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Abstract

The coupled-wave equations (CWEs) in nonlinear optics are the fundamental
starting point in the study, analysis, and understanding of various frequency
conversion processes in dielectric media subjected to intense laser radiation.
In this work, a useful package for the modeling of optical parametric oscilla-
tors (OPOs) based on the Split-Step Fourier Method algorithm is presented.
The algorithm is scripted in the CUDA programming language in order to
speed up the calculations and obtain results in a relatively short time frame
by using a graphics processing unit (GPU). Our results show a speedup higher
than 50X for vector size of 214 in comparison with the analogous code scripted
for running only in CPU. The package implements the CWEs to model the
propagation of light in second-order nonlinear crystals widely used in optical
frequency conversion experiments. In addition, the code allows the user to
adapt the cavity configuration by selecting the resonant electric fields and/or
incorporating intracavity elements. The package is useful for modeling OPOs
or other mathematically similar problems.
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Program Title: cuOPO
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://github.com/alfredos84/cuOPO
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: MIT
Programming language: CUDA
Supplementary material:
Journal reference of previous version:*
Does the new version supersede the previous version?:*
Reasons for the new version:*
Summary of revisions:*
Nature of problem:
The problem that is solved in this work is that of two or three coupled differ-
ential equations that describe the propagation of light in a second order nonlin-
ear medium, allowing the three-wave mixing process. By placing the medium in
an optical cavity, an optical parametric oscillator is formed. The optical cavity
is modeled by including the appropriate boundary conditions for the differential
equations. As a result we obtain the electric fields of the interacting waves in the
time and frequency domains.
Solution method:
The coupled differential equations are solved using the well-known fixed-step split-
step Fourier method. Due to the eventual computational demand that some prob-
lems may have, we chose to implement the coupled equations in the CUDA pro-
gramming language. This allows us to significantly speed up simulations, thanks
to the computing power provided by a graphics processing unit (GPU) card. The
output files obtained are the interacting electric fields, which have to be analyzed
during post-processing.
Additional comments including restrictions and unusual features (approx. 50-250
words):

1. Introduction

Nonlinear optical processes have been a cornerstone of laser science and tech-
nology for over sixty years. Nonlinear optics has had tremendous impact in
photonics, enabling unprecedented advances in multitude of disciplines in
fundamental and applied physics, communications, quantum technologies,
biology, medicine, and more. The coupled-wave equations (CWEs) are the
backbone of nonlinear optics [1] and fundamental to the description of fre-
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quency conversion phenomena involving the interaction of optical waves in
a dielectric medium. Fundamental to the understanding of nonlinear pro-
cesses are the CWEs, which can be regarded as equivalent to Maxwell’s wave
equations in linear optics. CWEs are a set of nonlinear partial differential
equations, related by a so-called “coupling term”, which well describes wave
mixing in such media. Of the various nonlinear interactions, three-wave
mixing (TWM) processes in non-centrosymmetric media exhibiting second-
order nonlinear polarization are of considerable interest because of their
ability to generate coherent radiation in new spectral and temporal regions
not accessible to conventional lasers. Such TWM processes include sum- or
difference-frequency-generation (SFG or DFG), second-harmonic-generation
(SHG), optical parametric generation (OPG), and the optical parametric
oscillator (OPO) [2, 3].

In most cases, CWEs are solved numerically since analytical solutions
are generally not available. Consequently, numerical algorithms are used to
provide solutions quickly and efficiently. The well-known split-step Fourier
method [4] (SSFM) was widely used to solve the CWEs [5, 6] in second-order
media because of its higher speed compared to others algorithms [7].

It is common in literature to find works where the CWEs are solved using
homemade codes adapted to their own requirements [8, 9]. On the other
hand, there is a user-friendly software available which provides several tools
to design, analyze and optimize OPOs using a wide database of nonlinear
crystal [10]. This software has been successfully used in different scenarios,
for example, to model OPOs in nanosecond pulsed configurations [11, 12].

In this work, we provide a useful new computational tool for modeling
OPOs in practical and experimentally realizable format based on the solution
of CWEs. Since CWEs belong to the family of parallelizable problems, we
take advantage of the hardware provided by the GPUs to speed up our cal-
culations, especially when massive and sequential simulations are required in
a short time frame using a commercial desktop computer. Our results show
that the achieved speedup is approximately 50X compared to analogous code
adapted to run only on CPU. In practical terms, a standard simulation, e.g.
2× 104 round-trips, using our code can take just under 20 minutes, while on
CPU around 30 hours. We present an implementation of CWEs based on
the so-called symmetrized split-step Fourier Method, whose error of O(dz3),
where dz is the step size along the direction of propagation, has been pre-
viously analyzed [13]. Our implementation uses a fixed step size along the
electric field direction within the nonlinear medium. However, if required,
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the user can modify the code according to the specific needs of each prob-
lem, for instance following the analysis performed in Refs. [14, 15]. With the
constantly growing demand and increasing interest in the study and design
of nonlinear optical sources, and in particular novel OPO devices for practi-
cal applications as well as fundamental studies [16], this tool is very useful
to analyze novel system architectures that are unique. Such simulations in
the continuous-wave cw regime were previously limited by the long computa-
tional time, which is here alleviated by using the GPU in combination with
our package. Although the present package simulates second-order processes,
adding terms to the model, namely the Kerr effect or higher-order dispersion
terms, should not be difficult for any user and its implementation would re-
quire minimal effort. One example is the coupled nonlinear Schrödinger equa-
tions (CNSE), which model the interaction in cubic media, such as optical
fibers [17, 18]. This type of scheme can be easily adapted to our code, either
to combine quadratic with cubic media in a resonant cavity or to adapt our
code to a specific single four-wave mixing problem. We would like to empha-
sise that the real advantage of the GPU together with the SSFM for solving
CWEs could be exploited while simulating resonant cavities involving multi-
ple round-trips, where the dynamic evolution of the intensities and phase of
the interacting waves can be studies. Such a task is time-consuming using
a CPU, particularly while simulating resonators involving cw fields with low
gain, requiring significantly higher number of round-trips before the cw OPO
can breach threshold, as compared to a pulsed OPO. The flexible parame-
ter space, ability to incorporate active optical components and capture their
time evolution leads to exciting insights in to various fundamental aspects
of a new class of parametric systems such as self-phase-locking [9, 19], novel
devices for ultrashort pulse generation [16] and optical solitons in OPOs [20].

The algorithm used here has been developed in the framework of bulk
OPOs, in other words oscillators with discrete components. However, the
model is extendable to integrated photonic systems [16], which could imply
minimal changes in the code, if the CWEs are to be used to model the system.

2. Coupled-wave equations with boundary conditions and intra-
cavity elements
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2.1. Theoretical model

The scientific problem solved by this software is that of the CWEs govern-
ing the TWM processes of OPG in a second-order dielectric crystal placed
within an optical resonator. With the crystal enclosed in an optical cavity,
the process is referred to as optical parametric oscillation and the device is
known as an OPO. The oscillator is formed in a ring cavity incorporating
mirrors that provide resonance at the optical waves generated through the
OPG process [21]. Figure 1(a) schematically depicts the basic configura-
tion of the OPO that our code can simulate. It comprises an input laser
that serves as a pump field, Ap, incident on a ring cavity formed by mir-
rors, M1-M3, a second-order nonlinear gain medium, χ(2), which is typically
a transparent non-centrosymmetric dielectric crystal that allows the genera-
tion of two optical waves, signal and idler, at new wavelengths through the
OPG process. In the examples shown in this work we deploy a periodically-
poled lithium niobate crystal (PPLN) as the nonlinear gain medium to show
how the package performs. There are other intracavity elements that users
can incorporate, such as an electro-optic modulator (EOM) or etalon which
can be mathematically modelled [16]. As can be seen from Figure 1(a), M2
acts as an output coupler with power transmittance, θx, while the mirror
M3 is allowed to move for precise cavity length adjustment enabling cavity
detuning, δ. The superscript, m, stands for the mth round-trip, while the
subscript, x, stands for pump, signal or idler (p, s or i) intracavity electric
fields, respectively.

Figure 1: (a) Schematic of the OPO configuration used in our modelling using this package.
(b) Crystal discretization depiction in the symmetrized SSFM.

Each of the CWEs compute the evolution of an electric field at a spe-
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cific wavelength, which interacts with the other two fields. In the three-wave
parametric process, the interacting fields are pump, signal, and idler, each
at angular frequencies, ωp, ωs, and ωi, respectively. In such a TWM pro-
cess a photon at ωp is annihilated, and two photons at frequencies ωs and
ωi are created. Conservation of energy dictates that ωp = ωs + ωi, while
for macroscopic amplification and practical generation of coherent radiation
at the signal and idler frequencies the phase-matching condition has to be
satisfied

∆k = kp − ks − ki = 0, (1)

where kx = n(ωx)ωx/c (x = p, s, i) is the momentum at the frequency, x,
with n(ωx) the refractive index. The equations can generally be written as

∂A
(m)
p

∂z
= L̂pA

(m)
p + iκpA

(m)
s A

(m)
i e−i∆kz (2)

∂A
(m)
s

∂z
= L̂sA

(m)
s + iκsA

(m)
p A

∗(m)
i e+i∆kz (3)

∂A
(m)
i

∂z
= L̂iA

(m)
i + iκiA

(m)
p A∗(m)

s e+i∆kz, (4)

where the superscript (m) is the number of the round-trip, z is the spatial
coordinate along the length of the crystal, κx = 2πdeff/nxλx is the nonlinear
coupling coefficient, and deff is the effective second-order susceptibility of the
crystal. Here, Lx are the linear operators

L̂x = −
[
αx

2
+

(
1

νs
− 1

νx

)
∂

∂τ
+ i

k
′′
x

2

∂2

∂τ 2
+ i

k
′′′
x

3

∂3

∂τ 3

]
, (5)

indicating that the CWEs are written in a co-moving frame at the signal fre-
quency in the presence of linear attenuation, αx, group-velocities, νx, group-
velocity dispersion (GVD), k

′′
x , and third-order dispersion (TOD), k

′′′
x . It is

to be noted that the incorporation of higher-order dispersion terms beyond
the currently supported TOD is straightforward. Additionally, in our model
we assume plane-wave approximation. Hence, diffraction terms are neglected
in Eqs. 2-4.

Boundary conditions:
After a single pass in the nonlinear crystal, every field must be refreshed
before starting the next round-trip (m+1), if and only if that electric field is
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resonant in the optical cavity. This should take into account the intracavity
losses and the cavity detuning given by

A(m+1)
x =

√
1− θxA

(m)
x eiδx , (6)

where θx is the power transmission coefficient, δx = (ωcav−ωx)trt is the cavity
detuning, ωcav is the frequency of a resonant mode, and trt is the round-trip
time.

In what follows, we present the main features of our numerical implemen-
tation of the CWEs in the form of the aforementioned equations, including
the functionality to solve for nanosecond as well as cw operating regimes.
The provided CUDA package derived from our research software, is scripted
with the aim not only to speed up the calculations, but also to keep it simple
and adaptable to simulate other nonlinear processes. For example, the user
can amend linear and nonlinear terms in Eqs. 2-4, add passive and/or active
intracavity elements such as modulators, incorporate additional nonlinear
crystals, and more.

2.2. Split-step Fourier method

The SSFM is used here to model the propagation along the nonlinear
medium, as schematically shown in Fig. 1(b). The crystal with length, Lcr,
is discretized along the z−direction into steps of length, dz. In every step, the
SSFM simultaneously solves the linear and nonlinear effects. The linear part
is solved in the frequency domain, and the nonlinear part is solved in the time
domain using a four-order Runge-Kutta method. This sequence is repeated
throughout the length of the crystal. Depending on the implementation, this
algorithm exhibits an error, O(dz2) or O(dz3). This is sequentially solved
along the entire crystal and requires many operations with complex vectors
as well as discrete Fourier transforms (DFTs) during the simulation, and
depending on the complexity of the problem (i.e. vectors size, number of
round trips inside the optical cavity, number of nonlinear crystals) this might
be computationally demanding. Equations 2, 3, and 4 can be written in the
matrix form as (omitting the superscripts m)

∂

∂z

Ap

As

Ai

 =

L̂p 0 0

0 L̂s 0

0 0 L̂i


︸ ︷︷ ︸
Linear operator L̂

Ap

As

Ai

+

 0 0 N̂p

N̂s 0 0

N̂i 0 0


︸ ︷︷ ︸
Nonlinear operator N̂

Ap

As

Ai

 (7)
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where L̂x is given by Eq. 5, and N̂x are the corresponding nonlinear oper-
ators for each wavelenght, N̂p = iκpAse

−i∆kz, N̂s = iκsA
∗
i e

i∆kz, and N̂i =
iκiA

∗
se

i∆kz, respectively. Equation 7 is then reduced to

∂

∂z
A⃗ =

(
L̂+ N̂

)
A⃗ (8)

with a symbolic solution given by

A⃗(z + dz) = e(L̂+N̂)dzA⃗(z) (9)

Since the operators, L̂ and N̂ , in general do not commute, the approxi-

mation e(L̂+N̂)dz ≈ eL̂dzeN̂dz, that yields an error, O(dz2), is often used.
However, in this work we implement a more accurate expression [4]

e(L̂+N̂)dz ≈ eN̂
dz
2 eL̂dzeN̂

dz
2 , (10)

with an error ofO(dz3). In this scheme, every step is solved by computing the
nonlinear term in the first half-step, dz/2. After one Fourier transform, the
linear term is computed in the entire step, dz. Finally, the nonlinear term is
again computed in the second half-step, dz/2. This sequence, N̂/2−L̂−N̂/2,
is equivalent to its counterpart, L̂/2− N̂ − L̂/2, since both lead to the same
solution. By inserting Eq. 10 in Eq. 9 and solving the linear part in the
frequency domain, the field evolution reads

A⃗(z + dz) ≈ eN̂
dz
2 F−1

{
eL̂dzF

{
eN̂

dz
2 A⃗(z)

}}
, (11)

where F {·} stands for the Fourier transform.

2.3. Intracavity elements

In our package, we include intracavity elements that are capable of be-
ing described mathematically. The user can incorporate any other intra- or
extracavity element by deriving its proper expression. Here we include two
intracavity elements that are usually employed in experiments:

1. Dispersion compensation: It is common in laser technology to compen-
sate the GVD by including, e.g., chirped mirrors in the cavity. In the
case of the OPO, the nonlinear crystal has an intrinsic GVD, as pre-
sented in the Sec. 2.1. The use of chirped mirrors imposes an additional
phase to the reflecting electric fields, such as

Ã(Ω) → Ã(Ω)ei
γ
2
Ω2

,
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where the factor, γ, is related with the group-delay dispersion (GDD)
and accountss for how much GVD is compensated, and Ω is the fre-
quency. This operation must be performed in the frequency domain,
Ã, so that an extra Fourier transform is required.

2. Electro-optical modulator (EOM): This element is often used to broaden
the spectrum of a given electric field. Physically, an intracavity EOM
modulates the phase of an electric fields. Mathematically, the transfor-
mation in the time domain is given by

A(τ) → A(τ)eiβ sin(2πfpmτ),

where fpm is the frequency of the EOM, typically on the order of the
cavity free-spectral range, and β the so-called modulation depth.

2.4. Vector size and grid discretization considerations

The choice of the number of vector elements, as well as the step size of
the spatial and temporal-spectral grids will depend on each specific problem.
Here we simply provide a guide on what to consider when tackling the prob-
lem to be modeled.

Spatial resolution, dz:
As described in Section 2.2, the numerical error of this algorithm is

O(dz3), so decreasing the step size, dz, the approximation of the numeri-
cal solution will be closer to the analytical solution. Typical values for the
number of grid points at coordinate z can range from 50 to 250 [12]. One
of the problems that can arise when the value of dz is not small enough is
that the code returns NaN values. This can be seen in the nonlinear part of
the coupled equations. For simplicity, consider the case of the dispersionless
degenerate OPO with perfect phase-matching (∆k = 0) and focus on the
equation for the signal that can be approximated by

∂As

∂z
= iκsApA

∗
s ⇒ As(z + dz) ≈ As(z) + i∆As(z),

where ∆As(z) = [κsAp(z)dz]A
∗
s(z) is the incremental change in the signal

electric field, with κs = 2πdeff/nsλs. With this approach, we expect the
change in the electric field to be incremental, that is

|∆As(z)| ≪ |As(z)| ≈ |As(z + dz)| ,
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in order to avoid undesired drastic changes. Since κs and Ap are experi-
mental parameters, the only way to prevent any divergence is by varying
dz. For example, for high pump powers or for crystals with a high nonlin-
ear coefficient, deff , it will be necessary to pay attention to the set value of dz.

Temporal-spectral resolution, dt− dν:
It is worth noting that both step sizes are linked through the number of

points, n, and the round-trip time, trt, through

dt = trt/n and dν = t−1
rt .

Once the cavity round-trip time is calculated from the properties of the
nonlinear crystal, it remains to determine the physics that the user aims to
capture. In the case of the illustrative examples presented in the following
sections (e.g., Fig. 5 (c)), the relevant physics in the time domain exhibits
oscillations of ∼ 1 ps for the case of the chosen cavity, with trt ≈ 100 ps. To
cover an oscillation of ∼ 1 ps duration with 10 points, it requires dt ≈ 0.1 ps,
so that n = trt/dt ≈ 1000. This represents, in powers of 2, n = 210. However,
when investigating other complicated scenarios where intracavity elements
are included, and there may be faster oscillations due to increased bandwidth,
it is necessary to increase the number of points. For instance, in Ref. [16],
the oscillations obtained were sub-picosecond, requiring an increase in the
number of points to n = 214. Furthermore, there are OPO configurations for
which stationary solutions are pulses with duration of ∼ 0.1 ps in a round-
trip time, trt ≈ 100 ps. In this scenario, additional points will help capture
an accurate pulse structure. In such a case, a time step equal to or better
than dt = 0.005 ps requires the number of points to be n = 214 or even 215.
Under these conditions, the cuOPO package can be exploited to explore the
fast dynamics of complex OPOs.

3. Package description

The package, cuOPO, was scripted in CUDA programming language to run
efficiently on a GPU. Its functionality depends on cuda-toolkits [22]. The
package was widely used in our group to model several scenarios related to
OPOs, and tested on a Linux system. All the simulations were performed in
a desktop computer using a microprocessor Intel(R) Core(TM) i7-9700 CPU
@ 3.00GHz and a GPU NVIDIA GeForce GTX 1650. The package contains
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a main file, a folder with eight header files and a bash file that allows the
user to compile and execute the package by enabling or disabling intracavity
elements, the chosen nonlinear crystal, pumping regime, and others relevant
parameters.

3.1. Main file

The main file, called cuOPO.cu, is divided into seven main parts:

• Setting GPU and timing : Sets the intended GPU and starts the simu-
lation timing.

• Define simulation parameters, physical quantities and set electric fields :
Defines all the simulation constants, namely, crystal, cavity, and fields
parameters. We define the single-precision data types, real_t and
complex_t (float and cufftComplex, respectively), that are needed
to define scalars and vectors.

• Define GPU vectors : Declares all the vectors needed to run SSFM in
GPU.

• Main loop. Fields in the cavity : Runs the core of the package. The
function, EvolutionInCrystal(parameters), computes the single-pass
electric fields, and it is embedded in a for-loop that accounts for ev-
ery round-trip. This function belongs to the header files, cwes2.h and
cwes3.h, which contain all the required functions to perform the SSFM.

• Saving results : Saves the simulation outcome.

• De-allocating memory from CPU and GPU : Frees up the memory.

• Finish timing : Finishes and returns the simulation runtime.

The user can also find the functions description in the source code and the
full code overview in the README.md file in the corresponding repository [23].

3.2. Header files

The package contains eight header files in the folder headers, which can
be either modified or adapted to the user specific applications.

• common.h contains functions necessary to check other functions exe-
cuted on the GPU.
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• operators.h contains overloaded operators (+,−, ∗, /) to perform op-
erations with complex numbers.

• functions.h contains functions related to the initialization of the in-
teracting electric fields and the incorporation of intracavity elements,
among others.

• ppln.h/spplt.h contains the Sellmeier equations for two widely used
nonlinear crystals (MgO:PPLN and MgO:sPPLT). For new crystals,
user can create a new file with the corresponding refractive index data.

• files.h contains four functions useful to save real or complex vectors
into a .dat file.

• cwes2.h/cwes3.h contain the functions needed to solve the Eqs. 2-4
using the SSFM, depending on whether two or three CWEs are used.
The user should properly modify the function, dAdz(parameters), ac-
cording to the specific process to simulate.

3.3. Compilation and execution

Before running the code, it is necessary to compile the package and obtain
an executable file. To do this, we execute the bash file, cuOPO.sh, included
in the package, which in turn contains the compilation and the execution
command lines. The compilation command line is shown in Listing 1, where
the compiler, nvcc, is invoked to compile the file, cuOPO.cu.

Listing 1: Compilation

# compile with the preprocessor variables and flags

nvcc cuOPO.cu -D<REGIME > -D<CRYSTAL > -DTHREE_EQS

--gpu -architecture=sm_75 -lcufftw -lcufft -o cuOPO

Notice there are three preprocessor variables, -D<...>, required to compile
the code, namely

• -D<REGIME> set the pumping regime, cw (-DCW_OPO) or pulsed nanosec-
ond (-DNS_OPO) regime. It is mandatory to define this variable.

• -DTHREE_EQS set the use of three CWEs. Do not declare this flag if only
two CWEs are required (two CWEs is by default). Two CWEs are used
at degeneracy, i.e., in SHG or degenerate parametric down-conversion.
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• -D<CRYSTAL> allow to set between the two nonlinear crystals included,
MgO:PPLN and MgO:sPPLT, by setting as -DPPLN or -DSPPLT, re-
spectively. It is mandatory to define this variable.

As can be seen, there are some extra flags required for the compilation. The
flag, --gpu-architecture=sm_75, tells the compiler to use the specific GPU
architecture. It is important to check the proper value for this flag according
to the used GPU card. The flags, -lcufftw and -lcufft, are used for the
Fourier transforms performed by CUDA.

After successfully compiling, the next step is to run the code. In the file,
cuOPO.sh, there are some variables that will be passed as an argument to the
main file, cuOPO.cu. This, of course, can be modified by users who prefer just
set the variables values in the main file. However, this may be useful when
users need to systematically vary a physical quantity, e.g. pumping level,
pump wavelength, turn on/off some intracavity element, etc. The execution
line is shown in Listing 2.

Listing 2: Execution

# exectute with the passed arguments

./ cuOPO $<SET_OF_ARGUMENTS_TO_PASS >

Once the execution is finished, the output files are moved to a specific
folder created by the file, cuOPO.sh. The name of the created folder is related
to the simulation parameters, but this can be changed according to the user
requirements.

3.4. Performance GPU vs. CPU

The operations performed by SSFM are essentially sums, products, and
discrete Fourier transforms (DFTs) of complex vectors. The use of a GPU
is substantially justified for sufficiently large vector size, n. The ratio of the
time for a given calculation performed on CPU to that obtained in GPU is
called speedup, and is a way to measure the performance of the GPU scripted
algorithm. To measure the speedup we compare the execution time of our
SSFM implementation scripted in CUDA and in C language. The performed
DFTs on CPU were calculated with the widely used FFTW library. The
execution of DFT on GPU was carried out using cuFFT, the CUDA FFT.
Both DFT implementations have an order of convergence, O(n log n) [24, 25].
On the other hand, the rest of operations sum and products, have an order of
convergence, O(n). The global algorithm has a convergence order dominated

13



by the DFT. However, as the number of round-trips increases (∼ 104), the
order of convergence might be closer to O(n2).

Figure 2(a) shows the speedup of the complex sums, products, and DFTs
for single-precision operations. As expected, as the vector size increases the
speedup also increases. The green shaded region emphasises the vector sizes
used for the testing simulations that are typically sufficient to model the tem-
poral and spectral behavior of OPOs. Since the obtained speedup is > 1 for
all the operations and for vector size ≥ 212, the use of GPU is justified. The
performance of two CWEs (Fig. 2(b)) and three CWEs (Fig. 2(c)) is shown,
for different OPO configurations, for three vector sizes. We refer to OPO con-
figurations the set of components present in addition to the nonlinear crystal
and mirrors, such as intracavitary elements. The first configuration is called
“cold cavity” in which there is no intracavity elements (only a single pass
is computed). The second configuration includes dispersion compensation
by using chirped mirrors. The third configuration includes an intracavity
EOM. Finally, the fourth configuration includes both dispersion compensa-
tion and EOM. As can be clearly verified, the speedup exceeds the value of
50 for n = 214, greatly justifying the use of the implementation in GPU. For
instance, to simulate 104 round-trips in the cw regime using two CWEs in
an OPO configuration with GVD compensation and intracavity EOM, the
runtime simulation is around 30 seconds/500 round-trips on GPU, while in
CPU results in 45 minutes/500 round-trips. However, the cw simulations
requires thousands of round-trips to converge the steady-state solutions.

Figure 2: Performance study of the implementation. (a) Complex operations speedup as
a function of the vectors size, n. The green shaded region corresponds to the interesting
vector size of 212, 213, 214 elements. Speedup in different OPO configurations for (b) two
and (c) three CWEs.
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4. Illustrative Examples

As illustrative examples, we present the use of cuOPO package in different time
scales (cw or pulsed nanosecond) for various TWM processes. As mentioned
in Sec. 3.3, it is necessary to use a preprocessor variable in the compilation
command line to select the regime. As also noted, there are only two values
that this variable can take: -DCW_OPO or -DNS_OPO, and it is mandatory to
define one of them during compilation.

In each example, two listings are shown: the first contains the command
line needed for the compilation, depending on each case; the second contains
the specific lines for each example, but not all the code due to its large size.
In the latter, it is mainly described how to initialize the electric fields, declare
resonant and non-resonant fields in the cavity, and how to save the complex
electric fields in a .dat file.

4.1. Main loop: The ring cavity

Before starting with the illustrative examples, it is recommended to surf
through the code and have an overview of its structure. Listing 3 shows the
main loop in which the fields propagate inside the cavity over several round-
trips (line 447 in file cuOPO.cu). The first is the evolution along the nonlinear
crystal, using the overloaded function, EvolutionInCrystal( parameters ),
where the electric fields are calculated using the CWEs. Additional effects
such as a phase due to detuning through δ, cavity losses through

√
R, incorpo-

ration of intracavity elements such as an EOM, or dispersion compensation,
are then implemented. Once this process is concluded, the next round-trip is
calculated, where the previously calculated electric fields are now the input
fields. This process is repeated for the number of round-trips, NRT, set by the
user as a global constant at the beginning of the main file. The functions

• ReadPump<<<...>>>(params.): Reads the input pump and copies to
Ap_gpu, the vector used as intracavity pump field.

• AddGDD<<<...>>>(params.): Adds an additional phase in the fre-
quency domain, useful to compensate the net cavity dispersion.

• PhaseModulatorIntraCavity<<<...>>>(params.): This function in-
corporates an EOM as a intracavity element. The user can incorporate
any intracavity element just by knowing its functional form.
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• SaveRoundTrip<<<...>>>(params.): save the current round-trip into
the output vector, which will later be saved in a .dat file.

are the so-called CUDA kernels that are executed on the GPU.

Listing 3: Structure of the part of the code corresponding to the cavity simulation.

// Main loop (fields in the cavity)

for (int nn = 0; nn < NRT; nn++){

...

// This function compute the CWEs performing the SSFM

EvolutionInCrystal(parameters );

// Dispersion compensation

if(GDD !=0){

AddGDD <<<grid ,block >>>(parameters );

cufftExecC2C(plan1D , (complex_t *)Asw_gpu ,

(complex_t *)As_gpu , CUFFT_FORWARD );

}

// If As is resonant , adds phase and losses.

if (is_As_resonant ){

AddPhase <<<grid ,block >>>(parameters );

}

// Use an intracavy phase modulator

if( using_phase_modulator ){

PhaseModulatorIntraCavity <<<grid ,block >>>(parameters );

}

...

}

4.2. Nanosecond input pulse in an OPO

The first example is shown in Fig. 3. An input pulse with full-width at half-
maximum (FWHM) duration of 10 ns and different peak powers of (a) 75 W,
(b) 100 W, and (c) 250 W, is used as a pump field in the cavity. The pump
wavelength is 532 nm and the signal wavelength is 1064 nm. This means
that this OPO operates at degeneracy. Here and in the next examples, we
use a 5-mm-long nonlinear crystal. Figure 3 also shows the output pump
and the generated signal. As expected, the greater the power of the pump,
the greater its depletion and faster the signal rise time.

Because this OPO operates at degeneracy, we only need two CWEs, since
signal and idler are indistinguishable. Thus, for nanosecond regime and for
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only two CWEs, the compilation line is shown in Listing 4. This compilation
line should be accordingly modified in line 23 or 26 in the cuOPO.sh file.

Listing 4: Compilation for nanosecond regime and two CWEs.

nvcc cuOPO.cu -DNS_OPO -DPPLN --gpu -architecture=sm_75

-lcufftw -lcufft -o cuOPO

Listing 5 summarizes the important variables to set the input pump
and signal fields, set the resonant fields to make singly-, doubly-, or triply-
resonant oscillator (SRO, DRO and TRO, respectively) cavity, and how to
save the results to a .dat file using the function SaveVectorComplexGPU.

Listing 5: Set the conditions for simulate the results in Fig. 3. These portions of code are
in the main file cuOPO.cu.

// Difine which fields are resonant (SRO , DRO or TRO)

bool is_Ap_resonant = false;

bool is_As_resonant = true;

#ifdef THREE_EQS // this is not executed (two CWEs)

bool is_Ai_resonant = true;

#endif

.

.

#ifdef NS_OPO // For nanosecond regime

real_t FWHM = 10000; // intensity FWHM for input [ps]

// set input pump (temporal Gaussian profile)

complex_t *Ap_in =( complex_t *) malloc(sizeof(complex_t )*SIZEL );

input_field_T(Ap_in , Ap0 , Tp, sigmap , SIZEL );

#endif

.

.

// Define input signal vector (NOISE)

complex_t *As = (complex_t *) malloc(nBytes );

NoiseGeneratorCPU (As, SIZE);

.

.

// Save data to .dat files

Filename = "signal_output";

SaveVectorComplexGPU (As_total , SIZEL , Filename );

Filename = "pump_output";

SaveVectorComplexGPU (Ap_total , SIZEL , Filename );

The pump input field, Ap_in, is initialized using the overloaded function,
input_field_T(Ap_in, Ap0, Tp, sigmap, SIZEL), where Ap0 is the elec-
tric field strength related to the pump power, Tp is the total time vector,
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sigmap is standard deviation of the Gaussian pulse, and SIZEL is the vector
size. The initial signal electric field starts from random amplitude and phase,
using the function NoiseGeneratorCPU(As, SIZE). It is important to note
that in our implementation, the pump power is passed as an external param-
eter through the shell script, cuOPO.sh. This is because for these examples
we perform successive simulations by varying the input power.

4.3. Continuous-wave OPO using 3 CWEs

In the second example, we model a doubly-resonant cw-pumped OPO at
532 nm to generate signal and idler at 1060 nm and 1068 nm, respectively.
In this case, both signal and idler are resonant, while the pump is single-
pass. The results are presented in terms of the pumping level, N = Pin/Pth,
defined as the ratio of the input pump power to the threshold pump power,
where [21]

Pth =
ϵ0cnpnsniλsλiw

2
0p

8πd2effL
2
cr

αsαi, (12)

with ϵ0 is the vacuum dielectric constant, c the speed of light, and w0p =
55 µm the pump beam waist in the crystal. The total losses at signal and
idler frequencies are αx = (1 − Rx + αcxLcr)/2 (x = s, i), where Rx and αcx

are the corresponding reflectivity and attenuation. The simulation results are
shown in Fig. 4, where the averaged output signal/idler power as a function of√
N (or equivalently,

√
Pp) is depicted in panels (a) (Rs, Ri) = (0.98, 0.80)

and (c) (Rs, Ri) = (0.98, 0.98). In panels (b) and (d) we plot the pump
depletion, (1 − P out

p /P in
p ) × 100%, as a function of N , clearly indicating

that the maximum pump depletion is achieved at N = 4, as expected [21].
Notice that the threshold condition (Pth ≈ 1.19 W and Pth ≈ 117 mW) is
numerically computed for this doubly-resonant OPO.

The command line to compile the cw regime using three CWEs is shown
in Linting 6. Note that we added the preprocessor variables, -DTHREE_EQS,
to specify the correct amount of equations, and the variable, -DCW_OPO, to
set the regime and the variable, -DPPLN, to set the crystal. This compilation
line should be accordingly modify in line 23 or 26 in the cuOPO.sh file.

Listing 6: Compilation for cw regime and three CWEs

nvcc cuOPO.cu -DCW_OPO -DPPLN -DTHREE_EQS --gpu -architecture=sm_75

-lcufftw -lcufft -o cuOPO

Listing 7 shows the relevant setting to run these simulations. By defining
the preprocessor variable, -DCW_OPO, the code calls the overloaded function,
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input_field_T, that initializes the input pump. As in the pulsed nanosec-
ond regime, both signal and idler initial electric fields start from random
amplitude and phase, using the function, NoiseGeneratorCPU(A,SIZE).

Listing 7: Set the conditions for simulate the results in Fig. 4. These portions of code are
in the main file cuOPO.cu.

// Define which fields are resonant (SRO , DRO or TRO)

bool is_Ap_resonant = false;

bool is_As_resonant = true;

#ifdef THREE_EQS // this is now executed (three CWEs)

bool is_Ai_resonant = true;

#endif

.

.

// Set input pump in cw regime

#ifdef CW_OPO

complex_t *Ap_in = (complex_t *) malloc(nBytes );

input_field_T(Ap_in , Ap0 , SIZE);

#endif

.

.

// Define input signal vector (NOISE)

complex_t *As = (complex_t *) malloc(nBytes );

NoiseGeneratorCPU (As, SIZE);

// this line runs when set -DTHREE_EQS in the compilation

#ifdef THREE_EQS

// Define input idler vector (NOISE)

complex_t *Ai = (complex_t *) malloc(nBytes );

NoiseGeneratorCPU (Ai, SIZE);

#endif

.

.

// Save data to .dat files

Filename = "signal_output";

SaveVectorComplexGPU(As_total , SIZEL , Filename );

Filename = "pump_output";

SaveVectorComplexGPU(Ap_total , SIZEL , Filename );

// this line runs when set -DTHREE_EQS in the compilation

#ifdef THREE_EQS

Filename = "idler_output";

SaveVectorComplexGPU(Ai_total , SIZEL , Filename );

#endif
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4.4. Continuous-wave OPO using 2 CWEs

The third example concerns the two CWEs in a DRO configuration, in which
the OPO operates at degeneracy (signal and idler are not distinguishable), as
shown in Sec. 4.2. In this case, a pump wavelength at λp = 532 nm generates
a degenerate field at λs = 1064 nm. As expected, the signal and pump power
follow the same relation as in Sec. 4.3, that is Ps =

√
Pp. This is shown in

Fig. 5 (a), where after the threshold pumping level is breached the generated
signal linearly scales with

√
N . Figure 5 (b) shows the pump depletion as a

function of N , which is again maximized at N = 4. Figure. 5 (c) shows a
short-time slice of 40 ps (left axis) of the total round-trip time, trt ≈ 102 ps,
of the normalized signal intensity (∝ |As|2) and the corresponding phase,
ϕs (right axis). As can be seen, the phase takes two possible values, π/4
and −3π/4, as expected from theoretical analisys [26]. The corresponding
spectrum is shown in Fig. 5 (d).

The compilation command line using two CWEs is shown in Listing 8.
Note that we omitted the preprocessor variable, -DTHREE_EQS, since two
CWEs is set as a default. Once again, the variable, -DCW_OPO, is declared to
set the cw regime and the variable, -DPPLN, to set the crystal. This compi-
lation line should be accordingly modified in line 23 or 26 in the cuOPO.sh

file.

Listing 8: Compilation for cw regime and two CWEs

nvcc cuOPO.cu -DCW_OPO -DPPLN --gpu -architecture=sm_75

-lcufftw -lcufft -o cuOPO

Listing 9 shows the relevant setting to run these simulations. By defining
the preprocessor variable, -DCW_OPO, the code calls the overloaded function,
input_field_T, that initializes the input pump. As in the previous exam-
ples, signal initial electric field starts from random amplitude and phase,
using the function, NoiseGeneratorCPU(As,SIZE).

Listing 9: Set the conditions for simulate the results in Fig. 5. These portions of code are
in the main file cuOPO.cu.

// Set input pump in cw regime

#ifdef CW_OPO

complex_t *Ap_in = (complex_t *) malloc(nBytes );

input_field_T(Ap_in , Ap0 , SIZE);

#endif

.

.

// Define which fields are resonant (SRO , DRO or TRO):
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// single pass = false / resonant = true

bool is_Ap_resonant = false;

bool is_As_resonant = true;

.

.

// Define input signal vector (NOISE)

complex_t *As = (complex_t *) malloc(nBytes );

NoiseGeneratorCPU(As, SIZE);

.

.

// Save data to .dat files

Filename = "signal_output";

SaveVectorComplexGPU(As_total , SIZEL , Filename );

Filename = "pump_output";

SaveVectorComplexGPU(Ap_total , SIZEL , Filename );

5. Conclusions

In this work we have presented an efficient and fast software tool that allows
us to study and numerically model optical parametric oscillators. This tool
implements the symmetrized split-Step Fourier Method with the purpose of
solving the coupled differential equations that describe the propagation of
light in second-order nonlinear media represented by Eqs. 2-4.

In order to speed up the simulations, which are often computationally
demanding, the code was scripted in the CUDA programming language to
be executed on a graphics card, or GPU. The achieved increase in speed will
depend on the GPU used. Here, we obtained a speedup of 50X in comparison
with an equivalent CPU-based implementation using a GPU GeForce GTX
1650 for vector size n = 214.

The package allows the modeling of OPOs that operate in the pulsed
nanosecond or continuous-wave regime in practical configurations, and the
cavity can determine which fields will or will not be resonant depending on
the particular scheme (SRO, DRO, TRO). A single nonlinear crystal was
used in the implementation of this package, but the incorporation of one
or more nonlinear media, as well as the addition of intracavity elements, is
simple and straightforward.

The package returns as an output text files <output_file>.dat contain-
ing the vectors of time, frequency, and electric fields. Since the electric field
is a complex function in the time domain, we have decided to create a dif-
ferent file for the real and imaginary part separately. Finally, each user can
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use these outputs for post-processing, for example by reading these files in
Python or Matlab.

We believe that the community will find this package useful for study-
ing and modeling not only OPOs, but also other systems similar to those
presented here, by adapting or modifying the routines deployed in cuOPO.
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Figure 3: Nanosecond pump regime for a peak power of (a) 75 W, (b) 100 W, and (c)
250 W. The pump and signal wavelengths are λp = 532 nm and λp = 1064 nm, respectively.
Blue curves correspond to the input (solid) and output (dashed) pump, whilst the red curve
correspond to the extracavity output signal.

25



Figure 4: Simulations in the cw regime and three CWEs. The panels show the dependency
of the signal/idler power as a function of the pump power, for a pump wavelength at
λp = 532 nm. The signal/idler reflectivities are the same (a) and different (b).
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Figure 5: Simulations in the cw regime and two CWEs for an OPO working at degeneracy.
Panel (a): dependency of the signal power as a function of the square root of the pumping
level,

√
N , for a pump wavelength at λp = 532 nm. Panel (b): pump depletion as a function

of N . Panel (c): left axis shows the normalized intensity as a function of the time; right
axis shows the signal phase as a function of the time. Panel (d) the corresponding signal
spectrum.
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