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Abstract

This work deals with the probabilistic p-center problem, which aims at minimizing the expected

maximum distance between any site with demand and its center, considering that each site has

demand with a specific probability. The problem is of interest when emergencies may occur at

predefined sites with known probabilities. For this problem we propose and analyze different

formulations as well as a Variable Neighborhood Search heuristic. Computational tests are reported,

showing the potentials and limits of each formulation, the impact of their enhancements, and the

effectiveness of the heuristic.

Keywords: Discrete location, P-center, Mixed integer linear formulations, Demand uncertainty.

1 Introduction

Many discrete location models have been inspired by a variety of applications in logistics, telecommu-

nications, emergency services, etc. The goal is to locate a number of facilities within a set of candidate

sites and assign customers to them optimizing some effectiveness measure, usually depending on the

assignment distances (see Laporte et al., 2015; Daskin, 1995; Drezner and Hamacher, 2002).

Among them, the p-center problem (pCP ) aims at locating p centers out of n sites and assigning

the remaining sites to the centers, so that the maximum distance between a site and its assigned center

is minimized (see Calik et al., 2015). Although the pCP is NP-hard (Kariv and Hakimi, 1979), it can

be solved efficiently via bisection search (see Daskin, 1995, 2000). Nonetheless, extensive literature

exists proposing exact and heuristic algorithms for (Calik and Tansel, 2013; Irawan et al., 2015). The
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main applications of the pCP are the location of emergency services like ambulances, hospitals or fire

stations, since, in this context, the whole population should be timely reachable from some center.

However, as already observed in the past, locating services according to the pCP may increase the

effective service distances (see Ogryczak, 1997). This motivated alternative models, such as the cent-

dian (Halpern, 1978).

This work presents a stochastic pCP variant (see, for instance, Snyder and Daskin, 2005; Berman et al.,

2007; O’Hanley et al., 2013; Snyder, 2006). This variant aims at smoothing this loss of spatial effi-

ciency, trying to keep the centers close to where they are needed. Namely, the probabilistic p-center

problem (PpCP ) aims at finding p centers, out of n sites, that minimize the expected maximum

distance between a site with demand and its allocated center, assuming that demands can occur at

each site independently, and with a known probability.

As stated above, considering the expected maximum service cost instead of the maximum assign-

ment distance, prevents situations where a remote site with a low demand probability forces to place

centers further from the remaining sites than it is desirable. In applications like firefighting, for in-

stance, one pretends to provide service to a whole region but it wouldn’t make sense to use a worst-case

approach if the region contains areas with high risk of fire, and others where a fire is very unlikely to

take place. Another real situation that fits to our model could be the case of locating several security

offices to attend as fast as possible burglary alarms in different neighborhoods of a city. Obviously, by

beforehand studies and previous experience, it would be possible to know that some neighborhoods are

safer than others, and then an estimation of the probability that a theft takes place in a neighborhood

can be computed. In this case, the probabilities that a theft occurs in two different neighborhoods are

independent. In such situations, the PpCP would be much more convenient than the classical pCP .

From the modeling point of view, the PpCP falls into the stochastic programming paradigm, where

uncertain values are described through probability distributions (see, for instance, Albareda-Sambola et al.,

2011; Huang et al., 2010) as opposite to the robust optimization approach, which attempts to opti-

mize the worst-case system performance when uncertain data is only described using data ranges (e.g.,

Kouvelis and Yu, 1997; Puerto and Rodŕıguez-Ch́ıa, 2003; Espejo et al., 2015; Lu, 2013; Lu and Sheu,

2013). The PpCP also differs from other analyzed location problems where the centers are not re-

stricted to be nodes of a network (see Berman et al., 2011).

For the PpCP we explore three formulations and a variable neighborhood search (VNS) heuristic.

Within the formulations, we have considered an ordered objective function (see Nickel and Puerto,

2005). This function weights the assignment costs with different factors that depend on their position
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in the ordered list of incurred costs. In the PpCP , these factors are decision variables, since each one

depends on the customers that have larger costs.

The paper is organized as follows. Section 2 defines and analyzes the PpCP and the more general

K-PpCP , where only the K largest assignment distances are considered. Section 3 focuses on the

homogeneous case (all customers share the same demand probability). The alternative formulations for

the general K-PpCP and their enhancements are exposed in Section 4. Lower and upper bounds are

discussed in Section 5 and a VNS heuristic is presented in Section 6. The computational experiments

evaluating the formulations and their enhancements, the quality of the bounds, and the efficacy of the

heuristic, are reported in Section 7. Our findings and future research lines conclude this work.

2 The problem

Let N = {1, . . . , n} be the given set of customer sites. Throughout the paper we assume, without

loss of generality, that the set of candidate sites for centers is identical to N , although all results

apply in the case where only some of them are eligible. Let p > 2 be the number of centers to be

located. For each pair i, j ∈ N , let dij be the distance (service cost) from i to j. We assume dii = 0

∀i ∈ N and dij > 0 ∀i 6= j ∈ N (these distances need not to be proper distances, since triangle

inequality is not assumed to hold). In case of ties among several distances from the same site we

assume without loss of generality, that preferences are given by the site index. Accordingly, in what

follows, site i will prefer center j rather than j′, denoted by dij ≺ dij′ , whenever dij < dij′ or dij = dij′

and j < j′. Finally, service requests at the customer sites are assumed to take place independently

with probabilities 0 < qi 6 1, i ∈ N .

A solution to the PpCP consists of a set of p centers, plus the assignment of each site to one of them.

However, at the moment of making the decision, we do not know which customers will indeed place a

request. Therefore, once demands are revealed, only the service of customers with demand will incur a

cost. Accordingly, in what follows, we will distinguish between assignment distances (distances between

customers and their respective assigned centers) and service costs (distances between customers where

demand occurs and their respective assigned centers). The goal of the PpCP is to identify the solution

with the smallest expected value (among all scenarios) of the maximum service cost.

Example 2.1 Given the set of sites N with coordinates N = {(21, 39), (37, 16), (19, 26), (71, 26), (25, 59),

(85, 39), (88, 59), (82, 59), (15, 86), (41, 26)}, and using Euclidean distances; consider the three instances

of the P3CP defined by the following three probability vectors:
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• q1 = ( 0.06 , 0.05 , 0.07 , 0.02 , 0.1 , 0.11 , 0.18 , 0.09 , 0.01 , 0.16 ) ,

• q2 = ( 0.45 , 0.56 , 0.51 , 0.46 , 0.41 , 0.54 , 0.59 , 0.43 , 0.44 , 0.52 ) and

• q3 = ( 0.89 , 0.84 , 0.82 , 0.81 , 0.83 , 0.88 , 0.83 , 0.96 , 0.94 , 0.92 ).

The instances and the corresponding optimal solutions are shown in Figure 1. Each circle represents

a site, and its size is proportional to its corresponding q value. Optimal centers are filled in black. As

q1 : z
∗ = 15.69. ≡ 3-median q2 : z

∗ = 23.68. ≡ 4-3-centrum q3: z
∗ = 27.31. ≡ 3-center

Figure 1: Solutions with different demand probabilities

can be observed, when demand probabilities are small (q1), the optimal centers for the P3CP coincide

with the optimal solution of the 3-median problem. Similarly, the solution of the 4-3-centrum (locating

3 facilities with the 4-centrum criterion) is optimal for the P3CP with demand probabilities given by

q2. Finally, the P3CP and the 3CP have the same solution for large demand probabilities (q3).

The above example illustrates the typical behavior of the PpCP in relation to classical location

models, for different q values. Indeed, if demand probabilities are similar and very small, the probabil-

ities of each assignment distance yielding the largest service cost become very similar and, therefore,

the PpCP resembles the p-median problem. As opposite, if these probabilities are high, the probabil-

ity that the furthest assignment yields the largest service cost is almost 1 and, therefore, all the other

assignment distances have small weights in the objective function, leading to solutions similar to those

of the pCP . That is, depending on the demand probabilities, the PpCP may yield a whole range of

solutions. Therefore, the PpCP can be seen as a tradeoff between classical discrete location models

that focus on reducing the largest assignment distances, such as the pCP or the k-centrum, and those

that minimize the total service distance, like the p-median. Analogously, from the managerial point

of view, the model presented here allows to identify solutions that represent a tradeoff between the

quality of service (associated with minimizing the largest assignment distance) and the cost of service

(associated with minimizing the total assignment cost).
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Recall that the objective function of the PpCP accounts for the expected maximal service cost.

To compute this expected value for a solution where the set of located centers is J ⊂ N , we will use a

matrix (πij)i∈N,j∈N . Hence, if site i is assigned to a center located at j ∈ J , πij will be the probability

that there is no demand at the sites whose assignment distances are larger than dij, and it will take

value 0 otherwise.

Lemma 2.1 For a given solution with centers located at J ⊂ N , the matrix (πij)i∈N,j∈N satisfies:

1. |{j ∈ J : πij 6= 0}| 6 1 and πij = 0 ∀j /∈ J,∀i ∈ N .

2. Let d(1) 6 · · · 6 d(n) be a non-decreasing sequence of assignment distances and (1), . . . , (n) the

corresponding sequence of customers. For i 6 n,
∑

j∈N π(i)j =
∑

j∈J π(i)j =
∏n

t=i+1(1− q(t)).

3. The expected maximum service cost can be computed as
∑n

i=1

∑n
j=1 πijqidij =

∑n
i=1

∑

j∈J πijqidij.

4. It holds that
n
∑

i=1

∑

j∈J

qiπij = 1−

n
∏

j=1

(1− qj) 6 1. (1)

Proof:

1. Follows from the single assignment assumption and the definition of π.

2. Given a solution, for each i ∈ N let ji be its assigned center in the solution. Then, by 1),
∑

j∈J π(i)j = π(i)j(i) . Now, by definition, π(i)j(i) =
∏n

t=i+1(1 − q(t)); that is, the probability

that all sites with assignment costs larger than d(i)j(i) have no demand. Note that this can be

computed as the product for all these sites of the probability of not having demand, since service

requests are assumed to be independent.

3. Note that, a given assignment distance diji will become a service cost only if i) site i has demand

(which happens with probability qi); and ii) no site with a larger assignment distance does

(which happens with probability πiji). Therefore, the expected service cost can be computed as
∑n

i=1(qiπiji)diji . Since πij = 0 ∀j 6= ji, all the other terms in 3) are zero and the result holds.

4.
∑n

i=1

∑

j∈J qiπij =
∑n

i=1 qiπiji = q(1)+ q(2)π(2)j(2) + · · · qnπ(n)j(n)
. This is exactly the probability

that at least one site has demand. The complement of this event consists of the single scenario

where no site has demand, which has probability
∏n

j=1(1 − qj). So,
∑n

i=1

∑

j∈J qiπij = 1 −
∏n

j=1(1− qj), which cannot exceed 1 since it is a probability. �

The following result shows that each customer is covered by its closest center. Its proof can be found

in the Appendix.
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Theorem 2.1 There exists an optimal PpCP solution where every site is assigned to its closest

center. Therefore, closest assignment constraints (CAC) can be used as valid inequalities.

Observe that, in fact, the smaller assignment distances in a solution will seldom be the ones yielding

the largest service cost. Indeed, in order for this to happen, many other customers (those with larger

assignment distances) should have no demand. Therefore, the probability that a small assignment dis-

tance becomes the actual largest service cost can be extremely low. For this reason, the approximation

of the PpCP that only accounts for the K ≤ n largest assignment distances in the objective function

can be very tight, even for moderate K values (specially if probabilities qi are large). From now on,

we will refer to this approximation as K-PpCP . From a computational point of view, by using this

approximation we avoid computing πij probabilities associated with very small distances, that other-

wise would require computing products of many demand probabilities, possibly causing stability and

numerical problems. However, in contrast to the PpCP , now CAC are not automatically satisfied in

general. Notice that they do hold in the homogeneous case, because in this case the resulting ordered

median function has the isotonicity property (see Section 3 and Nickel and Puerto, 2005).

Lemma 2.2 In the K-PpCP, CAC must be explicitly included in the formulation. However they can

be drop if all sites share the same demand probability.

Example 2.2 Given the set of sites N with coordinates N = {(81, 65), (71, 63), (32, 62), (22, 72),

(70, 21), (44, 34), (17, 10), (25, 36), (90, 37), (23, 48)}, and using Euclidean distances, consider a 3-P3CP

instance with demand probabilities q = (0.97, 0.12, 0.63, 0.27, 0.9, 0.15, 0.24, 0.26, 0.33, 0.17). Figure 2
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Figure 2: Solutions of the instance in Example 2.2 without CAC (left) and with CAC (right).

shows how, depending on whether CAC are imposed or not, the obtained solutions are different. If

CAC are not imposed, we obtain a solution with value 13.08 (see Figure 2, left). This solution allocates

sites 4, 6 and 8 to center 3, site 10 to center 7 and sites 1, 2 and 5 to center 9. However, in this case
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the distance between site 10 and the center located at 3 (d10,3 = 16.64) is smaller than d10,7 = 38.47.

By including CAC in the formulation, the objective value raises up to 17.58 and the centers are located

at sites 1, 5 and 10. (See Figure 2, right).

Note that the PpCP is equivalent to the K-PpCP with K = n − p and, since dii = 0,∀i ∈ N

it makes no sense to take larger values of K. Therefore, in what follows we will present different

formulations of the K-PpCP , for general K 6 n− p.

3 Formulation for the homogenous case (qi = q for all i ∈ N)

If all demand probabilities are equal, the probability that a given assignment provides the largest

service cost depends on the number of larger assignment distances, but not on the associated customers.

Therefore, the objective function of the homogeneous K-PpCP can be written as:

n
∑

k=n−K+1

q(1− q)n−kd(k)

where d(k) is the k-th value in the ordered assignment distances vector, i.e., we are facing an or-

dered function. Thus, we can use the tools developed for discrete ordered median problems (DOMPs)

(Nickel and Puerto, 2005). The formulation providing the best computational results for the DOMP

is based on covering variables (Maŕın et al., 2009). However, the rationale behind this formulation

cannot be adopted for the general K-PpCP . Indeed, unlike in the DOMP, additionally to the number

of assignments with associated distances larger than a specific one, in the K-PpCP it is necessary to

identify the customers defining those assignments. Since covering variables are based on the aggrega-

tion of equal assignment distances, they loose the information on the customers defining them. For

this reason, we next consider the three-index variables formulation, which can give better insights for

the formulations we propose for the general K-PpCP that will be analyzed in the next sections.

Consider the set T = {n−K + 1, . . . , n} and the binary variables:

• For i, j ∈ N, t ∈ T , xtij takes value 1 if and only if i is allocated to j and dij is in the t-th position

of the ordered assignment distances vector.

• For i, j ∈ N , xn−K
ij is 1 if and only if i is allocated to j and dij is at position t, with t 6 n−K.

7



Additionally, we use the coefficients λt = (1− q)n−t. The obtained formulation is:

(FH) min

n
∑

t=n−K+1

λtq

n
∑

i=1

n
∑

j=1

xtijdij

s.t.
n
∑

j=1

xn−K
jj = p, (2)

n
∑

t=n−K

xtij 6 xn−K
jj , ∀i, j ∈ N, (3)

n
∑

i=1

n
∑

j=1

xtij = 1, ∀t ∈ T, (4)

n
∑

i=1

n
∑

j=1

xn−K
ij = n−K, (5)

n
∑

t=n−K

n
∑

j=1

xtij = 1, ∀i ∈ N, (6)

n
∑

i=1

n
∑

j=1

dijx
t
ij 6

n
∑

i=1

n
∑

j=1

dijx
t+1
ij , ∀t ∈ T \ {n}, (7)

dijx
n−K
ij 6

n
∑

k=1

n
∑

l=1

dklx
n−K+1
kl , ∀i, j ∈ N, (8)

n
∑

t=n−K

n
∑

a=1
dia≻dij

xtia + xn−K
jj 6 1, ∀i, j ∈ N, (9)

xtij ∈ {0, 1}, ∀i, j ∈ N, t ∈ T ∪ {n−K}. (10)

Constraint (2) guarantees that p centers are located and constraints (3) ensure that each site is allo-

cated to just one of them. Constraints (4) and (5) guarantee that exactly one assignment takes the

t-th position for t ∈ T and the smallest n −K assignment distances occupy the last positions. Con-

straints (6) guarantee that each customer is associated with one position. The sorting of assignment

distances is made through constraints (7) and (8). Finally, constraints (9) are CAC (Espejo et al.,

2012). As mentioned above, these constraints are valid but, actually, they are only necessary for the

general case (Observe that here, in the homogeneous case, the objective function weights the ordered

assignment distances with factors q(1− q)(n−t) that are monotonously increasing and, therefore, it has

the isotonicity property). Note that, in case of ties among assignment distances of different customers,

they can be sorted arbitrarily since all choices yield the same objective value. This formulation has

served as a basis for the first formulations for the general case of the K-PpCP .
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4 Formulations for the K-PpCP

4.1 Three index formulation

In the general case λt values are no longer known beforehand. Thus, they need to be replaced with

decision variables. These new variables are defined as follows:

• For i, j ∈ N, t ∈ T , λt
ij is the probability that there is not a service cost greater than dij , if dij is

in the t-th position of the ordered assignment distances, and 0 otherwise. That is, λt
ij = πijx

t
ij.

To force them take appropriate values, we will need some extra parameters. Let q(1) 6 · · · 6 q(n)

be a nondecreasing sequence of the demand probabilities. We define κt =
∏n−t

k=1(1 − q(k)). Then, the

following formulation for the K-PpCP can be derived:

(F3K) min

n
∑

t=n−K+1

n
∑

i=1

n
∑

j=1

(dijqi)λ
t
ij (11)

s.t. constraints (2)-(10),

λt
ij 6 κtxtij, ∀i, j ∈ N, t ∈ T, (12)

n
∑

i=1

n
∑

j=1

λt
ij =

n
∑

i=1

n
∑

j=1

(1− qi)λ
t+1
ij , ∀t ∈ T \ {n}, (13)

n
∑

i=1

n
∑

j=1

λn
ij = 1, (14)

λt
ij > 0, ∀i, j ∈ N, t ∈ T. (15)

As explained in the last section, constraints (2)-(9) ensure that x define properly sorted assign-

ments. Now, as opposite to the homogeneous case, the sorting of equal-cost assignments can have

an effect on the objective function value if ties occur between positions n − K and n − K + 1. In

this case, we allow the least-cost ordering, which consists in assigning higher order to customers with

lower demand probability. From now on, the order defined by ≺ will include this idea; i.e., if i 6= i′,

dij = di′j′ and qi′ > qi, we will consider that dij ≻ di′j′ . Constraints (12) ensure that λ variables are

consistent with the values of x and constraints (13)-(14) are used to compute the λ variables.

4.1.1 Valid inequalities

• The probability that the largest service cost is among the K largest assignment distances is

n
∑

i=1

n
∑

j=1

n
∑

t=n−K+1

qiλ
t
ij 6 1. (16)
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• Combining (13) and (14) we obtain the valid equality:

n
∑

i=1

n
∑

j=1

λn−1
ij =

n
∑

i=1

n
∑

j=1

xnij(1− qi). (17)

• The next inequalities are also valid:

n
∑

i′=1

n
∑

j=1

λt−1
i′j >

n
∑

j=1

t
∑

t′=n−K+1

(1− qi)λ
t′

ij ∀i ∈ N, t ∈ T \ {n−K + 1}. (18)

If
∑n

j=1

∑t
t′=n−K+1 x

t′

ij = 0, the inequality holds trivially. Otherwise, if xtij = 1 for some j ∈ N

then, the corresponding (13) equation guarantees that (18) is satisfied. Again, due to (13), if

xt
′

ij = 1 for some n−K < t′ < t then we have that λt′

ij 6
∑n

i′=1

∑n
j′=1 λ

t−1
i′j′ and (18) holds.

4.1.2 Variable fixing

Trivial cases

With the above assumptions, all sites where a center is located will be self-allocated, yielding the

p smallest assignment distances (dii = 0). This allows fixing to zero the xtij variables with:

• i 6= j and t 6 p;

• i = j and t > max{p, n−K + 1}; or

• t > n−K and |{j′ : dij′ ≺ dij}| > n− p.

Clearly, the corresponding λt
ij variables are automatically fixed to zero, too (by constraints (12)).

Fixing based on bounds

The following lemmas provide some preprocesses that allow fixing some other x and λ variables.

Lemma 4.1 Let UBK−PpCP be an upper bound of the K-PpCP . Then, if i, j ∈ N are such that

qidij > UBK−PpCP , in any optimal solution xtij = 0, ∀t ∈ T .

Proof:

We will prove that for any feasible solution X of the K-PpCP , with value FX we have that

qidij 6 FX ∀i, j ∈ N such that j ∈ X, dij = min
ℓ∈X

{diℓ} .

Indeed, let dinjn > . . . > di1j1 be the sorted list of assignment distances in X.

Then, FX = qindinjn+(1−qin)An−1, whereAn−1 = qn−1din−1jn−1+
∑n−2

s=n−K+1 qis
∏n−1

t=s+1(1− qit)disjs .

Then, since (1− qin)An−1 > 0, FX > qindinjn . Moreover,

FX = qindinjn + (1− qin)
[

qin−1din−1jn−1 + (1− qin−1)An−2

]

> qindinjn + (1− qin)qin−1din−1jn−1

> qin−1din−1jn−1 .

10



The last inequality comes from the fact that dinjn > qin−1din−1jn−1 . Accordingly, for n−K < u 6 n−2,

FX > qindinjn +

n−1
∑

s=u+1

qisdisjs

n
∏

t=s+1

(1− qit) + qiudiuju

n
∏

t=u+1

(1− qit)

> diu+1ju+1

[

qin +

n−1
∑

s=u+1

qis

n
∏

t=s+1

(1− qit)

]

+ qiudiuju

n
∏

t=u+1

(1− qit)

=

[

1−

n
∏

t=u+1

(1− qit)

]

diu+1ju+1 + qiudiuju

n
∏

t=u+1

(1− qit).

and again, since diu+1ju+1 > qiudiuju , we have FX > qiudiuju. Thus, taking xtı̂̂ = 1 for a pair ı̂, ̂ ∈ N ,

such that q̂ıd̂ı̂ > UBK−PpCP , and some t ∈ T , would yield a solution cost above UBK-PpCP . �

Lemma 4.2 If Udt is an upper bound on the t-th assignment distance, xt
′

ij = 0 ∀i, j : dij > Udt; t′ 6 t.

Lemma 4.3 If Ldt is a lower bound on the t-th assignment distance, xt
′

ij = 0 ∀i, j : dij < Ldt; t′ > t.

Lemma 4.4 The optimal value of the pCP instance with distances d̃ij = q(1)dij for i, j ∈ N (q(1) = min
i∈N

qi)

yields a lower bound d̃∗ on the optimal K-PpCP value for any K > 1. Moreover, in any optimal so-

lution, xnij = 0 ∀i, j ∈ N such that dijqi < d̃∗.

Proof:

Let X be an optimal solution of K-PpCP i.e., X ⊆ {1, . . . , n} and |X| = p. Using the notation of

Lemma 4.1, its objective value is: FX = qindinjn +
∑n−1

s=n−K+1 qisdisjs
(
∏n

t=s+1 (1− qit)
)

. Hence, since

q(1) 6 qin , we have that qindinjn > q(1)dinjn > d̃∗. �

4.2 Compact 3-index formulation

We next present a formulation that results from the aggregation of variables used in the previous one.

Together with the previous λ variables, we now consider:

xij =
∑n

t=n−K
xtij , zit =

∑n

j=1
xtij , ∀i, j ∈ N and t ∈ T, (19)

that allow building the following formulation:
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(CF3K) min
n
∑

t=n−K+1

n
∑

i=1

n
∑

j=1

λt
ijqidij (20)

s.t. constraints (13),

n
∑

j=1

xjj = p, (21)

xij 6 xjj, ∀i, j ∈ N, (22)

n
∑

i=1

zit = 1, ∀t ∈ T, (23)

n
∑

j=1

xij = 1, ∀i ∈ N, (24)

n
∑

a=1
dia≻dij

xia + xjj 6 1, ∀i, j ∈ N, (25)

n
∑

t=n−K+1

zit 6 1, ∀i ∈ N, (26)

λt
ij 6 κtxij , ∀i, j ∈ N, t ∈ T, (27)

n
∑

j=1

λt
ij 6 zit, ∀i ∈ N, t ∈ T, (28)

n
∑

k=1

n
∑

j=1

λn
kjdkj >

n
∑

j=1

xijdij , ∀i ∈ N, (29)

(zit + xij − 1)t 6

n
∑

i1=1

n
∑

j1=1

di1j14dij

xi1j1 , ∀i, j ∈ N, t ∈ T, (30)

xij , zit ∈ {0, 1}, ∀i, j ∈ N, t ∈ T, (31)

λt
ij ≥ 0, ∀t ∈ T. (32)

Constraints (21)-(23) are equivalent to (2)-(4). Constraints (24) and (26) ensure that each site is

covered by only one center and takes one single position. CAC are given by (25) where ties are treated

as in F3K . Finally, constraints (27)-(30) ensure that x, z and λ take consistent values.

Lemma 4.5 Integrality of assignment variables xij with i, j ∈ N, i 6= j can be relaxed.

Proof:

If, for some j ∈ N xjj = 0, then xij = 0 for all i ∈ N due to (22). On the other hand, if xjj = 1

and, for some i, s ∈ N , xss = 1 and dij ≻ dis, by (25), we have that xij = 0. Hence, by (24), we have

12



that xij = 1 only if xjj = 1 and xss = 0 ∀s ∈ N : dis ≺ dij. �

Now, the criteria presented in Section 4.1.2 seldom allow to fix any x variables. On the other hand,

since CF3K uses the same λ variables as before, they can be fixed using exactly the same criteria.

4.2.1 Valid inequalities

• If, in constraints (7) we replace xtij and xt+1
ij with λt

ij and λt+1
ij (1− qi), we obtain:

n
∑

i=1

n
∑

j=1

dijλ
t
ij 6

n
∑

i=1

n
∑

j=1

dij(1− qi)λ
t+1
ij ∀t ∈ T \ {n}. (33)

• Analogously to (17), using the definition of zit in (19), it holds that

n
∑

i=1

n
∑

j=1

λn−1
ij =

n
∑

i=1

zin(1− qi). (34)

• Inequalities (14), (16) and (18) are also valid for this formulation.

4.3 Formulation with probability chains

In this section we adapt the formulation of the unreliable p-median problem proposed in O’Hanley et al.

(2013) to the K-PpCP . We denote m = n2+n
2 , the number of pairs (i, j) such that i, j ∈ N, i 6 j and

M = {1, . . . ,m}. Let d′ be the corresponding distances sorted in non-decreasing order (ties broken

lexicographically). Also, we denote by (ik, jk) the pair of sites associated with d′k, ik 6 jk. Note that,

for k 6 n, ik = jk = k and d′k = 0. Now, we need the following variables defined for all k ∈ M .

• yk is the probability that the largest service cost is d′k.

• λk is the probability that the largest service cost is d′k′ , with k′ < k.

• sk, binary, takes value 1 if and only if d′k is among the n-K smallest assignment distances.
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We also use assignment variables xij from formulation CF3K . With all these variables we obtain:

.(PFK)min
m
∑

k=1

d′kyk (35)

s.t. constraints (21), (22), (24) and (25),

ym + λm = 1, (36)

λk + yk = λk+1, ∀k ∈ M: k < m, (37)

yk 6 qikxikjk + qjkxjkik , ∀k ∈ M: k > n, (38)

yk 6 qikxikik , ∀k ∈ M: k 6 n, (39)

yk > qikλk+1 + xikjk − 1− sk, ∀k ∈ M: k < m, (40)

yk > qjkλk+1 + xjkik − 1− sk, ∀k ∈ M: n < k < m, (41)

yk 6 qikλk+1 + 1− xikjk , ∀k ∈ M: k < m, (42)

yk 6 qjkλk+1 + 1− xjkik , ∀k ∈ M: n < k < m, (43)

m
∑

k=1

sk = n−K, (44)

sk 6 xikjk + xjkik , ∀k ∈ M: k > n, (45)

sk = xikik , ∀k ∈ M : k 6 n, (46)

Ksk 6

n
∑

i,j=1

dij≻dikjk

xij +K(1− xikjk), ∀k ∈ M, (47)

Ksk 6

n
∑

i,j=1

dij≻djkik

xij +K(1− xjkik), ∀k ∈ M, (48)

sk ∈ {0, 1}, ∀k ∈ M, (49)

xij > 0, xjj ∈ {0, 1}, ∀i, j ∈ N. (50)

Constraints (36)-(43) guarantee the relationship between λ and y variables to obtain consistent

probabilities. Finally, constraints (44)-(48) ensure that s variables take the value 1 only when the as-

signments associated with those variables are among the n-K smallest distances. Again, in case of ties

between d′k and d′k′ , constraints (47) and (48) consider that clients with smaller demand probabilities

take higher positions. Notice that when there are no ties of a distance d′k with k ∈ M , (47) and (48)

can be combined into the stronger constraint:

Ksk 6
∑

ℓ>k

(xiℓjℓ + xjℓiℓ).
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The following variables can be trivially fixed to zero:

• sk, if k > m−K,

• xij , if |{j
′ : dij′ ≻ dij}| < p− 1.

Lemmas given in Section 4.1.2 can also be adapted to this formulation to fix some of the s variables.

In particular, Lemma 4.2 can be applied to fix some of the s variables to 0, by using an upper bound

on the assignment distance occupying position n − K. However, lemmas 4.1 and 4.3 now result on

additional equations. For instance, if, for a given pair (ik, jk) we could previously fix xtikjk to zero, for

all t ∈ T , it means that either the assignment distance associated with (ik, jk) is not incurred, or it

is not among the K largest ones. Therefore, in this case, this reasoning would not lead to fix to zero

any variable in PFK , but to set sk = xikjk + xjkik .

5 Lower and upper bounds

In this section we introduce some lower and upper bounds that will be used together with lemmas

from Section 4.1.2 to fix x and λ variables.

Lemma 5.1 The optimal solution of pCP is an upper bound of the K-PpCP .

Theorem 5.1 The solution of the following problem provides an upper bound for the K-PpCP .

UB1 = min
n
∑

t=n−K+1

n
∑

i=1

n
∑

j=1

κtqidijx
t
ij

s.t. constraints (2)-(10).

Recall that κt =
∏n−t

k=1(1− q(k)) (see Section 4.1).

Proof:

Since κt uses the n− t smallest probabilities, it bounds above the probability that none of the n− t

largest assignments is active. Consequently, UB1 provides an upper bound on the K-PpCP . �

Theorem 5.2 The ordered median problem with weights λt = q(n−t+1)κ
t for t ∈ T , provides a lower

bound for the K-PpCP . We will denote this bound with LB1.

The proof of Theorem 5.2 is provided in the Appendix.

We denote the sorted sequence of distinct distances as 0 = d(1) < · · · < d(G) = max
i,j∈N

{dij}.
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Lemma 5.2 For h = 1, . . . , G, consider the following problem:

nU(h) = max
∑

(i,j):dij>d(h)

xij (51)

s.t. constraints (21), (22), (24) and (25),

xij ∈ {0, 1}, i, j ∈ N. (52)

If nU (h) < n− t, then d(h) is a strict upper bound on the t-th distance.

Proof:

nU (h) gives the maximum number of assignments that can be done at a distance not smaller than

d(h) and is clearly non-increasing. If xtij = 1 in a feasible solution, it means that n− t assignments are

made at distances dij = d(h′) or larger, so that nU (h
′) > n− t and nU (h) > n− t for all h 6 h′. �

Lemma 5.3 For h = 1, . . . , G, consider the following problem

nL(h) = max
∑

(i,j):dij6d(h)

xij,

s.t. constraints (21), (22), (24), (25) and (52).

If nL(h) < t− 1, then d(h) is a lower bound on the t-th distance.

Proof:

The same reasoning as before can be applied. �

Lemma 5.4 Let zp+t be the optimal value of the (p + t)CP . Then zp+t is a lower bound on the

(n − t+ 1)-th largest assignment distance of the K-PpCP . In particular, the optimal solution of the

(p+K)CP is a lower bound on any assignment distance.

Proof:

Let X be the solution of the K-PpCP and {in, . . . , in−t+1} be the set of t sites with the t-largest

assignment distances . Then, X ∪ {in, . . . , in−t+1} is a feasible solution of the (p + t)CP with a cost

that will not exceed dn−t+1. �

Finally, heuristic approaches can also be used in order to obtain upper bounds on the K-PpCP .

To this end, in Section 6, we adapt the VNS heuristic from Domı́nguez-Maŕın et al. (2005).
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6 Variable Neighborhood Search for the K-PpCP

Variable Neighborhood Search (VNS) is a metaheuristic to solve combinatorial problems proposed by

Mladenović and Hansen (1997) for the p-median problem. It is a very well-known technique often used

to solve discrete facility location problems and it usually provides high quality solutions. In particular,

Domı́nguez-Maŕın et al. (2005) and later Puerto et al. (2014) proposed a VNS for solving the DOMP.

The VNS is based on a local search algorithm with neighborhood variations. Starting from a

possible solution, the algorithm explores the neighborhoods in such a way that it obtains solutions

progressively far from the current one. In our problem, the k-th neighborhood is the set of feasible

solutions that differ in k centers from the current one. Given a current solution, xcur, characterized

by a set of p centers, d1(i) is the index of the center of xcur closest to customer i and d2(i) is the index

of the second closest center to customer i. Also, fcur is its objective value.

We use an adaption of the algorithms described in Domı́nguez-Maŕın et al. (2005) to our problem:

Modified Move (MM), Modified Update (MU) and Modified Fast Interchange (MFI). Given xcur and

a new facility jin ∈ N \ xcur to enter in the solution, MM finds the best facility jout ∈ xcur to get

out from the solution. Once we have jin and jout, MU modifies vectors d1 and d2, i.e., this algorithm

updates the value of the closest and second closest center for each customer according with the new

set of facilities. Finally, MFI uses MM and MU recursively to obtain the best modification of xcur

in the current neighborhood. It must be noticed that, the k-th neighborhood associated with xcur is

defined as Nk(xcur) = {x : x is a set of p centers with |xcur \ x| = k}.

In MM and MFI, the updates of the objective values fcur are necessary. The main difference

between our heuristic and the one described in Domı́nguez-Maŕın et al. (2005) resides in the evaluation

of this objective function. In our case, given a set of p candidate locations, we create a vector dcur

with all the corresponding assignment distances (dcur(i) = di d1(i)). To evaluate the objective function

we sort the indices vector (1, . . . , n) by non-increasing values of dcur. Using the indices and positions

of the K largest assignment distances we can obtain the function value for xcur. A scheme of the VNS

for the K-PpCP is the following:

Step 1 Initialize xcur with a random selection of p locations. Compute d1, d2 and fcur.

Step 2 We take k = 1 and repeat the following steps until k = p:

• Repeat k times:

Take a random center to be inserted in the current solution. Using MM, obtain the best

location to remove from xcur in turn. Use MU to update xcur, d1, d2 and fcur.
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• Apply MFI to find a better solution than xcur in Nk(xcur). If necessary, update xcur, d1,

d2, fcur and take k = 1.

7 Computational experience

This section is devoted to the computational studies of the formulations and bounds that we described

along the paper. After a brief description of the instances used, we first evaluate the fixing preprocesses

used and then we compare the three studied formulations. All of them were implemented in the

commercial solver Xpress 7.7 using the modeling language Mosel 1. All the runs were carried out on

the same computer with an Intel(R) Core(TM) i7-4790K processor with 32 GB RAM. We remark that

the cut generation of Xpress was disabled to compare the relative performance of formulations cleanly.

The instances used in this computational experience are based on the p-median instances from

ORLIB2 (pmed1, pmed2, pmed3, pmed4 and pmed5). From each of them, we extracted several

distance submatrices with n ranging in {6, 10, 13, 15, 20, 15, 30} and we considered p ∈ {3, 5, 7, 10}.

Besides, we took K about the 20% of n. Probability vectors q were randomly generated, taking values

between 0.01 and 1 rounded to 2 decimals.

In what follows, we report aggregated results of the different experiments. Detailed results can be

found in the supplementary material.

7.1 Quality of the bounds

We next evaluate the quality of the bounds on the K-PpCP presented in Section 5. Table 1 shows,

for instances of the same size, the average gap between each bound and the optimal solutions, and the

CPU time (in seconds) required to compute them. The lower bound LB1 proved to be rather poor,

with gaps close to 50%. Moreover, its computational burden increases very fast with the instance size.

Regarding the upper bounds, it becomes evident that VNS provides the best results. Not only it yields

the smallest gaps, which did not reach 1.5% in any of the instance groups, but also the computational

effort is very small (the whole set of instances was solved in less than 3 seconds in total).

Since VNS provides the best bounds with a small computational effort, we wanted to test it for

larger instances. To this end, we generated a set of larger instances with n ∈ {50, 60, 70, 80}, p = 10

and q ∈ {0.25, 0.5, 0.75} from pmed7, pmed12, pmed17 and pmed22. In order to be able to compare

the obtained solutions with the optimal value, in this case we only considered homogeneous instances,

1See http://www.maths.ed.ac.uk/hall/Xpress/FICO_Docs/mosel/mosel_lang/dhtml/moselref.html
2Electronically available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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Table 1: Bounds: Average gaps and computing times

UB1 VNS pCP LB1

n ♯ % gap time % gap time % gap time % gap time

6 5 5.24 0.02 0.00 0.00 112.49 0.01 55.85 0.04

10 10 13.91 0.07 0.00 0.00 140.53 0.02 40.63 0.16

13 15 22.07 0.25 1.38 0.00 63.66 0.03 46.52 0.39

15 15 19.36 0.43 0.66 0.01 58.59 0.05 46.21 0.73

20 15 33.08 2.88 0.01 0.02 38.38 0.14 46.16 4.05

25 15 46.06 34.10 0.66 0.03 31.60 0.33 45.07 15.98

30 15 52.88 246.75 1.04 0.07 18.60 0.68 48.49 99.92

which, as mentioned above, fit the structure of the DOMP. We implemented the formulation of the

DOMP from Maŕın et al. (2009) and we run it with a time limit between 2 and 8 hours, depending on

the instance size. The obtained results are given in Table 2. Columns under heading gapB&B report

Table 2: VNS for the homogeneous case

q=0.25 q=0.5 q=0.75

n p K gapB&B gapVNS time gapB&B gapVNS time gapB&B gapVNS time

50 10 11 0.01 1.99 1.88 0.01 1.91 2.15 0.01 6.97 2.21

60 10 13 0.72 2.53 2.79 0.15 0.08 3.95 0.01 3.23 5.93

70 10 15 5.81 0.00 8.26 0.53 0.71 8.54 1.42 3.58 7.00

80 10 17 9.87 0.72 13.30 6.66 2.23 11.34 1.48 1.68 11.39

the average, over the 5 instances of the same size, of the branch and bound %gap at termination.

Columns under gapVNS report the obtained %gaps with respect to the optimal or the best known

solution. Finally, the average CPU requirements of the VNS are reported in the third column of

each group. The quality of the solutions provided by the VNS, although being always good, seems

to slightly deteriorate for larger q values but it is not affected by the instance size. As for the CPU

times, they increase quite smoothly with the instance size.

Recall that our interest on proposing bounds is their usefulness to fix variables according to the

results of Section 4.1.2. Table 3 shows the minimum, average, and maximum value, of the percentage

of variables that could be fixed in formulation F3K for the above instances with n 6 30. It must be

pointed out that we used the results from Section 5 to obtain the necessary bounds. In particular,

since, as we have just seen, VNS provides the best upper bounds for our problem, we represent in the

table the percentage of fixed variables with Lemma 4.1 using VNS. Besides, in these results, lemmas

4.2 and 4.3 use the bounds on the distances given by lemmas 5.2 and 5.3, respectively. An alternative
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Table 3: Pertentage of fixed variables in F3K

L4.1 L4.2 L4.3 L4.3∗ L4.4 All no 2, 4 no 2 no 4

min 27.8 0.0 1.1 5.3 0.5 46.7 45.4 46.7 45.4

x average 48.4 1.3 7.6 8.9 1.8 61.4 61.0 61.2 61.1

max 64.6 3.6 19.0 14.8 7.6 71.0 70.9 71.0 70.9

min 39.6 0.0 1.4 6.6 0.6 65.1 64.7 64.7 65.1

λ average 59.2 1.6 9.3 11.2 2.4 75.0 74.9 74.9 75.0

max 80.7 4.6 21.8 22.2 11.4 88.7 88.7 88.7 88.7

bound for using with Lemma 4.3 is the one provided by Lemma 5.4. In the table, we denote it by L4.3∗.

The table also reports the percentage of fixed variables given by the result of Lemma 4.4. Finally, in

the 3 last columns of the table we summarize the results of the best performing combinations, which

exploit all results except Lemma 4.2 and/or Lemma 4.4.

We can observe that the result with the largest impact is Lemma 4.1, which allows to fix between

27.8% and 64.6% of the x variables, and between 39.6% and 80.7% of the λs. Combining it with all the

other lemmas, we can increase these ranges to 46.7%-71.0% and 65.1%-88.7%, respectively. Almost

the same figures are obtained by ignoring Lemma 4.2, Lemma 4.4, or both of them.

As mentioned before, in the case of formulation CF3K , we can fix exactly the same λ variables as

for F3K , but neither x nor z variables are fixed in this case. Despite this fact, formulation CF3K still

remains smaller than F3K in general. Indeed, only in 2 of the 90 considered instances, the number of x

and z variables in CF3K was larger than the number of non-fixed x variables in F3K . On the average,

the number of x and z variables in CF3K was about 60% of the number of non-fixed x variables in

F3K and this percentage tends to increase for large p values, but to decrease for larger instances.

Finally, Lemmas from Section 4.1.2 can be also adapted with the aim of fixing some of the s

variables of formulation PFK . Table 4 reports the percentage of fixed variables in this case. Here,

Table 4: Percentage of included valid inequalities (L4.1, L4.3, L4.3∗) and fixed s variables (L4.2) in PFK

L4.1 L4.2 L4.3 L4.3∗

min 21.9 7.2 0.0 0.0

average 43.2 31.0 1.1 4.4

max 67.8 69.2 4.8 9.1

column L4.2 shows the percentage of s variables that Lemma 4.2 fixes to 0. Besides, columns under

headings L4.1, L4.3 and L4.3∗ report the percentage of s variables for which we add the valid equalities

sk = xikjk + xjkik using the mentioned lemmas. Recall that, in this case, Lemma 4.2 is applied after
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using Lemma 5.2 to identify an upper bound on the assignment distance that occupies the (n−K)-th

position (Udn−K). As in Table 3, we use VNS to obtain upper bounds for Lemma 4.1. Besides, to apply

Lemma 4.3 we use the lower bound Ldn−K+1 provided by Lemma 5.3. Again, column under heading

L4.3∗ reports the percentage of constraints that Lemma 4.3 adds using the bounds from Lemma 5.4.

In summary, Lemma 4.1 is the one with the largest percentage of included valid inequalities and now

Lemma 4.2 allows to fix a significant percentage of variables too. Once more, the contribution of

lemma 4.3 with either bound is marginal.

7.2 Evaluation of the formulations

In this section we analyze the results of the alternative formulations that we described in the paper

and we examine their different variants.

7.2.1 Three index formulation

To evaluate the impact of the different enhancements proposed for the three index formulation of

Section 4.1, we have tested seven different variants, which are defined by the combination of valid

inequalities and fixing criteria used, and also by the type of approach used to add the inequalities

(cut and branch - C&B - or branch and cut - B&C). Table 5 details the valid inequalities and criteria

Table 5: Variants of formulation F3K

F3K :1 F3K :2 F3K :3 F3K :4 F3K :5 F3K :6 F3K :7

(16) X X X X X X X

val. ineq. (17) X X X

(18) C&B B&C C&B

trivial X X X X X X X

L4.1 VNS VNS VNS VNS VNS VNS

var. fixing L4.2 X X X X X

L4.3 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4

L4.4 X X X X

that have been considered in each variant. When both, C&B and B&C have been tested for the same

family of valid inequalities, the choice made in each variant is indicated in the table. In a similar way,

the entry in the table indicates the bound used when different alternatives are available. The decisions

have been made according to the results of Section 7.1 and preliminary computational tests.

The results for all these variants are summarized in Table 6. For each formulation variant, we

report the LP gap (under “Gap”) and the CPU time required to solve the instances (under “Time”).

Again, average values for equal sized instances are reported. In the cases where some of the 5 instances
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remained unsolved after the time limit of 7200 seconds, the number of such instances is provided in

parenthesis next to the time and the average final gap is reported next to the LP gap. Also, the

smallest time entry of each row is boldfaced.

Table 6: Computational results for the three index formulation variants.

F3K :1 F3K :2 F3K :3 F3K :4 F3K :5 F3K :6 F3K :7

n/ p /K Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

6/ 2 / 2 74.96 0.06 60.42 0.15 60.42 0.07 61.61 0.16 60.39 0.06 60.42 0.15 61.59 0.09

10/ 3 / 3 79.47 0.78 34.43 0.78 34.43 0.27 34.57 0.75 33.34 0.28 34.43 0.76 33.90 0.40

10/ 5 / 3 74.25 0.56 52.38 0.71 52.45 0.24 52.65 0.73 52.14 0.24 52.38 0.73 52.43 0.43

13/ 3 / 4 89.94 8.66 50.61 2.72 50.63 1.30 50.62 2.67 50.21 1.24 50.61 2.60 50.29 1.68

13/ 5 / 4 84.16 10.23 47.19 2.55 47.20 1.17 47.19 2.57 45.72 1.37 47.19 2.61 45.73 1.62

13/ 8 / 4 65.06 1.50 40.55 1.69 40.55 0.47 44.78 1.70 39.19 0.57 40.55 1.64 43.42 0.75

15/ 3 / 4 92.39 19.91 54.31 5.19 54.31 2.38 54.32 5.19 53.78 2.70 54.31 5.30 53.80 3.05

15/ 7 / 4 83.57 25.72 47.91 4.37 47.95 2.00 47.91 4.37 46.53 2.14 47.91 4.29 46.51 2.76

15/10/ 4 59.37 2.94 35.82 2.96 35.82 0.74 35.82 2.96 35.06 0.85 35.82 3.05 35.30 1.26

20/ 3 / 5 95.19 410.76 53.91 26.27 53.91 15.20 53.91 26.44 53.83 17.23 53.91 25.07 54.55 18.09

20/ 7 / 5 88.16 3100.67 40.57 50.99 40.60 31.47 40.57 52.19 40.21 28.45 40.57 45.60 40.21 32.02

20/10/ 5 82.86 962.15 41.41 23.93 41.45 13.43 41.43 23.93 39.03 13.63 41.41 19.18 39.04 15.92

25/ 3 / 6 97.6 (21.6) 6390(2) 48.55 179.50 48.56 124.32 48.55 180.67 48.42 119.03 48.55 166.94 48.99 135.73

25/ 7 / 6 95.4(83.4) 7201(5) 42.53 680.36 42.53 535.40 42.53 689.06 42.39 602.28 42.53 543.03 42.39 584.45

25/10/ 6 93.0(70.4) 7200(5) 42.10 688.08 42.10 587.91 42.10 699.31 41.48 405.53 42.10 708.47 41.48 617.54

30/ 3 / 7 98.6(92.1) 7204(5) 49.91 1175.53 49.91 1247.29 49.91 1331.01 49.74 1136.53 49.91 1435.94 50.20 1242.73

30/ 7 / 7 95.9(93.0) 7203(5) 52.9(18.2) 7294(5) 54.0 (18.9) 7101(4) 52.9(19.1) 7291(5) 54.4(21.8) 7207(5) 52.7(19.4) 7291(5) 51.4(15.9) 7235(5)

30/10/ 7 89.1(81.8) 7203(5) 41.7(9.6) 5254(3) 42.3 (12.0) 5299(2) 42.1(10.4) 5419(3) 40.1 (7.7) 5522(2) 42.4(10.6) 5603(3) 41.7(10.6) 5050(3)

Note that the number of λ and x variables fixed thanks to the results of Section 4.1.2 yield

significant reductions of the computation times, allowing to increase the size of instances that can be

solved. The variable fixing criterion provided by Lemma 4.2 does not improve on the combinations of

the others. Indeed, among variants F3K :2−4, the one excluding it (F3K :3) seems to result in somehow

smaller CPU times. Note also that, since some variables are fixed according to optimality criteria,

the LP gap is considerably reduced in variants F3K :2−4 with respect to F3K :1. However, they are

still rather large and, unfortunately, the valid inequalities can only reduce them in some cases and by

small amounts, resulting in similar times.

7.2.2 Compact three index formulation

As in the previous case, we have considered different alternative variants of formulation CF3K , which

are now detailed in Table 7. Trivial variable fixing has been applied in all cases.

Table 8 reports the results obtained with these variants of the compact three index formulation,

on the same instances as before. The structure of the table is exactly the same as for Table 6. Note

that now, the lemmas of Section 4.1.2 are only used to fix λ variables. From Tables 6 and 8 we can

see that the LP bounds of the plain formulation CF3K are even looser than those of F3K , although
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Table 7: Variants of formulation CF3K

CF3K :1 CF3K :2 CF3K :3 CF3K :4 CF3K :5

(14), (16) X X X X X

(18) X C&B C&B

val. ineq. (33) X

(34) X X X

L4.1 VNS VNS VNS VNS

var. fixing L4.2, L4.4 X X X X

L4.3 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4 L5.3, L5.4

after applying all variable fixing criteria, the LP gaps become very similar in both formulations. Now,

the inclusion of valid inequalities does have some mild impact on the CPU times required to solve the

instances.

Table 8: Computational results for the compact three index formulation variants.

CF3K :1 CF3K :2 CF3K :3 CF3K :4 CF3K :5

n/ p /K Gap Time Gap Time Gap Time Gap Time Gap Time

6/ 2 / 2 87.32 0.03 60.92 0.15 60.89 0.09 60.89 0.06 60.89 0.06

10/ 3 / 3 91.52 0.35 41.10 0.78 39.81 0.28 39.81 0.30 39.81 0.32

10/ 5 / 3 95.18 0.34 55.53 0.78 54.14 0.24 54.14 0.22 54.11 0.24

13/ 3 / 4 94.99 3.07 55.92 3.56 53.63 1.64 53.63 1.61 53.63 1.97

13/ 5 / 4 95.54 4.51 51.14 2.89 47.93 1.53 47.93 1.61 47.91 1.59

13/ 8 / 4 96.71 2.63 46.43 1.91 42.72 0.66 42.72 0.65 42.71 0.62

15/ 3 / 4 97.25 7.57 60.40 8.32 57.78 4.19 57.78 4.66 57.75 4.88

15/ 7 / 4 98.11 22.32 51.85 5.09 49.66 2.99 49.66 2.74 49.47 3.30

15/10/ 4 98.05 6.96 40.88 3.48 38.26 1.11 38.26 1.23 38.01 1.25

20/ 3 / 5 98.11 201.57 61.48 146.24 59.79 88.71 59.79 81.89 59.76 105.09

20/ 7 / 5 98.10 1408.43 47.54 88.76 44.51 82.99 44.51 95.16 44.14 84.85

20/10/ 5 98.51 1773.99 47.86 45.83 42.86 27.15 42.86 31.29 42.63 35.77

25/ 3 / 6 98.15 3161.84 59.54 1644.53 58.00 555.35 58.00 689.19 57.96 1213.56

25/ 7 / 6 98.3(74.8) 7201(5) 49.65 2318.91 47.13 957.09 47.13 1795.21 47.00 2353.50

25/10/ 6 98.6(83.2) 7202(5) 48.71 2008.20 45.50 1114.48 45.50 980.34 45.05 1458.29

30/ 3 / 7 98.6(86.0) 7207(5) 63.5(19.3) 6749(3) 60.17 5428.08 61.0(9.4) 6627(3) 59.0 (10.0) 6449(3)

30/ 7 / 7 98.5(95.6) 7207(5) 57.9(26.7) 7296(5) 59.0(25.9) 7209(5) 59.3(27.6) 7211(5) 57.8(27.9) 7212(5)

30/10/ 7 98.7(95.8) 7205(5) 53.2(22.5) 5987(4) 50.2(18.9) 5909(4) 50.1(19.2) 5954(4) 47.9 (17.6) 6019(4)

However, although having a smaller number of variables, none of the variants of this formulation

allows to solve to optimality all the instances that could be solved with some of the F3K variants.

7.2.3 Formulation with probability chains

The results of the last formulation proposed in this paper are reported in this section. In this case,

as shown in Table 4, the adaptation of the results from Section 4.1.2 allows fixing a smaller fraction

of the variables. Additionally, no valid inequalities were identified for PFK . For this reason, in

this case we only considered two formulation variants; PFK :1, where only trivial variable fixing is
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applied, and PFK :2, where all the other criteria for fixing variables are considered. Table 9 reports

the corresponding results, following the same structure as in the previous sections.

Table 9: Computational times for the formulation with probability chains.

n/ p /K PFK :1 PFK :2 n/ p /K PFK :1 PFK :2

6/ 2 / 2 0.02 0.12 20/ 3 / 5 10.06 5.32

10/ 3 / 3 0.14 0.22 20/ 7 / 5 30.35 15.92

10/ 5 / 3 0.15 0.25 20/10/ 5 27.93 12.94

13/ 3 / 4 0.51 0.58 25/ 3 / 6 70.17 67.33

13/ 5 / 4 0.68 0.89 25/ 7 / 6 336.48 157.87

13/ 8 / 4 0.32 0.61 25/10/ 6 899.75 360.01

15/ 3 / 4 1.09 1.19 30/ 3 / 7 1504.98 2082(1)†

15/ 7 / 4 1.88 1.42 30/ 7 / 7 3036.39 1702.35

15/10/ 4 0.49 0.90 30/10/ 7 6845(4)∗ 4944(1)•

Average termination gaps: ∗65.5%, †19.6% and •8.0%.

In Table 9 the LP gaps have not been included because the LP solution value was always 0 and,

consequently, the LP gaps were 100%. In spite of this, we can compare the efficiency of the PFK

formulations regarding the CPU times. If some of the instances in a group remained unsolved after

two hours, Table 9 gives the average gap at termination. It is remarkable how this formulation improves

on the CPU times of the previous ones. Besides, if all variable fixing criteria are used CPU times are

still further reduced. Note that, in this case, all instances but two were solved within two hours.

7.2.4 Comparison of formulations

Following the results observed in the last subsections, we have chosen one representative variant of

each formulation: F3K :5 , CF3K :3 and PFK :2. In order to compare them, Figure 3 shows the times

they yielded in logarithmic scale. Groups of instances with the same number of sites are delimited

by vertical division lines. The figure clearly shows that the computational burden of the K-PpCP
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10,0

100,0

1.000,0
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Figure 3: CPU times for the different variants

grows exponentially with n (mind the logarithmic scale in the vertical axis), but that this is specially
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true in the case of formulation CF3K . The superiority of PFK is evident here, although it can require

the largest times in some of the smaller instances. Moreover, recall that this formulation is the one

that was able to solve the most instances. Therefore the times of the unsolved instances for the

other two formulations are underestimated here and the figure shades the actual differences between

them. Within each group of instances with common n, we observe what usually happens with other

classical discrete location problems; they become more difficult as p approaches n/2. The only possible

exception to this fact is formulation CF3K , which tends to become more difficult as p decreases.

Summarizing, the PFK is the best formulation, since it allows to solve most of the largest in-

stances in the time limit. Besides, the adapted heuristic, VNS, provides accurate solutions for this

generalization of the p-center problem in very small times.

8 Concluding Remarks

In this paper we introduce the probabilistic p-center problem (PpCP ) and its generalization, the

K-PpCP . These problems allow to find compromise solutions, between the two extreme cases: the

median-type problems, aimed at optimizing the average service cost, and the center-type problems,

aimed at optimizing the worst service level. To this end, the different sites to serve are weighted

according to their probability of requiring a service. In this way, one can prevent remote customers

with low demand probabilities from excessively conditioning the system configuration.

The particular case where all demand probabilities coincide fits in the structure of the ordered

median problem and, therefore, it can be solved using all the tools available in the literature for it.

However, for the general case, specific approaches need to be devised. The paper proposes and analyses

three alternative formulations and a heuristic method.

Two of the formulations are based on existing formulations for the ordered median problem, while

the third adapts some ideas that have been very successful for solving some reliable facility location

problems. This last formulation dominates the other two. Given the superiority of this formulation

based on probability chains, future research lines include the development of ad hoc procedures based

on this formulation.

As for the proposed heuristic, it is an adaptation of a VNS procedure devised for the ordered

median problem, and it provides high quality solutions in extremely reduced computation times.
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Puerto, J., Pérez-Brito, D., and Garćıa-González, C. G. (2014). A modified variable neighborhood

search for the DOMP. European Journal of Operational Research, 234(1):61–76.
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A Appendix

Proof of Theorem 2.1: Assume that two centers are located at sites j and j′, and customer i

satisfies dij′ < dij . Consider solutions Sol where i is covered by j, and Sol’, where i is covered by j′,

ceteris paribus, and let Fj and Fj′ denote their respective values. We will prove that Fj > Fj′ .

Let d(1) 6 · · · 6 d(n) and d′(1)′ 6 · · · 6 d′(n)′ be, respectively, the nondecreasing sequences of

assignment distances in Sol and Sol’, and assume that dij (resp. dij′) occupies position t (resp.

s) in its corresponding sequence. By construction, s 6 t, and observe that d′(s)′ = dij′ , d(t) = dij,

q′(s)′ = q(t) = qi and d′(u)′ = d(u−1) and q′(u)′ = q(u−1) for all s+ 1 6 u 6 t.

Fj′ − Fj =

t
∑

u=s

n
∏

v=u+1

(1− q′(v))q
′
(u)d

′
(u) −

t
∑

u=s

n
∏

v=u+1

(1− q(v))q(u)d(u)

=

n
∏

v=t+1

(1− q(v))

[

t−1
∑

u=s

q′(u)d
′
(u)

t
∏

v=u+1

(1− q′(v)) + q′(t)d
′
(t) −

t−1
∑

u=s

q(u)d(u)

t
∏

v=u+1

(1− q(v))− q(t)d(t)

]

.

To simplify the notation, let Fj′j :=
Fj′−Fj∏n

v=t+1(1−q(v))
. Then,

Fj′j = q′(s)d
′
(s)

t
∏

v=s+1

(1− q′(v)) +

t−1
∑

u=s+1

q′(u)d
′
(u)

t
∏

v=u+1

(1− q′(v)) + q′(t)d
′
(t) −

t−1
∑

u=s

q(u)d(u)

t
∏

v=u+1

(1− q(v))− q(t)d(t)

= q(t)

[

d′(s)

t−1
∏

v=s

(1− q(v)) +
t−2
∑

u=s

q(u)d(u)

t−1
∏

v=u+1

(1− q(v)) + q(t−1)d(t−1) − d(t)

]

6 q(t)d(t)

[

t−1
∏

v=s

(1− q(v)) +
t−2
∑

u=s

q(u)

t−1
∏

v=u+1

(1− q(v)) + q(t−1) − 1

]

6 0.

The last inequality is based on equation (1). �

Proof of Theorem 5.2: Let X ⊂ N be the optimal solution of the K-PpCP and FX be its value.

Let dn−K+1 6 · · · 6 dn be the sorted list of the corresponding assignment distances involved in the

objective function. To simplify the notation, and without loss of generality, we will assume that they

correspond to sites n−K + 1, . . . , n, in this order.

FX = qndn +

n−1
∑

t=n−K+1

qtdt

n
∏

i=t+1

(1− qi)

= qndn + . . .+ [qn−idn−i + (1− qn−i)qn−i−1dn−i−1]
n
∏

s=n−i+1

(1− qs) + . . .+

+qn−K+1dn−K+1

n
∏

t=n−K+2

(1− qt).
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If there exists q ∈ {q1, . . . , qn} such that q < qn−i for i < K,

qn−idn−i + (1− qn−i)qn−i−1dn−i−1 > qdn−i + (1− q)qn−i−1dn−i−1,

since qn−idn−i + (1− qn−i)qn−i−1dn−i−1 is an increasing function of qn−i and q < qn−i. Then,

FX >qndn + . . .+ [qdn−i + (1− q)qn−i−1dn−i−1]

n
∏

s=n−i+1

(1− qs) + . . . + qn−K+1dn−K+1

n
∏

i=n−K+2

(1− qi).

This holds for all i < K. Consequently, if we define

F ′
X = qndn +

n−1
∑

t=n−K+1

n
∏

i=t+1

(1− qi)qtdt, with qn−K+1, . . . , qn ∈ {q(1), . . . , q(K)},

where qi = qi for any i = n − K + 1, . . . , n if qi ∈ {q(1), . . . , q(K)}, otherwise qi is any element of

{q(1), . . . , q(K)}, such that, {qn−K+1, . . . , qn} = {q(1), . . . , q(K)}. Then, we obtain that FX > F ′
X .

Since {qn−K+1, . . . , qn} = {q(1), . . . , q(K)}, there is a qn−i with i 6 K such that qn−i = q(1). Then,

F ′
X =qndn + . . .+

[

qn−i+1dn−i+1 + (1− qn−i+1)q(1)dn−i

]

n
∏

s=n−i+2

(1− qs) + . . .+ qn−K+1dn−K+1

n
∏

i=n−K+2

(1− qi).

We have that qn−i+1 > q(1) and dn−i+1 > dn−i. Then, dn−i+1q
n−i+1 + (1 − qn−i+1)q(1)dn−i >

dn−i+1q(1) + (1− q(1))q
n−i+1dn−i. As a result,

F ′
X > qndn + . . .+

[

q(1)dn−i+1 + (1− q(1))q
n−i+1dn−i

]

n
∏

s=n−i+2

(1− qs) + . . .+

+ qn−K+1dn−K+1

n
∏

i=n−K+2

(1− qi).

Following the same argument repeatedly, F ′
X > q(1)dn+. . .+(1−q(1))q

n−K+1dn−K+1
∏n−1

i=n−K+2(1−qi).

Since {qn−K+1, . . . , qn} = {q(1), . . . , q(K)}, there is a qn−i with i 6 K such that qn−i = q(2). Then,

F ′
X > q(1)dn + . . .+ (1− q(1))

[

qn−i+1dn−i+1 + (1− qn−i+1)q(2)dn−i

]

n−1
∏

s=n−i+2

(1− qs) + . . . +

+ (1− q(1))q
n−K+1dn−K+1

n−1
∏

i=n−K+2

(1− qi).

We have that qn−i+1 > q(2) and dn−i+1 > dn−i. As before, dn−i+1q
n−i+1 + (1 − qn−i+1)q(2)dn−i >

dn−i+1q(2) + (1 − q(2))q
n−i+1dn−i. Then, F ′

X > q(1)dn + (1 − q(1))q(2)dn−1 + . . . + (1 − q(1))(1 −

q(2))q
n−K+1

∏n−2
i=n−K+2(1 − qi). Following the same argument we can regroup q(1), . . . , q(K) and it

holds

FX > F ′
X > q(1)dn + . . .+ q(K)dn−K+1

K−1
∏

i=1

(1− q(i)).

�
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