopping processes (1.2 ÷ 1.8 eV) are in the p-p sector of the Hamiltonian. Relatively large hoppings are
found also in the p-d sector (up to 0.6 ÷ 0.9 eV) while the d − d hopping amplitudes reach the maximum
value of about 300meV.
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Fig. 9. (color online) The basis of Wannier orbitals in FeSb2, presented as an isosurface plot in real space within the coordinate

system of the primitive unit cell. In the first row (from left to right), we show one of the orbitals with predominant eg
character (pointing approximately in the direction of the ligands) and two of the orbitals with mainly t2g character, respectively.
In the second row we show, from left to right, the px, py, pz orbitals.
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Fig. 10. Partial contributions to the bandstructure corresponding to the Wannier orbitals visualized in Figure 9. From top left
to bottom right, the widths of the bands indicate the contribution of the eg, t2g(eπg ), t2g(a1g), px, py, and pz Wannier function,
respectively. Note the huge p-d hybridization in the energy region [-4 eV, 4 eV].
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4. Summary

We have presented the implementation of an interface between the FLAPW code Wien2K and wannier90
software for the construction of the maximally localized Wannier functions. The rational of this development
is to provide a link between two widely used packages in the electronic structure community. We tried to
provide examples of what we consider typical application of such a construction such as the construction of
tight-binding Hamiltonians for complex systems, unfolding of complicated bandstructures or visualization.
We also considered as an applications that have been so far less common such as strongly spin-orbit coupled
Wannier orbitals. Last but not least we point out that the overlap matrices [Eq. (4)] can find application of
its own, e.g. concerning the calculation of the interaction with an electro-magnetic field beyond the dipole
approximation.
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Sjöstedt, L. Nordström, Phys. Rev. B 64 (2001) 195134.

[29] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130 (2008) 3296.
[30] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101 (2008) 087004.

[31] C. Cao, P.J. Hirschfeld, C. Hai-Ping, Phys. Rev. B. 77 (2008) 220506.

[32] K. Nakamura, R. Arita, M. Imada, J. Phys. Soc. Jpn. 77 (2008) 093711.
[33] V. Vildosola, L. Pourovskii, R. Arita, S. Biermann, A. Georges, Phys. Rev. B 78 (2008) 064518.

[34] V. I. Anisimov, Dm. M. Korotin, M. A. Korotin, A. V. Kozhevnikov, J. Kuneš, A. O. Shorikov, S. L. Skornyakov, S. V.
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