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Abstract
The family of weighted likelihood estimators largely overlaps with minimum divergence estimators.
They are robust to data contaminations compared to MLE. We define the class of generalized
weighted likelihood estimators (GWLE), provide its influence function and discuss the efficiency
requirements. We introduce a new truncated cubic-inverse weight, which is both first and second
order efficient and more robust than previously reported weights. We also discuss new ways of
selecting the smoothing bandwidth and weighted starting values for the iterative algorithm. The
advantage of the truncated cubic-inverse weight is illustrated in a simulation study of three-
components normal mixtures model with large overlaps and heavy contaminations. A real data
example is also provided.
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1. Introduction
Robust density estimation through the minimum divergence estimators (MDE) dates back to
1950s. The target divergences between the empirical and model distributions could be defined
through the characteristic, moment generating, distribution or density functions. Those
divergences used in early research include Kolmogorov-Smirnov, Wolfowitz, Cramér-von
Mises and squared L2 norm (Parr, 1981), where the robustness of corresponding MDE is
achieved through boundedness of influence function (IF) at the cost of first order efficiency.
Beran (1977, 1978) started the recent line of density-based disparities by addressing both
robustness and full first order efficiency of minimum Hellinger distance estimator, as well as
the non-uniform convergence of ε-influence curve to the influence function. Lindsay (1994);
Basu and Lindsay (1994) addressed the inaccuracy of influence function as the first order
approximation to the bias response curve, thus an estimator could both have the same IF as
MLE, i.e. be first order efficient, and be robust at the cost of the second order efficiency (Rao,
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1962). Specifically, given continuous model density fθ and empirical density , define the
smoothed densities  and , where k(x; t, h)
= k((x − t)/h) is the common smoothing kernel. The choice of bandwidth h has been discussed
in Markatou (2000) for the finite normal mixture model. The family of δ-divergences is defined
as

(1)

where G is a thrice-differentiable function on [−1, ∞) with G(0) = 0, and the smoothed Pearson
residual  is

(2)

The family (1) includes the power class (Cressie and Read, 1984), blended-χ2 and general
negative exponential (Jeong and Sarkar, 2000) through the choice of function G. For example,
the symmetric-χ2 divergence (Markatou et al., 1998), which is a particular case in the blended-
χ2, corresponds to G(δ) = 2δ2/(δ + 2); and the negative exponential divergence (Bhandari et
al., 2006) corresponds to G(δ) = e−δ − 1. Other recent studies involve the density power
divergence (Basu et al., 1998)

(3)

including Kullback-Leibler divergence (β → 0) and L2 distance (β = 1). Minimum density
power divergence estimators are not first order efficient when β > 0 because of the bounded
influence function (Jones et al., 2001).

The rest of this paper is organized as follow. In section 2 we unify previously considered
minimum divergence estimators as generalized weighted likelihood estimators (GWLE),
provide their influence function and discuss the efficiency requirements. In section 3 we
introduce GWLE with new truncated cubic-inverse weight. In section 4 we consider the density
estimation of finite mixture of exponential family distributions and describe a simple iterative
algorithm for computing such GWLE. Numerical studies are carried out on simulations of
three-components normal mixtures model featuring high overlaps and heavy contaminations.
A real data example is also provided.

2. The generalized weighted likelihood estimator
Let  be the empirical distribution of the random sample X1, …, Xn and  be

the model family. The generalized weighted likelihood estimator (GWLE) T , introduced
here, is the solution of estimating equation  with

(4)

where uθ = ▽ ln fθ is the vector of score functions and a(θ) = EFθ (w(x)uθ(x)) is the bias
adjustment term to ensure Fisher consistency. The weight w(xi; Fθ, ) serves as an adjustment
to potential contamination at xi. For example, MLE is the solution of , which
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assigns weight w(x) = 1 to all observations. However, the estimating function  does not
have to satisfy the definition of M-estimators, for which the estimating function ψ(xi, θ)
contains only the observation xi and parameter θ (Huber, 1981). Instead, (x, θ) may contain
the whole random sample through the weight w(x; Fθ, ). Therefore the asymptotic properties
of GWLE do not immediately follow from the general theory of M-estimators. The GWLE
class also includes the minimum density power divergence estimator (Basu et al., 1998), which
is an M-estimator with

(5)

The estimating equation based on the derivative of δ-disparity (1) takes form of the integral

. Substitute  and  by fθ and , while keep w( ) intact (Basu and

Lindsay, 2004), we end up with GWLE with  and a(θ) = 0. Specifically,
the weight of minimum symmetric-χ2 divergence estimator is (Markatou et al., 1998)

(6)

and the weight for minimum negative exponential divergence estimator (Bhandari et al.,
2006) is

(7)

These weights discussed above either depend on fθ as in (5) or on  as in (6); (7). The first
type down-weighs low density points, i.e. observations with small fθ(xi). The second type
distinguishes outliers (where  > 0) and inliers (where  ∈ (−1, 0]) and is re-scaled so that

 for sample points concordant with the model, which also serves as a reference for
comparison. Figure 1(a) shows weights (6); (7) together the weight of MLE and minimum

Hellinger distance estimator . It is interesting that the negative
exponential weight (7) assigns weights larger than 1 for inliers, knowing that this estimator is
second order efficient and robust to both outliers and inliers (Lindsay, 1994).

Next, we develop the influence function and efficiency requirements of GWLE estimators T

(·) with weight , which allow down weighing simultaneously the
outliers, inliers and low-density points.

Theorem 1
Let G be the true distribution and Fθ be the model distribution. T(·) is the GWLE with weights
w(x, δ*, fθ) defined through smoothing kernel k(x; t, h). Let θ = T(G), we have

(i). Under mild regularity conditions (Basu and Lindsay, 1994), the sequence of
estimators T( ) exists.

(ii).
The influence function of T is ,

(8)
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(9)

where . Notation (·)t denotes vector transposition. The partial

derivatives are  and .

(iii). The asymptotic distribution of  is multivariate normal with

mean 0 and covariance matrix , and

(10)

Proof. See Appendix.

Here we give the sufficient conditions for efficiency of GWLE. The GWLE T(·) with weight

w(xi; , fθ) is first order efficient if , and is second order efficient (Rao,
1962) if , where  is the second order derivative. The proof is a quick
derivation from Remark E of Lindsay (1994), where the author listed the efficiency
requirements on residual adjustment function. As there exists a one-to-one correspondence
between residual adjustment function and weight function, the equivalent requirement on
weight function is obtained. This implies that an estimator which is second order efficient
assigns weights larger than 1 to inliers, as does the negative exponential weight (7) shown in
Figure 1.

3. The truncated cubic-inverse weight
In this section we introduce the new truncated cubic-inverse weight, which both satisfies the
requirements in section 2 and has better empirical robust properties than the previous weights
(5), (6) and (7) as shown in section 4.2. Define the inverse weight

(11)

A heuristic explanation of the advantage of inverse weight is given below. Consider the
estimating function

(12)

where . On the other hand, let estimator MLE* be the solution of

estimating equation , where  (Basu and
Lindsay, 1994). For any random sample  coming from underlying density g = fθ, the
asymptotic limit of MLE* estimating equations is (12),

(13)
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Given the full efficiency of MLE* under transparent kernels, such as a normal kernel k(x; t,
h) for normal model (Basu and Lindsay, 1994), the estimator as solution to (12) is also fully
efficient. The estimating equation (12) is simplified by removing the smoothing kernel on score
function uθ and  (Basu and Lindsay, 2004),

(14)

which is equivalent to WLE with the inverse weight w1 in (11).

However, the simplification (14) no longer keeps the efficiency of the estimator. We restore
the efficiency by replacing the inverse weight w1 by a cubic curve at the neighborhood of δ*
= 0 in order to satisfy the efficiency requirements in section 2. Define the cubic-inverse weight

(15)

Any one of the three parameters (c, x+, x−) determines the other two by solving the continuity
equations at the positive real root δ* = x+. The negative real root x− may not exist, in which
case we let w2 = w1 when δ* ≥ x+ and be the cubic curve when δ* < x+. The cubic-inverse
weight w2 satisfies the efficiency requirements in section 2. Figure 1(b) gives some examples
of weight w2 with different (c, x+, x−), in which the solid line represents the inverse weight
w1. The selection of cubic coefficient c is discuss in section 3.2.

3.1. Selection of smoothing bandwidth h
Selection of bandwidth h in smoothing kernel k(x; t, h) plays an important role in determining
the cubic coefficient c and the right truncation point. Let g be an arbitrary continuous density
and X1, ⋯, Xn be a random sample with empirical density . Define the nonparametric Pearson

residual  calculated by smoothed empirical densities at a narrow bandwidth h1 and a wide
bandwidth h2 = 2h1,

(16)

where  for i = 1, 2. Our criterion of choosing h = h1 is that the

distribution of  does not depend heavily on density g nor sample size n, since the
subsequent choice of cubic coefficient c and truncation threshold l2 will be decided by the

approximated distribution of .

It has been suggested that for k-component normal mixtures one may use 
iteratively, where k takes values roughly in range (.001, .05) based on the criterion of average
down-weight (Markatou, 2000). However, this choice of bandwidth does not satisfy our
criterion; as it's difficult to generalize it to an arbitrary density g, and unrealistic to use the same
bandwidth for both large and small sample size n. Therefore, we propose a new choice of
bandwidth

(17)
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where MAD stands for median-absolute-deviation. We empirically compare the bandwidth
(17) with the standard R (R Development Core Team, 2008) functions of bandwidth selection
for Gaussian kernels bw.*(), where * may be replaced by nrd0 or nrd representing the "rule-of-
thumb" choice (Silverman, 1986; Scott, 1992); ucv or bcv representing unbiased or biased
cross-validation (Scott and Terrell, 1987); and SJ representing the method using pilot
estimation of derivatives (Sheather and Jones, 1991). All these choices contain the sample size
n at different scales of power.

In Figure 2, the smoothed Pearson residuals  for various densities g's are calculated and box-
plotted under sample size n = 500 and 100, with y-axis range (−0.6, 0.6) to magnify the boxes
and exclude the points outside the whiskers. The six sets of box-plots, from left to right, are
from density g consisting of Unif(0, 1), Beta(5, 3), N(0, 1), t4, F7,10 and our finite normal
mixture density in Figure 3(a), respectively. Within each set of box-plots, the five parallel
boxes are, from left to right, using bandwidth (17), nrd, ucv, bcv and SJ, respectively.

The bandwidth (17), which is the first box-plot of each set, best satisfies our criterion that the

distribution of  is closer to symmetry around 0 and stays roughly the same across different
models and sample sizes. The other choices, however, have varying performances under our
criterion for different sample sizes, and are overall not as good as bandwidth (17). Thus we
suggest that bandwidth (17) is preferred under our criterion regardless of the underlying
distribution and sample size. Nonetheless, the choice of h is still wide open for different
weights, and researchers may choose other h for their own smoothing problems.

3.2. Selection of cubic coefficient c and truncation on the right tail
The cubic coefficient c is chosen such that within the inter-quartile range of the smoothed

Pearson residuals (16), the cubic-inverse weight  falls in the interval 1 ± Δw. Figure 2
shows that when using , the inter-quartile range of nonparametric Pearson

residuals  is safely covered by the interval (−0.2, 0.2); thus the cubic coefficient c is
determined by solving 0.23|c| ≤ Δw. Let Δw = 0.1, then |c| ≤ 12.5. On the other hand, we place
another restraint that |c| ≥ 8 to avoid too much cubic modification. As shown in Figure 1(b),
different c values in the range (−12.5, −8) hardly affect the shape of cubic-inverse curve, thus
we may pick our choice as we like. The weight w3 with c = −8 is added to Figure 1(a) for
comparison.

A refinement to the cubic-inverse weight w2 is to truncate the weight when δ* exceeds a
threshold l2, since the smoothed Pearson residuals for most continuous densities are right-
skewed with a very heavy tail, which is not shown in Figure 2. In order to further reduce the
influence of extreme outliers, we iteratively assign weight zero to sample points with Pearson

residuals  greater than a threshold l2. Define the truncated cubic-inverse weight

(18)

One possible choice is to let l2 be the 95% percentile of  calculated at each iteration step.
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4. Application to finite mixture of exponential family distributions
4.1. Iterative algorithm for solving GWLE

In this section we briefly outline the steps of obtaining the truncated cubic-inverse weight (18)
and provide an iteration algorithm for solving GWLE (4) under the finite mixture model of
exponential family distributions

(19)

where ξs = (ξs1, ⋯, ξsQ)t are the canonical parameters and ηs = (ηs1, ⋯, ηsQ)t the mean
parameters of the sth component. Let TX = (TX,1, ⋯, TX,Q)t be the sufficient statistics of X. In
this work, we do not step away to the discussion of the selection of mixture component, which
itself constitutes a major topic of interest in this field (see Turner and West, 1993;Roeder,
1994;West, 1997;Richardson and Green, 1997;Stephens, 2000;Ishwaran et al., 2001;Ishwaran
and James, 2002). Instead, we assume that the number of component k is fixed and known in
our problem.

In this section we discuss the selection of starting value, smoothing bandwidth h, iteration steps
and convergence criterion for estimating the finite mixture model (19) based on random sample
X1, ⋯, Xn. First of all, the choice of starting value is critical for most iterative algorithms. We
obtain a tentative partition of the data into k groups through one of the existing methods such
as k-means and trimmed k-means (Cuesta-Albertos et al., 1997), robust clustering (Woodward
et al., 1984) or the watershed algorithm (Vincent and Soille, 1991). All of these partitions have
been developed under certain robustness considerations and produce their own corresponding
starting values. However, for our iterative algorithm with updating steps (20) and (21), we can
greatly reduce the number of iteration if we use these partitions to produce our "weighted
starting values", which is described in detail below. Within each group, we calculate the

nonparametric smoothed Pearson residual (16) and the corresponding weight .
We use weight  to obtain the starting values p(0), as the weighted proportion of the sample
size in each group , where  represents the set of random sample in group s,
and the weighted moments of the random sample within each group. As every exponential
family distribution has a one-to-one correspondence to its first few moments, we could get the
starting values  through simple transformation of these weighted moments. Specifically,
when the model (19) is a mixture of normals, the starting μ0's are the weighted medians and
σ0's are the weighted median-absolute-deviation (MAD)'s of each group.

The iteration steps of solving model (19) is given below,

1. Let θ(d−1) = (p(d−1), η(d−1)) or θ(d−1) = (p(d−1), ξ(d−1)) be the estimates from (d − 1)th
iteration.

2. Calculate Pearson residual  with θ(d−1) as in (1).

3. Let . Specifically for truncated cubic-inverse weight (18),
choose c and l2 as suggested in section 3.2. Let

, s = 1, ⋯, k.

4. Obtain the bias adjustment term a(ξ(d−1), p(d−1)) by numeric integration. Let a:ξsq and
a:ps be the elements of a corresponding to ξsq and ps.
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5. Update ps and ηsq, s = 1, ⋯, k, q = 1, ⋯, Q, by

(20)

(21)

The updating steps for finite normal mixtures model are included in this algorithm with

 and Tx = (x, x2)t; this special case together with density power weight (5) is
discussed in Fujisawa and Eguchi (2006).

The convergence of the series of estimates θ's is equivalent to the convergence of the series of
weights w, since they depend on each other iteratively, i.e. θ(n−1) ⇒ w(n) ⇒ θ(n) ⇒ w(n+1) ⇒
θ(n+1). The convergence criterion based on weights w rather than estimates θ is more reliable
and not specific to particular model. Let . Similar to R2 in regression,
the criterion is set to be

(22)

where function var() calculates the sample variance. We use ε = 1% in the simulation studies.

4.2. Simulation results
The simulation study is carried out on a scenario of three components normal mixtures sketched
in Figure 3 with sample size n = 400. We generate 1000 data sets from each scenarios: a clean
density (a) .2N(−10, 3) + .5N(0, 5) + .3N(15, 4); and a contaminated density (a1) where outliers
of 5% are added at N(−18, 4) and the third component is replaced by a shifted and re-scaled
F-distribution with the same mode as the original normal density. The overlaps (Woodward et
al., 1984) between adjacent components in scenario (a), the areas highlighted, are 7.2% and
3.7%, respectively.

Estimators compared are MLE and GWLEs with weights of density power (5), symmetric χ2

(6), negative exponential (7), cubic-inverse (15) and truncated cubic-inverse (18). The starting
partitions are obtained from robust clustering (Woodward et al., 1984). The tuning parameter
for density power weight (5) is selected from β = .15, .20, .25, .30 by minimizing Cramer-von
Mises divergence through cross-validation (Fujisawa and Eguchi, 2006). The kernel smoothing
bandwidth is . The truncated cubic-inverse weight (18) has the cubic
coefficient c = −8. The convergence criterion for MLE is a set of pre-specified thresholds on
the L2 norms of ∥pnew −p∥2, ∥μnew −μ∥2 and ∥σnew −σ∥2; while for all GWLE estimators we
use criterion (22). Figure 4 shows boxplots of errors of different estimators for μ's, σ's and
p's, where the scale of p's are multiplied by a factor of 10 in order to enlarge the boxplots. The
truncated cubic-inverse weight (18) generally retains efficiency under the uncontaminated
scenario (lower panel of Figure 4) and provides the overall best estimation under the
contaminated scenario (upper panel of Figure 4), in terms of smaller bias and mean squared
error. This advantage is especially obvious when estimating the scale parameters σ1 and σ3,
where either inliers or outliers are present.
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4.3. Tendon fibrilogenesis data
The case study described in this section comes from the tendon collagen fibrilogenesis
experiment (Zhang et al., 2006). From the two mice strains, decorin deficient (DD) and wild
type (WT), the fibril cross-sections are made, photographed under the microscope and the fibril
diameters are measured. Typically, slices of mature fibril (2 month or older) have around 50–
150 diameter measurements on each field. The top row of Figure 5 show histograms of fibril
diameters on selected microscopic fields, which are modeled by finite normal mixtures which
provide insight into the mechanisms of collagen fibrillogenesis. It was suggested (Zhang et al.,
2006) that three components were appropriate for 2 month or older fibrils. The contaminations,
such as heavy tails shown in histograms, are either due to genetic alterations (e.g. abnormally
large fused fibrils) or cross sections through the tapered ends of fibrils. Robust GWLE estimates
with all weights are calculated, among which the negative exponential (7) and truncated cubic-
inverse (18) are plotted in the bottom rows of Figure 5. The first selected field shows a scenario
with similar estimates from all weights, while the second and third fields show that truncated
cubic-inverse (and cubic-inverse) weights are less affected by the small cluster outliers
appearing to the left of the data.

5. Concluding remarks
In this paper, we proposed the truncated cubic-inver weight for the class of generalized
weighted likelihood density estimators, which retains the first and second order efficiency and
is more robust than previously reported weights (Fujisawa and Eguchi, 2006; Markatou et al.,
1998; Bhandari et al., 2006) under heavy data contamination. We also proposed an iterative
algorithm for solving GWLE under the model family of finite exponential-family distribution
mixtures, with the new weighted starting values. This approach can be generated to multivariate
density estimation.

Acknowledgments
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6. Appendix

Proof of Theorem 1
Given a fixed distribution G, contaminated Gε,x0 = (1−ε)G+εΔ(x0) and model family , the
estimating equation (4) for GWLE T(·) with weight w(x, , fθ) is equivalent to

(23)

where θ = T(Gε,x0) and k(x; t, h)-smoothed Pearson residual . The
general theory about influence function of M-estimator (Hampel et al., 1985) is not applicable
(section 2). Here let (·)t denote transposition of vectors and take the derivative of equation (23)
with respect to ε,

(24)
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where ∂θ/∂ε|ε=0 = IF(x0),  and .

(25)

Substitute (25) into (24) and evaluate at ε = 0,

(26)

and substitute  into (26), one could solve for
influence function (8); (9). Note this is influence function of the WLE from Eq (4), which is
an approximation of minimum disparity estimator of Lindsay (1994); for influence function
of the latter, refer to Basu and Lindsay (1994). The proof is applicable to empirical distribution

 and contaminated .
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Figure 1.
Weight functions depending on smoothed Pearson residual 
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Figure 2.
Distribution of δ* for 6 generating distributions. For each distribution the 5 boxplots represent
smoothing bandwidths h for (17), nrd, ucv, bcv, and SJ.
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Figure 3.
(a) clean data; (a1) contaminated data.
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Figure 4.
Box-plot of estimation errors of contaminated (a1) at top vs. clean (a) at bottom, with sample
size 400. From left to right: MLE, density power, symmetric χ2, negative exponential, cubic-
inverse, truncated cubic-inverse.
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Figure 5.
Selected microscopic fields of the fibril diameter measures from 3 months old mice.
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