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Abstract

I present a new and reliable method to test the numerical accuracy of NLO
calculations based on modern OPP/Generalized Unitarity techniques. A
convenient solution to rescue most of the detected numerically inaccurate
points is also proposed.
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1. Introduction

With the advent of the modern OPP [1, 2] and Generalized Unitarity [3,
4, 5, 6, 7, 8, 9, 10] based techniques, the art of computing NLO corrections
received a lot of attention in the last few years and several programs [11, 12,
13, 14, 15, 16] and computations [17, 18, 19, 20, 21, 22, 23] exist, by now,
based on this philosophy.

While for the traditional reduction methods [24] a lot of work has been
spent already to find ways to control the numerical accuracy of the results
[25, 26], in the case of these new techniques the situation is still at an early
stage. However, their potential to self detect stability problems is known
since 2007 [11], the basic observation being that, since a reconstruction of
a function N(q) of the would be integration momentum q is involved (the
coefficients of which are interpreted as the coefficients of the scalar 1-loop
functions entering the calculation), one can numerically test the accuracy of
it by comparing N(q) and its re-constructed counterpart at a new, arbitrarily
chosen value of q. However, the arbitrariness of the point chosen for the test
poses serious problems, because it introduces a new, unwanted, parameter
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upon which the check depends in an unpredictable way 1. Furthermore, not
all the reconstructed coefficients enter into the actual computation, because,
for example, some of them may multiply vanishing loop functions, rendering
immaterial a possible inaccuracy in their determination. In addition, it is
not clear how to test the rational part of the amplitude [2].

Nevertheless, it keeps being very tempting the idea of self detecting nu-
merical inaccuracies, avoiding the need of additional analytic work. In this
paper, I present a method to achieve this task, based on the construction of a
reliable precision estimator working at an event by event basis. Therefore, it
becomes possible for the user to safely set a precision threshold above which
the inaccurate points are discarded. Furthermore, I prove that, re-fitting the
discarded points at higher precision while keeping the computation of N(q)
in double precision allows to re-include most of them in the original sample.
This solution nicely factorizes the problem, in the sense that the codes (of
the parts of the code) computing the function N(q) can be kept in double
precision and only the fitting procedure to get the coefficients needs to be
re-done at higher precision.

The structure of this work is very simple: in Sections 2 and 3, I describe
the algorithm and, in Section 4, I report on the tests I performed on the
whole procedure.

2. The method

In the OPP technique the numerator N(q) of the integrand of a m-point
amplitude is decomposed in terms of denominators Di = (q + pi)

2 −m2
i

2

N(q) = D(m)(q) +

m−1
∑

i0<i1<i2

c(i0i1i2; q)

m−1
∏

i 6=i0,i1,i2

Di +

m−1
∑

i0<i1

b(i0i1; q)

m−1
∏

i 6=i0,i1

Di

+

m−1
∑

i0

a(i0; q)

m−1
∏

i 6=i0

Di , (1)

1Improvements on this technique have been recently presented in [16].
2In our notation, q in 4-dimensional, q̄ n-dimensional and n-dimensional denominators

are written as D̄i = (q̄ + pi)
2 −m2

i .
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where, for later convenience, I have grouped all the 4-point contributions into
a single term

D(m)(q) =
m−1
∑

i0<i1<i2<i3

d(i0i1i2i3; q)
m−1
∏

i 6=i0,i1,i2,i3

Di . (2)

The functions d(i0i1i2i3; q), c(i0i1i2; q), b(i0i1; q) and a(i0; q) depend on the
integration momentum q and bring information on the coefficients of the
scalar 1-loop integrals, that are obtained by fitting N(q) at different values
of q that nullify, in turn, the denominators. Finally, performing a global shift
of all the masses appearing in the denominators of Eq. 1

m2
i → m2

i − q̃2 (3)

and fitting again, allows to reconstruct also a piece of the rational terms,
called R1 [2]. In summary, by knowing the set 3

d(i0i1i2i3) , c(i0i1i2) ,
b(i0i1) , a(i0) , R1 ,

(4)

the amplitude A is reconstructed by simply multiplying by the corresponding
scalar 1-loop integrals [12, 27] 4.

A =

m−1
∑

i0<i1<i2<i3

d(i0i1i2i3)

∫

dnq̄
1

D̄i0D̄i1D̄i2D̄i3

+

m−1
∑

i0<i1<i2

c(i0i1i2)

∫

dnq̄
1

D̄i0D̄i1D̄i2

+

m−1
∑

i0<i1

b(i0i1)

∫

dnq̄
1

D̄i0D̄i1

+

m−1
∑

i0

a(i0)

∫

dnq̄
1

D̄i0

+R1 . (5)

3I use a notation such that the coefficients of the scalar 1-loop functions have the same
name of the functions appearing in Eqs. 1 and 2, but without q dependence.

4The remaining piece of the rational terms R2 can be computed as explained in [2, 28,
29].
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The key point of the method I propose in this paper is the observation
that, if one would be able to obtain the whole set of Eq. 4 in an independent
way, giving, as a result, a new set

d′(i0i1i2i3) , c′(i0i1i2) ,
b′(i0i1) , a′(i0) , R′

1 ,
(6)

an independent determination of the 1-loop amplitude would become possible

A′ =
m−1
∑

i0<i1<i2<i3

d′(i0i1i2i3)

∫

dnq̄
1

D̄i0D̄i1D̄i2D̄i3

+
m−1
∑

i0<i1<i2

c′(i0i1i2)

∫

dnq̄
1

D̄i0D̄i1D̄i2

+
m−1
∑

i0<i1

b′(i0i1)

∫

dnq̄
1

D̄i0D̄i1

+
m−1
∑

i0

a′(i0)

∫

dnq̄
1

D̄i0

+R′
1 , (7)

that could then be used to define a reliable estimator of the accuracy as
follows 5

EA ≡ |A− A′|
|A| . (8)

The advantage of Eq. 8, with respect to a test performed at the level of
the function N(q), is that only the coefficients contributing to the amplitude
enter into the game. Furthermore, a test on R1 becomes possible. As it will
become clear shortly, it is convenient to differentiate the two cases where the
coefficients of the sets in Eqs. 4 and 6 (and, a fortiori, the amplitudes in
Eqs. 5 and 7) are computed in double or multi-precision. Then, I denote the
double precision estimator by

EA
d ≡ |Ad − A′

d|
|Ad|

, (9)

5In an actual, numerical implementation, a small quantity ǫ has to be included in the
denominator of Eq. 8 to deal with the case of vanishing amplitude.
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and its multi-precision version by

EA
m ≡ |Am − A′

m|
|Am|

. (10)

In the rest of this section, I illustrate how to obtain the new set of Eq. 6.
The technique is similar to the procedure adopted to compute R1. Under

the shift in Eq. 3, Eq. 1 becomes

N(q) = D̄(m)(q) +
m−1
∑

i0<i1<i2

c̄(i0i1i2; q)
m−1
∏

i 6=i0,i1,i2

(Di + q̃2)

+

m−1
∑

i0<i1

b̄(i0i1; q)

m−1
∏

i 6=i0,i1

(Di + q̃2)

+

m−1
∑

i0

ā(i0; q)

m−1
∏

i 6=i0

(Di + q̃2) , (11)

where

D̄(m)(q) =
m
∑

j=2

q̃ (2j−4)d (2j−4)(q) , (12)

with the last coefficient of D̄(m)(q) independent on q

d (2m−4)(q) = d (2m−4) , (13)

and where

c̄(i0i1i2; q) = c(i0i1i2; q) + q̃2c (2)(i0i1i2; q)

b̄(i0i1; q) = b(i0i1; q) + q̃2b (2)(i0i1; q)

ā(i0; q) = a(i0; q) . (14)

This last equation implies, for the 1-,2 and 3-point coefficients

c̄(i0i1i2) = c(i0i1i2) + q̃2c (2)(i0i1i2)

b̄(i0i1) = b(i0i1) + q̃2b (2)(i0i1)

ā(i0) = a(i0) . (15)
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The constants b (2)(i0i1), c
(2)(i0i1i2) and d(2m−4) enter into the computation

of R1 [2]

R1 = − i

96π2
d(2m−4) − i

32π2

m−1
∑

i0<i1<i2

c(2)(i0i1i2)

− i

32π2

m−1
∑

i0<i1

b(2)(i0i1)

(

m2
i0
+m2

i1
− (pi0 − pi1)

2

3

)

, (16)

and can be determined with the help of Eqs. 15 and 12.
With the knowledge of a(i0), b(i0i1), c(i0i1i2), b

(2)(i0i1) and c(2)(i0i1i2),
a′, b′ and c′ in Eq. 6 can be immediately obtained with a new mass shift

m2
i → m2

i − q̃21 , (17)

giving

c̄1(i0i1i2) = c(i0i1i2) + q̃21c
(2)(i0i1i2)

b̄1(i0i1) = b(i0i1) + q̃21b
(2)(i0i1)

ā1(i0) = a(i0) , (18)

where I attached the subscript 1 to the coefficients obtained with the new
shift. Combining Eqs. 15 and 18 gives

a′(i0) = ā1(i0)

b′(i0i1) =
b̄(i0i1) + b̄1(i0i1)

2
− q̃2 + q̃21

2
b (2)(i0i1) ,

c′(i0i1i2) =
c̄(i0i1i2) + c̄1(i0i1i2)

2
− q̃2 + q̃21

2
c (2)(i0i1i2) . (19)

As for R1, an independent determination of b (2)(i0i1), c
(2)(i0i1i2) in Eq. 16

also follows from the new shift

c′ (2)(i0i1i2) =
c̄(i0i1i2)− c̄1(i0i1i2)

q̃2 − q̃21

b′ (2)(i0i1) =
b̄(i0i1)− b̄1(i0i1)

q̃2 − q̃21
. (20)

With the help of Eq. 18 one can now completely reconstruct the 1-, 2- and
3-point parts of the numerator function with masses shifted according to
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Eq. 17, namely

m−1
∑

i0<i1<i2

c̄1(i0i1i2; q)
m−1
∏

i 6=i0,i1,i2

(Di + q̃21) +
m−1
∑

i0<i1

b̄1(i0i1; q)
m−1
∏

i 6=i0,i1

(Di + q̃21)

+
m−1
∑

i0

ā1(i0; q)
m−1
∏

i 6=i0

(Di + q̃21) . (21)

By subtracting Eq. 21 from N(q) one determines D̄(m)
1 (q) obeying the follow-

ing polynomial (in q̃21) representation (see Eq. 12)

D̄(m)
1 (q) =

m
∑

j=2

q̃
(2j−4)
1 d

(2j−4)
1 (q) , (22)

the first coefficient of which, computed at values q = qi0,i1,i2,i3 nullifying, in
turns, all possible combinations of 4 denominators

Di0(qi0,i1,i2,i3) = Di1(qi0,i1,i2,i3) = Di2(qi0,i1,i2,i3) = Di3(qi0,i1,i2,i3) = 0 , (23)

gives the desired independent determination of the box coefficients

d′(i0i1i2i3) = d
(0)
1 (qi0,i1,i2,i3) . (24)

From the last term in Eq. 22 one obtains, instead

d′ (2m−4) = d
(2m−4)
1 , (25)

that, together with the coefficients in Eq. 20, gives a complete alternative
determination of R1

R′
1 = − i

96π2
d′ (2m−4) − i

32π2

m−1
∑

i0<i1<i2

c′ (2)(i0i1i2)

− i

32π2

m−1
∑

i0<i1

b′ (2)(i0i1)

(

m2
i0
+m2

i1
− (pi0 − pi1)

2

3

)

, (26)

I close the Section by summarizing the procedure. One fits the numerator
function N(q) three times; the first time with q̃2 = 0 (Eq. 1) to determine
the cut-constructible part of the amplitude, namely all of the coefficients in
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Eq. 4; the second time with q̃2 6= 0, to compute R1 by means of Eq. 16; the
third time with a new value of the mass shift (q̃ 2

1 ) to calculate the alternative
set of coefficients in Eqs. 19, 20, 24 and 25, that allow to build the precision
estimator EA

d given in Eq. 9.
It is clear that performing the three fits by using directly the numerator

function N(q) appearing in the l.h.s. of Eq. 1 could be computationally
very expensive because, in practical cases, the calculation of N(q) is rather
time consuming 6. Fortunately, after the first fit, one is allowed to use the
reconstructed numerator function (namely the r.h.s. of Eq. 1) to determine
both R1 and EA

d . The additional CPU time is then very moderate. To further
decrease it, one can also observe that, instead of determining d (2m−4) through
the expansion in Eq. 12, that requires the knowledge of D̄(m)(q) at (m − 2)
different values of q̃2, one can get it by means of the following relation among
the OPP coefficients

d (2m−4) = −
m−1
∑

i0<i1<i2

c(2)(i0i1i2; q)−
m−1
∑

i0<i1

b(i0i1; q)−
m−1
∑

i0<i1

b(2)(i0i1; q)
m−1
∑

i 6=i0,i1

Di

−
m−1
∑

i0

a(i0; q)
m−1
∑

i 6=i0

Di . (27)

Eq. 27 is proved in Appendix A.

3. Rescuing the inaccurate points

Under the assumption that EA
d in Eq. 9 is a good precision estimator,

points can be rejected when EA
d > Elim, where Elim is a threshold value cho-

sen by the user. In this Section, I propose, as a simple recipe to rescue the
rejected points, to re-perform the three fits described in Section 2 at higher
precision while keeping the computation of N(q) in double precision. The
advantage of this recipe is that multi-precision routines need to be imple-
mented just in the fitting program, while the code providing N(q) can be left
untouched 7. A new test in multi-precision can then be performed on the

6I assume here an unoptimized computation of N(q), performed without cashing the
information that does not depend on q.

7This strategy is especially relevant in the case of programs that already implement,
internally, multi-precision routines [30], such as CutTools [11].
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rescued points using the multi-precision estimator of Eq. 10 and only if, even
in this case, EA

m > Elim the event is discarded for good (or re-computed, if
possible, with N(q) also evaluated in multi-precision). The hope is that the
percentage of points rejected by this second test is very limited, so that they
can be safely eliminated from the sample. The effectiveness of this strategy
is studied in the next Section.

4. Testing the method

To test the procedures described in the previous two Sections I imple-
mented in CutTools, as a numerator function N(q) mimicking the full am-
plitude A, one of the 120 diagrams contributing to the γγ → 4γ scattering
in massless QED 8. To enhance the problematic region I did not apply any
cut on the final state particles, so that numerically unstable Phase Space
configurations with zero Gram determinant can be freely approached. From
a practical point of view, I constructed the alternative amplitude of Eq. 7 by
keeping the 4-point coefficients and re-computing only c′, b′, a′ and R′

1 with
the help of Eqs. 19, 20 and 25. The reason is that, in practice, the derivation
of the 4-point part of an amplitude is numerically quite stable, the bulk of
the numerical instabilities coming from the lower-point sectors.

Before describing in details the tests, I introduce, besides the estimators
given in Eqs. 9 and Eqs. 10, a few more variables. I define two true precision

variables as follow

Pd = |Ad − Ae|/|Ae| and Pm = |Am − Ae|/|Ae| , (28)

where Ae is the exact reference amplitude computed with both fits and N(q)
in multi-precision. Pd and Pm will be used, in the following, to test the
actual precision in the computation of Ad and Am. Furthermore, for the sake
of comparison, I define two additional precision estimators, based on the so
called N = N test of [11]

EN
d = |Nd −Nd,rec|/|Nd| and EN

m = |Nd −Nm,rec|/|Nd| , (29)

where Nd is the numerator function N(q) computed, in double precision, at a
random value of q 9, Nd,rec the same numerator, but reconstructed, in double

8This diagram contains up to rank six 6-point functions, so it fairly represents the
complexity of the real situations.

9I picked up the point q =
√
s (1/2,−1/3, 1/4,−1/5).
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Log10(Pd/E
X
d )

Figure 1: Distribution of the ratio between the true precision Pd = |Ad − Ae|/|Ae| and
two different precision estimators. The dashed histogram refers to the estimator at the
numerator level EX

d = EN
d = |Nd − Nd,rec|/|Nd|, the solid one to the estimator at the

amplitude level EX
d = EA

d = |Ad −A′

d|/|Ad|.

precision, via the r.h.s. of Eq. 1, and, finally, Nm,rec is the numerator function
reconstructed by means of a multi-precision fitting procedure.

In Figs. 1-3, I collect the results obtained by using 3000 random, uni-
formly distributed Phase Space points. In Fig. 1 I plot the distributions of
the ratios Pd/E

N
d and Pd/E

A
d . In the latter case (solid histogram), most of

points fall within 2 orders of magnitude, indicating that EA
d is expected to

accurately estimate the true numerical precision. This is not the case for
the estimator based on the N = N test. The long right tail in the Pd/E

N
d

distribution (dashed histogram) shows that there are points for which the
accuracy is badly overestimated by EN

d . In Fig. 2, I plot the distributions
of Pd (dashed histogram) and Pm (solid histogram). It can be seen that
keeping the computation of N(q) in double precision, while performing the
fit in multi-precision improves the accuracy. Nevertheless, points exist for
which Am is still not accurate enough, even if the solid plot stops order of
magnitudes before the dashed one. In Fig. 3, I show the tails of the Pd

distribution, imposing four different cuts in the value of the estimators EA
d

and EA
m. In the solid histograms, when EA

d > Elim, a rescue of the point is

10



Log10(Px)

Figure 2: Distribution of the true precision variables Px = |Ax −Ae|/|Ae| (see text). The
dashed histograms refers to the double precision result (Px = Pd), the solid histogram
to the case with fitting procedure carried out in multi-precision, but numerator function
computed in double precision (Px = Pm).

performed by re-fitting the 1-loop coefficients in multi-precision, while keep-
ing the computation of the numerator function in double precision, and, if
also EA

m > Elim, the event is discarded. In the dashed histograms, the same
procedure is applied, but using, as estimators, EN

d and EN
m . Again, the right

tails of the dashed histograms show that EN
d and EN

m are not good estima-
tors of the numerical accuracy, while the absence of points above 10−1 in the
case of all the solid plots, indicates that EA

d and EA
m are able to select the

bad inaccurate points quite efficiently. For reader’s reference I summarize,
in table 1, a statistics of the number of points computed in multi-precision
and discarded in each of the 4 cases. As a conclusion, the rescue procedure
is able to recover most of them.

As a final check on the goodness of the estimator at the amplitude level,
I present, in table 2, the quantity max[Log10(Pd)]−Log10(Elim) as a function
of Elim, when using the precision estimator EA

d . This variable measures
the difference between the worst detected point, in an analysis like that one
represented by the solid histograms of Fig. 3, and the chosen threshold value
Elim for EA

d . It can be seen that, for values of Elim between 10−2 and 10−6,

11



Elim = 10−4 Elim = 10−3

Log10(Pd) Log10(Pd)

Elim = 0.5 × 10−2 Elim = 10−2

Log10(Pd) Log10(Pd)

Figure 3: The tails of the distributions of the true precision variable Pd, with an ad-
ditional constraint on the value of the precision estimators EA

d , EA
m, EN

d and EN
m =

|Nd − Nm,rec|/|Nd| (see text). In the solid histograms, when EA
d > Elim, a rescue of the

point is performed by re-fitting the 1-loop coefficients in multi-precision (with numerator
functions kept in double precision) and, if also EA

m > Elim, the event is discarded. In the
dashed histograms, the same procedure is applied, but using the estimators EN

d and EN
m

instead.

12



Elim Nmp Ndis

10−4 90 14
10−3 62 8

.5× 10−2 44 6
10−2 40 6

Table 1: The number of points computed in multi-precision (Nmp) thanks to the rescue

procedure and the number of points discarded (Ndis) as a function of the threshold value
Elim. The numbers refers to the solid histograms of Fig. 3, over a total number of 3000
events.

EA
d overestimates the accuracy at most by 1.1 decimals and that the points

where the overestimate is by almost 2 decimals lie in the safe region of very
small values of Elim, from which one argues that EA

d is able to detect badly
instable Phase Space points in a reliable way.

5. Conclusions

I introduced a novel method to test the numerical accuracy of the NLO
results produced by modern OPP/Generalized Unitarity techniques. The
key ingredient is a re-computation of the 1-loop coefficients based on the
properties of the OPP equation under a global shift of all the masses. This
re-computation can be performed by using the function previously recon-
structed during the determination of the cut-constructible part of the am-
plitude, therefore at a moderate CPU time cost. As a by-product, I also
introduced a faster determination of one of the coefficients contributing to
the rational piece of the amplitude. I proved, with numerical tests, the re-
liability of the procedure and I proposed a convenient solution to rescue

most of the detected numerically inaccurate points in a way that allows the
computation of the integrand to remain in double precision.
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Elim max[Log10(Pd)]− Log10(Elim)

10−2 0.80
5× 10−3 1.1
10−3 0.74

5× 10−4 0.57
10−4 1.1

5× 10−5 0.98
10−5 1.0

5× 10−6 1.1
10−6 1.0
10−8 1.7
10−10 1.8

Table 2: The variable max[Log10(Pd)]−Log10(Elim) as a function of Elim, when using the
precision estimator EA

d .

Appendix A. An alternative determination of d (2m−4)

The last coefficient d (2m−4) in the expansion of Eq. 12 contributes to R1

through Eq. 16. In this appendix, I present a novel technique to determine
it from the other, known, coefficients of the OPP expansion.

The starting points are Eqs. 11-14. The l.h.s. of Eq. 11 does not depend
on q̃2, so that one can equate to zero the coefficients of all the powers of q̃2

appearing in the r.h.s. From the highest power, q̃ (2m−2), one obtains

m−1
∑

i0<i1

b(2)(i0i1; q) +

m−1
∑

i0

a(i0; q) = 0 , (A.1)

while the next to highest power, q̃ (2m−4), gives Eq. 27. Notice that the r.h.s.
of Eq. 27 can be computed at arbitrary values of q, allowing extra numerical
checks.
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