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a b s t r a c t 

We address the problem of minimizing the aggregated fuel consumption by the vessels in an inland wa- 

terway, e.g., a river, with a single lock. The fuel consumption of a vessel depends on its velocity and 

the slower it moves, the less fuel it consumes. Given entry times of the vessels into the waterway and 

the deadlines before which they need to leave the waterway, we start from the optimal velocities of the 

vessels that minimize their private fuel consumption, where we assume selfish behavior of the skippers. 

Presence of the lock and possible congestion on the waterway make the problem computationally chal- 

lenging. First, we prove that in general, a Nash equilibrium might not exist, i.e., if there is no supervision 

on the vessels’ velocities, there might not exist a strategy profile from which no vessel can unilaterally 

deviate to decrease its private fuel consumption. Next, we introduce simple supervision methods to guar- 

antee the existence of a Nash equilibrium. Unfortunately, though a Nash equilibrium can be computed, 

the aggregated fuel consumption of such a stable solution can be high compared to the social optimum, 

where the total fuel consumption is minimized. Therefore, we propose a mechanism involving payments 

between vessels, guaranteeing a Nash equilibrium while minimizing the fuel consumption. This mech- 

anism is studied for both the offline setting, where all information is known beforehand, and online 

setting, where we only know the entry time and deadline of a vessel when it enters the waterway. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The high fuel prices, a congested road network and the increas- 

ng demand for transport due to globalization put a high pressure 

n the existing transportation network, especially road transport. 

he growing sense of resource scarcity and climate change moti- 

ates companies to rethink their logistical operations and, if possi- 

le, shift towards a more sustainable transport mode. In compari- 

on to other transportation modes, the use of waterways is more 

ustainable (less greenhouse gas emission) and relatively cheap 

due to economies of scale). Moreover, as a single vessel can re- 

lace over 100 trucks, increased use of the water network is likely 

o reduce congestion and the number of accidents on the road net- 

ork. The Netherlands, located around the mouth of multiple im- 

ortant European rivers, has a dense network of over 4600km of 
� A preliminary version of this work without essential models and proofs has 

een presented at the International conference on Mathematical Optimization The- 

ry and Operations Research (MOTOR 2019), see Defryn, Golak, Grigoriev, and Tim- 

ermans (2019) . 
∗ Corresponding author. 

E-mail address: j.golak@maastrichtuniversity.nl (J.A.P. Golak). 
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377-2217/© 2020 Elsevier B.V. All rights reserved. 
avigable inland waterways, on which 36% of all freight transport 

in tonne-kilometre) takes place ( European Commission, 2017; Eu- 

ostat, 2019 ). 

Besides longer travel times, mainly due to the relatively low 

ensity of the network, the high uncertainty in arrival time is one 

he major drawbacks of freight transport over inland waterways. 

his uncertainty is caused by the presence of many river obsta- 

les, such as low bridges, narrow river segments, harbors and locks, 

hich gives rise to unexpected congestion and waiting time 1 . This 

orces the skipper, the person in charge of the vessel, to increase 

he speed afterwards to guarantee an on-time arrival at the des- 

ination. However, the operational cost for the skipper is largely 

etermined by the fuel consumption, which is related directly to 

he required power and, therefore, the speed of the vessel. The re- 

uired speeding up results therefore in a direct increase of opera- 

ional costs. 

In this paper, we investigate how coordination and scheduling 

f all movements around these river obstacles can help to reduce 
1 Communicated to us by our industrial partner Trapps Wise. B.V. ( https:// 

rappswise.nl/ ). 
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ongestion and waiting times, and therefore increase the efficiency 

f inland waterway transport. Moreover, by optimizing a recom- 

ended speed for each vessel between two consecutive obstacles, 

ne can control the arrival times of the vessels at each obsta- 

le, guaranteeing the minimal throughput time and at the same 

ime the minimal total fuel consumption. Even for a single lock, 

he strategy of reducing the speed of the vessel to avoid waiting 

ime has resulted in significant economic benefits ( Ting & Schon- 

eld (1999) ). 

. Literature review 

.1. Lock scheduling 

Existing research on the optimization of river obstacles is 

ainly focused on lock scheduling. In a single lock scheduling 

roblem, the operating times of a single lock are optimized for a 

et of vessels with given arrival times at the lock. By batching the 

essels together and determining the optimal service time for each 

atch, the goal is to reduce overall waiting time at the lock. 

Passchyn et al. (2016b) provide a polynomial time algorithm to 

ptimally solve the single lock scheduling problem, given the ar- 

ival times of the vessels and the capacity of the lock. A complexity 

nalysis together with a polynomial time algorithm that applies to 

pecial cases for the single lock scheduling problem with multiple 

arallel chambers is presented in Passchyn, Briskorn, and Spieksma 

2019) . The problem of physically placing vessels inside the cham- 

er of the lock has been addressed in Verstichel, De Causmaecker, 

pieksma, and Berghe (2014a) and Verstichel, De Causmaecker, 

pieksma, and Berghe (2014b) . The joint optimization of multiple 

equential locks on the river is considered by Passchyn, Briskorn, 

nd Spieksma (2016a) and Prandtstetter, Ritzinger, Schmidt, and 

uthmair (2015) . Prandtstetter et al. (2015) propose a variable 

eighborhood search, whereas Passchyn et al. (2016a) use a MILP 

o find an exact solution. In the latter two contributions, the goal 

s to minimize the aggregated fuel cost or emission, while selfish 

ehavior of skippers is not addressed. 

There are also multiple case studies conducted for the lock 

cheduling problem, focused on specific lock sequences on im- 

ortant waterways in the world. Petersen and Taylor (1988) con- 

ider the Welland Canal in North America for which they provide 

 heuristic that employs optimal dynamic programming models 

or scheduling individual locks in order to determine operating 

chedules for the lock sequence. Smith, Sweeney, and Campbell 

2009) present a simulation model to evaluate the quality of dif- 

erent heuristics on lock operations on the Upper Mississippi River 

n the US. This research has been extended by Smith et al. (2011) .

ere, the authors propose a MILP model to solve the lock schedul- 

ng problem with sequence-dependent setup and processing times. 

sing the same river segment, Nauss (2008) incorporate the mal- 

unctioning of locks and study different responses to such a disrup- 

ion so to minimize additional queue lengths. Also, a model for the 

ock scheduling problem with multiple parallel chambers for this 

iver layout has been investigated by Ting and Schonfeld (2001) . 

inally, the Kiel Canal is considered by Lübbecke, Lübbecke, and 

öhring (2019) . In their paper, the authors incorporate collision of 

hips in the optimization model and provide a heuristic to deter- 

ine a routing and scheduling for a fleet of ships in a collision-free 

anner. 

To the best of our knowledge, only Passchyn et al. (2016a) take 

nto account that skippers can choose the speed of their vessel, and 

ence influence the time at which they arrive at the lock. Their 

bjective is to minimize overall CO 2 emissions by optimizing the 

peed at which vessels have to approach the locks using a MILP 

ormulation. Although this approach is closely related to the prob- 
277 
em addressed in this paper, Passchyn et al. (2016a) focus on mini- 

izing the aggregated emissions without considering the fact that 

ach skipper is mainly interested in minimizing his personal fuel 

ost and emissions (selfish behavior). As a consequence, skippers 

ight deviate from the proposed solution and increase their indi- 

idual utility. In this paper, we view this problem from a game- 

heoretic point of view, and propose a schedule in which no skip- 

er can profitably deviate from the proposed solution. 

.2. Fuel reduction 

Academic literature on fuel savings has been extensive in the 

ontext of ocean vessels. We refer to Psaraftis and Kontovas 

2013) for a more detailed survey. Research on fuel consumption in 

nland waterways, on the other hand, is sparse. Inland waterways 

re significantly different compared to the ocean, as there are no 

river’ obstacles in the ocean. Ting and Schonfeld (1999) found that 

he strategy of reducing vessels speed to avoid idle time has re- 

ulted in significant economic benefits for a single lock. This may 

een seen as a key observation for the motivation of the current 

ork. The fact that fuel consumption grows non-linearly in the ve- 

icle’s speed is corroborated by Bialystocki and Konovessis (2016) . 

.3. Our contributions 

Previous research on lock scheduling is based on the assump- 

ion that lock operators have the full power to determine the op- 

rating schedule for the lock and operate under full information. In 

ractice, this schedule is typically determined using the first come 

rst serve (FIFO) principle based on the order at which vessels 

rrive at the lock. Skippers that know this have the incentive to 

peed up when approaching a lock in order to pass their predeces- 

ors and get served first. This action leads to overall longer wait- 

ng times before the locks, and increases the operational cost for 

hese skippers due to the higher fuel consumption that is caused 

y maintaining a higher speed. 

In this paper, we aim to minimize the aggregated fuel con- 

umption by the vessels in the river, while keeping in mind that 

ach skipper is a rational individual with the sole goal of mini- 

izing his personal fuel cost or emissions. Our goal is to deter- 

ine an optimal speed for each individual vessel and for each river 

egment. The positive relation between vessel speed and fuel con- 

umption leads to the observation that maintaining the slowest 

peed — yet meeting the arrival deadline at the destination har- 

our — minimizes the total fuel consumption of a single vessel. 

nfortunately, even a single lock on the river becomes a source of 

ongestion and the speeds of the vessels have to be adjusted ac- 

ordingly. 

The paper is structured as follows. In Section 3 , we model the 

roblem as a non-cooperative game and discuss a variety of pri- 

rity rules that can be used by the lock operators in case multi- 

le vessels approach the lock (possibly in the opposite directions). 

oreover, we discuss the existence of Nash equilibria — situations 

n which no skipper can unilaterally deviate from the proposed so- 

ution and decrease its individual cost. In Section 4 , we introduce 

 cooperative game perspective on the traffic optimization prob- 

em at hand. We assume that binding contracts between different 

kippers are possible and propose a mechanism based on mone- 

ary payments. This situation will give rise to new Nash equilibria. 

e design an algorithm that computes these Nash equilibria while 

inimizing total fuel consumption on the river. A MILP formula- 

ion to solve the lock scheduling problem is included in Section 5 . 

inally, in Section 6 , we extend our algorithm to comply with an 

nline setting. 
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Fig. 1. The setup of locks and vessel for Example 1. 
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. Non-cooperative game for traffic optimization at river 

bstacles 

.1. Mathematical notation of the system 

Without loss of generality, we assume a waterway with a sin- 

le lock. Let this lock be defined by its capacity C, i.e., the number

f vessels that can be leveled up or down simultaneously, and its 

urrent state P, indicating whether the level of the water is high 

equal to the upstream level) or low (equal to the downstream 

evel). Let T be the time to change the lock state from high to low

r vice versa. If a batch of vessels is processed, an additional T i 
imes units are required for each vessel i in the batch. That time 

epresents the loading and unloading of vessels and varies across 

ifferent types and sizes of vessels. The processing time of a batch 

f vessels is the sum of the lockage duration T and the individ- 

al processing times T i for every vessel i in the batch. Moreover, 

et L u and L d be the distances between the upstream and down- 

tream end points of the waterway respectively and the lock. From 

he moment that a vessel is within that distance from the lock, we 

onsider it to be in the system. The complete system is, therefore, 

etermined by the tuple L = { C, P, T , (T i ) i ∈ S , L u , L d } . 
Now, let U and D be sets of vessels that sail upstream or down- 

tream respectively, and let S = U ∪ D be the set of all vessels. The

ize of the entire fleet is denoted by n = | S| . For each vessel i ∈ U,

e are given an arrival time at the downstream end point of the 

iver, denoted by a i , and a deadline d i , the latest time when the

essel has to reach the downstream end point of the waterway. 

imilarly, a j and d j are defined for each vessel j ∈ D, sailing in the 

pposite direction. Furthermore, we assume that vessels in set S

re ordered according to their arrival times and that between any 

wo sequential vessel arrivals at least ε > 0 time elapses. Finally, 

et v i,p denote the speed of vessel i along river segment p ∈ { u, d} ,
here u and d represent the upstream and downstream segments 

espectively. We assume the minimum and the maximum speed 

or any vessel is bounded by v min and v max . 

.2. Model definition 

In the game, each vessel i ∈ S decides on v i,d and without loss 

f generality, we assume that all ships have equivalent speed lim- 

ts, i.e. v i,u ∈ [ v min , v max ] . Furthermore, define v i = (v i,d , v i,u ) . Fur-

hermore, let v −i denote the strategy profile of every player in 

he game except for i and let v S = (v i ) i ∈ S . Note that only con-

tant speeds have been specified for both, upstream and down- 

tream, waterway segments. Due to the convexity of the cost func- 

ion defined below, skippers will have no incentive to alter their 

peed midway of the segments. The assumption of constant speeds 

s relaxed, when an online setting of the game is considered, in 

ection 6 . To illustrate the game, consider the following example. 

xample 3.1. Assume three vessels (see also Fig. 1 ): 1 and 2 sail-

ng upstream and 3 sailing downstream. The waterway is 20 kilo- 
278 
eters long, and the lock is placed in the middle of the waterway. 

s a result, L u = L d = 10 . The entry/arrival times of the vessels are

s follows: a 1 = 0 , a 2 = ε and a 3 = 2 ε. Moreover, we know that

v 1 ,u , v 1 ,d ) = (5 , 5) , (v 2 ,u , v 2 ,d ) = (10 , 5) and (v 3 ,u , v 3 ,d ) = (5 , 10) .

iven the current speeds, vessel 1 arrives at the lock at time 2, 

essel 2 at time 1 + ε and vessel 3 is expected to arrive at the lock

t time 1 + 2 ε. 

The total fuel consumption is given by the function F (v ) , where 

 represents the speed of the vessel. The function is measured in 

ons per kilometer. We assume that fuel consumption is equal to 

ero if the vessel is not moving, i.e., its speed is equal to zero, 

nd vessels are only standing still inside the lock. Following the 

onventions from the related literature, we assume convexity of 

 (v ) , v > 0 (see Passchyn et al., 2016a ). 

To further simplify notations, and without loss of generaliza- 

ion, we consider the fuel consumption function to be the same 

or every vessel and equal to 

 i (v i ) = L u F (v i,u ) + L d F (v i,d ) . (1) 

The fuel consumption of vessels in set S can therefore be writ- 

en as 

 tot ( v S ) = 

∑ 

i ∈ S 
F i (v i ) . (2) 

Each skipper i aims to minimize its total fuel consumption 

 i (v i ) , given its deadline (denoted as d i ) on the arrival time at 

he destination. This deadline is considered a hard constraint. Ar- 

iving at the destination after the predefined deadline is consid- 

red infeasible, represented by an infinite penalty cost. In case the 

eadline is unrestrictive for the vessel, it will sail at the minimum 

peed v min . Therefore, we define the cost function for skipper i ∈ S

y 

 i ( v S ) = 

{
F i (v i ) if a i + L u / v i,u + L d / v i,d + q i ( v S ) ≤ d i ;
∞ otherwise , 

(3) 

here q i ( v S ) is the total processing time of vessel i at the lock, i.e.,

aiting time before entering the lock plus the lock re-level time T 

nd the individual loading times. This waiting time depends on the 

ongestion induced by the strategy profile, i.e., individual speeds of 

essels in set S. 

We now define the social cost C( v S ) of a strategy profile v S as 

he aggregated cost of all players in S, defined as 

( v S ) = 

∑ 

i ∈ S 
C i ( v S ) . (4) 

The strategy profile v S that minimizes the social cost is called 

he social optimum , and has a social cost of 

 opt = min 

v S 
C( v S ) . (5) 

.3. Nash equilibrium and queuing discipline at the lock 

In a non-cooperative game (without binding contracts between 

he skippers), we assume that skippers act selfishly and aim to 

inimize their individual costs. One of the most important tools 

hat game theorists have at their disposal is the Nash equilibrium : 

 strategy profile v ∗
S 

where no vessel can unilaterally deviate from 

ts current strategy v ∗
i 

and decrease its current cost. More formally, 

 

∗
S is a Nash equilibrium if and only if 

 i (v ∗i , v 
∗
−i ) ≤ C i (v i , v ∗−i ) , ∀ v i ∈ V i . (6)

The importance of the Nash equilibrium comes from the nat- 

ral observation that agents/players/skippers are rather interested 
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Table 1 

Speed scenarios for Example 3.3 . 

Scenario v 1 v 2 Improving move 

1 10 [5 , v opt ] Player 1 should decrease v 1 to v opt . 

2 10 (v opt , 10] Player 2 should decrease v 2 to 5. 

3 (5,10) v 2 ≤ v 1 Player 2 should increase v 2 to 10. 

4 (5,10) v 2 ≥ v 1 Player 1 should increase v 1 to 10. 

5 5 (v opt , 10] Player 2 should decrease v 2 to v opt . 

6 5 [5 , v opt ] Player 1 should increase v 1 to v opt . 
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n selfishly minimizing their individual costs than reducing the so- 

ial cost, i.e., the total cost of the entire fleet. The Nash equilib- 

ium is calculated by minimizing the regret of the individual play- 

rs, where regret is defined as the cost they could have saved by 

ltering the strategy. 

The existence of the Nash Equilibrium depends on the waiting 

ime of vessels in front of the locks. In turn, this waiting time is 

ubject to the queuing discipline of the lock. This queuing discipline 

ictates the order in which vessels are served by the lock operator. 

s the waiting time impacts the optimal (required) speed after the 

ock, the queuing discipline directly affects the cost of each skipper. 

herefore, different lock mechanisms yield different characteristics 

f the game. We consider the following three simple lock mecha- 

isms: 

Mechanism 1: Lock FIFO. For any i, j ∈ U ∪ D, vessel i is served by

he lock before vessel j if i arrives at the lock before j. If vessels i

nd j arrive at the lock at the same time, i will be served first if

 i < a j . 

Mechanism 2: System FIFO. For any i, j ∈ U ∪ D, vessel i is served

y the lock before vessel j if a i < a j . 

Mechanism 3: System FIFO with filling idle time. Consider vessel 

 ∈ U ∪ D . Assume that skippers choose strategies sequentially and 

ll (v j ) j=1 , ... ,i −1 are given. For any i, j ∈ U ∪ D such that j < i, ves-

el i is served before j if it does not affect the time of departure

f vessel j determined by the strategy profile (v j ) j=1 , ... ,i −1 . Thus, 

iven the lock schedule for earlier arriving ships, vessel i can ei- 

her join a non-full lockage in schedule or join an empty lockage, 

s long as this does not affect the existing schedule. 

The following example illustrates how these three mechanisms 

ork and how they affect the payoff of a strategy profile. 

xample 3.2. Consider again the setup of Example 3.1 . Let us re- 

ind that the entry/arrival times of the vessels were a 1 = 0 , a 2 = ε
nd a 3 = 2 ε. The lock has an infinite capacity and T = T 1 = T 2 =
 3 = 0 . 5 .. Given the current speeds of the vessels, the arrival times

t the locks are 2, 1 + ε and 1 + 2 ε, for vessels 1, 2 and 3, respec-

ively. 

First, if the lock operates under Mechanism 1, only the arrival 

imes at the lock are relevant. Note that vessel 2 arrives at the 

ock first, vessel 3 second and vessel 1 is the last one. As vessels

re processed in order of arrival time, the waiting times under the 

trategy profile are 2 + ε, 1 , 2 − ε for vessel 1, 2 and 3 respectively.

Second, under mechanism 2, only the arrival times into the 

ystem are relevant. Note that vessel 1 arrives first in the sys- 

em, vessel 2 second and vessel 3 last. The waiting times are 

 , 2 − ε, 3 − 2 ε for vessel 1, 2 and 3 respectively. 

Lastly, when Mechanism 3 is applied, the arrival times into the 

ystem and at the locks are relevant. Note that if vessel 2 or 3 is

erved before vessel 1, the exit from the lock of vessel 1 would be

elayed. Since vessel 1 arrives first into the system, it has priority 

nd therefore it is processed first. Once vessel 1 is processed, the 

ock is open to the downstream side and vessels 2 and 3 are wait-

ng on the upstream and downstream segments, respectively. Ves- 

el 2 arrives first into the system, therefore it has priority. When 

essel 1 has been processed, the lock is on the side of vessel 3. 

owever, serving vessel 3 would increase the waiting time of ves- 

el 2 by 0.5. Therefore, under this mechanism, vessel 2 is pro- 

essed second and vessel 3 is processed last. The waiting times are 

 , 2 − ε, 3 − 2 ε for vessel 1, 2 and 3 respectively. 

Since the choice of a lock mechanism influences the behavior 

f vessels, it also influences the existence of Nash equilibria. Under 

he assumption of Mechanism 1, where the priority of vessels is 

etermined by the arrival of vessels at the lock, a Nash equilibrium 

ight not exist, which is shown in the following example. 
279 
xample 3.3 (Mechanism 1) . Assume there are two vessels: vessel 

 sailing upstream and vessel 2 sailing downstream. The complete 

iver segment is again 20 kilometers long, and the lock is placed in 

he middle of the waterway, hence, L u = L d = 10 . The lock has ca-

acity of 1 (though, any positive capacity will do) and its duration 

 and loading times T 1 and T 2 are set to 0.5. We assume that the

uel consumption function F (v ) is convex, non-negative and strictly 

ncreasing in speeds v i,p ∈ [5 , 10] , p ∈ { u, d} . We assume that the

ock starts on the upstream side, but can switch to the downstream 

ide in time whenever vessel 2 is the first one to arrive at the lock.

e assume the arrival times in the system are given by a 1 = 0 and

 2 = ε and the deadlines are d 1 = 4 and d 2 = 4 + ε. Note only the

peed of a vessel before the lock affects the waiting time of other 

essels. Therefore, for determining best responses, the strategy of 

he vessels can be expressed in their speed before the lock (de- 

oted by v 1 for vessel 1, and v 2 for vessel 2). Note that for this

xample, v opt = 20 / 3 , i.e., the optimal speed for each vessel if it

ould be the only vessel on this waterway segment. We divide all 

ossible speed scenarios into six cases, presented in Table 1 . 

1. Assume v 1 is equal to 10 and v 2 is any speed in the interval

[5 , v opt ] . Note that vessel 1 arrives first at the lock. However,

since he arrives early into the system, he can reduce his speed 

to v opt and still arrive first at the lock, which would reduce his 

costs. 

2. Assume v 1 is equal to 10 and v 2 is any speed in the interval

(v opt , 10] . Given the speed of vessel 1, vessel 2 is unable to ar-

rive earlier at the lock. Thus, his best response is to arrive after 

that the lock processed vessel 1, i.e. sailing at speed 5. 

3. Assume v 1 is in the interval (5,10) and v 2 ≤ v 1 . In this scenario, 

both players exhibit a racing behavior. The bets response of ves- 

sel 2 is to increases its speed to v ′ 
2 

= v 1 + ε. In response, vessel

1 increases its speed to v ′ 1 = v ′ 2 + ε and vessel 2 increases its 

speed again to v ′ 2 = v ′ 1 + ε. This cycles until vessel 2 increase

its speed to 10 and the game is in a different scenario 

4. Assume v 2 is in the interval (5,10) and v 1 ≤ v 2 . This scenario is 

symmetric to the previous one. 

5. Assume v 1 is equal to 5 and v 2 is in the interval (v opt , 10] .

In this scenario, vessel 2 arrives at the lock first. However, he 

would still arrive at the lock first if he decreases his speed to 

his optimal speed. Therefore, sailing at its optimal speed is the 

best move for vessel 2. 

6. Assume v 1 is equal to 5 and v 2 is in the interval [5 , v opt ] . In this

scenario, vessel 1 can sail at his optimal speed and arrive the 

lock earlier than vessel 2. Thus, the optimal move for vessel 1 

is to reduce his speed to its optimal. 

We see that in every strategy profile, there is a skipper that can 

ecrease its fuel consumption by changing its speed. Hence, there 

oes not exist a Nash equilibrium. 

Under lock operating mechanisms 2 and 3, however, the Nash 

quilibrium does exist as the order in which the vessels enter the 

ock is determined solely by the order in which they arrive into the 

ystem. Hence, it cannot occur that vessels race each other to the 

ock, which is the main idea behind our previous example. Under 

hese two mechanisms, vessels cannot affect the costs of vessels 
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hat entered the river section earlier. This implies that vessels can 

equentially choose a best response, taking into account the arrival 

imes of the previous vessels. We prove this statement more for- 

ally in the next theorem. 

heorem 3.4. Consider the single lock scheduling problem, where the 

ock operates under Mechanism 2 or 3. Then, each game possesses at 

east one Nash equilibrium. 

roof. We provide a generic construction of a strategy profile and 

how that this strategy profile constitutes a Nash equilibrium. Ob- 

erve that under both Mechanism 2 and 3, for any speed v i , the

aiting time of vessel i only depends on the vessels arriving ear- 

ier in the system than vessel i . Consequently, knowing the strate- 

ies v 1 , . . . , v i −1 is sufficient to determine optimal strategy v i . 
By construction of the strategy profile, it is apparent that each 

essel i chooses its best possible strategy with respect to the ves- 

els arriving earlier. Also, strategies of vessels that arrive later can- 

ot influence the costs experienced by vessel i . Hence, vessel i can 

ot decrease its private cost and therefore the resulting strategy 

rofile is a Nash equilibrium. 

Note, that the difference between the two mechanisms occurs 

n the individual optimization of strategies: under Mechanism 3 

he waiting times caused by profile v S might be different from 

he waiting times under Mechanism 2 using the same vector v S . 

owever, the implications and the arguments stay the same: the 

ost for vessel i is only affected by the strategies of the first i − 1

essels. �

A central authority could guarantee the existence of a Nash 

quilibrium by forcing the lock operators to use Mechanism 2 or 

echanism 3. However, the fact that a Nash equilibrium exists 

oes not tell us anything about its cost efficiency. Selfish decision 

aking may lead to a Nash equilibrium with a high social cost, 

hich then leads to a waste of resources and high pollution on 

ivers. In Mechanism 2 and 3, individual costs highly depend on 

he strategies taken by the previous vessels. Therefore, selfish de- 

ision making may lead to the scenario in which later vessels are 

nable to cross the river segment before their deadline, resulting 

n a Nash equilibrium with an infinitely high social cost. Such sce- 

ario indicates that the price of anarchy of this game (the ratio 

etween the highest social cost of any Nash equilibrium and the 

inimal social cost) is unbounded. This becomes apparent in the 

ollowing example. 

xample 3.5. We consider the same instance as in Example 3.3 . 

owever, this time we assume that the lock operates under Mech- 

nism 2. We construct a Nash equilibrium with the procedure 

escribed in the proof of Theorem 3.4 . This implies that v ∗
1 

= 

20 / 3 , 20 / 3) . Note that there is no strategy in the strategy space

f vessel 2, such that it passes the river segment before its dead- 

ine. Thus the social cost of this instance is infinitely high. 

There exists a strategy profile such that both vessels cross the 

iver before their deadlines. More precisely, v = ((5 , 10) , (10 , 5)) 

eads to a finite cost for both vessels. However, this strategy profile 

s not attained by Mechanism 2 nor by Mechanism 3. Because of 

his, the price of anarchy of the game at hand is unbounded. Note 

hat the same results hold, when the lock is assumed to operate 

nder Mechanism 3. 

Note that the results in the section do not rely on the assump- 

ion on equal cost functions and speed limits. The goal of this sec- 

ion was to show that, though the concept of a Nash equilibrium 

eems appealing, in the non-cooperative setting it might not exist 

r it might be extremely inefficient compared to a socially optimal 

trategy profile. In the next section, we review the problem from a 

ooperative game point of view as we introduce the possibility to 

ake binding contracts between the vessels. 
280 
. Cooperative game for traffic optimization at river obstacles 

We now assume that the vessels can make binding contracts 

nd allow payments between skippers. As a result, the agents (skip- 

ers) can give an incentive to their counter-agents to adapt their 

peeds by reimbursing their extra costs. We aim to find a solution 

oncept that is cost optimal while making sure that no player can 

rofit from a unilateral deviation from the social optimum. More 

recisely, we introduce a payment system that fulfills two criteria: 

1. By participating in the payment system, the cost of a player can 

never be higher than when he/she did not participate. 

2. The payment system should give a vessel an incentive to be- 

have as in the social optimum. 

In this section, we consider full information about the lock, 

iver segments and vessels that will enter the system to be known 

n advance. An online variant of this problem is presented in 

ection 6 , in which only the information about the river segment 

nd the lock are publicly known while information about the ves- 

els becomes only available when a vessel physically enters the 

aterway. Furthermore, we assume that the lock operates under 

echanism 2 or 3. First, we propose an algorithm that returns 

or each vessel a speed v i , and the payment scheme P i, j indicat- 

ng payment of skipper i to skipper j for the requested velocity 

djustment. Second, we prove that the solution proposed by the 

lgorithm satisfies the two criteria mentioned above. 

.1. Iterative payment scheme algorithm 

The algorithm sequentially determines optimal speeds and pay- 

ents in the order of vessels arrival by considering all vessels 1 

hrough i, denoted by the set S̄ i . In the first iteration, only vessel 

 is considered and its optimal speed is determined. Let ζ1 be the 

perating cost associated with this strategy such that ζ1 = C 1 (v 1 ) . 
uring future iterations, it will be ensured that the cost for this 

kipper will not go above the cost of this benchmark situation. 

o do this, other skippers should fully reimburse any cost increase 

hat results from changing the strategy for the skipper. 

Now, let P ′ 
j, j ′ be the payment scheme for all j ′ < j < i at it-

ration i . Moreover, all guaranteed costs ζ j are considered to be 

nown for all j < i . To determine the speeds v j for all j ∈ S̄ i and

ayments P i, j for all j < i, we solve the following optimization 

roblem: determine new velocities of the vessels from S̄ i such that 

he sum of the costs and payments for vessel i is minimized, while 

he total cost of each vessel j < i is at most ζ j . Then, we compute

he value of the guaranteed cost ζi of player i. More formally, we 

efine following relations. 

 

′ 
i,k := C k 

(
v ′ 

S̄ i 

)
− ζk −

∑ 

j ∈ ̄S i −1 : j >k 

P ′ jk ∀ k ∈ S̄ i −1 , (7) 

i := C i 
(
v ′ 

S̄ i 

)
, (8) 

here v ′ S and P ′ are the solutions to the following optimization 

roblem. For a given vessel i > 1 , having computed all optimal val- 

es P ′ for all i ′ < i, the mathematical program reads 

min 

v S̄ i 
;P i, j 

( 

C i 
(
v S̄ i 

)
+ 

∑ 

k ∈ ̄S i −1 

P i,k 

) 

(9) 

ubject to 

 k 

(
v S̄ i 

)
− P i,k −

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k ≤ ζk , ∀ k ∈ S̄ i −1 . (10) 
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Algorithm 1: Payment mechanism. 

Input : (L := (C, T , P, L u , L d ) , U, D, (a i , d i , v min , v max ) i ∈ U∪ D ) 
Output : Optimal set of speeds and payments. 

S̄ 1 = { 1 } ; 
ζ1 = C opt (S 1 ) ; 

for i from 2 to n do 

S̄ i = S̄ i −1 ∪ { i } ; 
Compute C opt ( ̄S i ) and let v ∗

S̄ i 
be the optimal parameters; 

C opt,k ( ̄S i ) := C k 
(
v ∗

S̄ i 

) ∀ k ∈ S̄ i ; 

P ′ 
i,k 

:= C opt,k ( ̄S i ) − ζk −
∑ 

j ∈ ̄S i −1 : j >k P 
′ 
jk 

∀ k ∈ S̄ i −1 ; 

ζi := C opt,i ( ̄S i ) ; 

end 

return ( v ∗
S 
, (P ′ 

i j 
) i, j∈ S ) 
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Algorithm 1 represents the payment system which outputs 

oth speeds and payments for all skippers. Note that the optimiza- 

ion problem has been replaced by a computation of the social op- 

imal speeds. This is a valid substitution due to Theorem 4.3 below. 

The subroutine computing C opt ( ̄S i ) can be implemented in var- 

ous ways. In the next section, we provide a MILP-formulation to 

olve the lock scheduling problem to optimality. This formulation 

s based on the model in Passchyn et al. (2016a) and has been ad-

usted to comply with our problem statement. Moreover, we show 

hat the problem is NP-complete in the strong sense, this way mo- 

ivating design of MILP-formulations and approximation algorithms 

or the problem. Note that the MILP can be extended to allow for 

on equivalent speed limits and cost functions and therefore all 

he results generalise. Regarding existence of good approximation 

lgorithms, we leave this question open. We stress that any α- 

pproximation algorithm directly leads to an α-approximate Nash 

quilibrium. This follows from Theorem 4.3 and Theorem 4.4 be- 

ow, in which we show that the social optimum and Nash Equilib- 

ium coincide. 

efinition 4.1 ( α-approximation algorithm) . An algorithm is con- 

idered an α-approximation algorithm for a problem if and only if 

or every instance of the problem it can find a solution within a 

actor α of the optimum solution. Let ALG be the value of a solu- 

ion provided by the algorithm, and OP T the optimal solution of 

he minimization problem, then 

LG ≤ α OP T . (11) 

efinition 4.2 ( α-approximate equilibrium) . For any α ≥ 1 , we de- 

ne strategy � v to be an α-approximate equilibrium when for every 

layer i, and every alternative strategy v ′ 
i 
∈ V i : 

 i (v i , � v −i ) ≤ αC i (v ′ i , � v −i ) . (12) 

Given a solution to the optimization problem above, in 

heorem 4.3 , we show that the optimal speeds in that problem 

re equivalent to the speeds in the social optimum computed on 

essels in the set S̄ i . 

heorem 4.3. v ′ 
S̄ i 

= arg min v 
S̄ i 

∑ 

k ∈ ̄S i C k ( v S̄ i ) . or equivalently v ′ 
S̄ i 

= v ∗
S̄ i 

roof. Consider the mathematical program given in Eqs. 10 and 

11) . Note, that the constraint can be defined for all k ∈ S̄ i −1 : 

 k 

(
v S̄ i 

)
− P i,k −

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k ≤ ζk (13) 
281 
hich can be rewritten as: 

 i,k ≥ C k 
(
v S̄ i 

)
− ζk −

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k (14) 

ote the objective is to minimize and the objective function is in- 

reasing in P i,k for all k . Thus, the P i,k is as low as possible and

he inequality is always binding. The program can furthermore be 

ewritten as follows: 

 i,k = C k 
(
v S̄ i 

)
− ζk −

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k (15) 

hen we can reformulate the objective function in the following 

ay: 

 

′ 
S̄ i 

= arg min v S̄ i 

(
C i 

(
v S̄ i 

)
+ 

∑ 

k ∈ ̄S i −1 

P i,k 

)
(16) 

= arg min v S̄ i 

(
C i 

(
v S̄ i 

)
+ 

∑ 

k ∈ ̄S i −1 

(
C k 

(
v S̄ i 

)
− ζk −

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k 
))

(17) 

= arg min v S̄ i 

(∑ 

k ∈ ̄S i 

C k 
(
v S̄ i 

)
−

∑ 

k ∈ ̄S i −1 

(
ζk + 

∑ 

j∈ ̄S i −1 

j>k 

P ′ j,k 
))

(18) 

= arg min v S̄ i 

(∑ 

k ∈ ̄S i 

C k 
(
v S̄ i 

))
(19) 

= v ∗
S̄ i 
, (20) 

�

Lastly, in Theorem 4.4 , we show that in the i th iteration of the

lgorithm the best response for skipper i is to obey the payment 

echanism. This means that the guaranteed cost of vessel i plus 

he payments this skipper has to pay to all other skippers is lower 

han or equal to the cost of any strategy not involving the pay- 

ents. 

heorem 4.4. In Algorithm 1 for each S̄ i , it holds that 

i + 

∑ 

k ∈ ̄S i −1 

P i,k ≤ C i (v i , v ∗S̄ i −1 
) for all v i ∈ V i . (21) 

roof. Note that by (13) to (15) , we know that after every iteration 

, it holds for every k ∈ S̄ i −1 

 

′ 
i,k = C opt,k ( ̄S i ) − ζk −

∑ 

j∈ ̄S i −1 

j>k 

P ′ jk (22) 

hich can be rewritten as 

 opt,k ( ̄S i ) = ζk + P ′ i,k + 

∑ 

j∈ ̄S i −1 

j>k 

P ′ jk (23) 

= ζk + 

∑ 

j∈ ̄S i 
j>k 

P ′ jk (24) 

This leads to the following equality. 

i + 

∑ 

k ∈ ̄S i −1 

P ′ ik = C opt,i ( ̄S i ) + 

∑ 

k ∈ ̄S i −1 

(
C opt,k ( ̄S i ) − ζk −

∑ 

j∈ ̄S i −1 

j>k 

P ′ jk 
)

(25) 

= 

∑ 

k ∈ ̄S i 

C opt,k ( ̄S i ) −
∑ 

k ∈ ̄S i −1 

(
ζk + 

∑ 

j∈ ̄S i −1 

j>k 

P ′ jk 
)

(26) 
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= 

∑ 

k ∈ ̄S i 

C opt,k ( ̄S i ) −
∑ 

k ∈ ̄S i −1 

C opt,k ( ̄S i −1 ) (27) 

= C opt ( ̄S i ) − C opt ( ̄S i −1 ) (28) 

urthermore, we know that, by definition, the social optimum of 

he set S̄ i cannot have a higher cost than the sum of the social 

ptimum of the set S̄ i −1 plus any individual strategy of vessel i . 

herefore, we can formulate the following inequality. 

 opt ( ̄S i ) ≤ C i (v i , v ∗S̄ i −1 
) + C opt ( ̄S i −1 ) for all v i ∈ V i (29) 

hen by rewritten the inequality and using the result established 

n equality (28). 

 opt ( ̄S i ) − C opt ( ̄S i −1 ) ≤ C i (v i , v ∗S̄ i −1 
) for all v i ∈ V i (30) 

i + 

∑ 

k ∈ ̄S i −1 

P ′ ik ≤ C i (v i , v ∗S̄ i −1 
) for all v i ∈ V i (31) 

�

From Theorems 4.3 and 4.4 , it follows that the stated criteria 

or an efficient payment mechanism are fulfilled by Algorithm 1 . 

.2. Truthfulness of the Payment Scheme 

heorem 4.5. Under payment scheme skippers report deadline truth- 

ully 

roof. Recall from (25) to (28) that 

i + 

∑ 

k ∈ ̄S i −1 

P ′ ik = C opt ( ̄S i ) − C opt ( ̄S i −1 ) (32) 

ssume that vessels 1 . . . , i − 1 have reported their deadline truth- 

ully and their payments P j,k and guaranteed costs ζ j have been 

omputed for all j, k = 1 . . . , i − 1 . Furthermore, despite the fact

hat the true deadline of vessel i is d i , he reports ˜ d i 
 = d i . We do,

owever, assume that ship i is following the speed advice. In what 

ollows, we show that a truthful reporting of deadline of vessel i is 

 best response. 

Consider the case, in which vessel i extends his deadline, i.e. 
˜ 
 i > d i . Due to the convexity of the the cost function, the opti-

al speeds are selected such that each vessel arrives exactly at its 

eadline at the end of the waterway. Therefore, by following the 

peeds, which result by the extended deadline, vessel i will arrive 

t the end of the waterway after his true deadline. Therefore, ves- 

el i has infinite cost in this scenario. 

Consider the case, in which vessel i shortens his deadline, i.e. 
˜ 
 i < d i . Let ˜ ζi , ˜ P ′ 

ik 
and 

˜ C opt ( ̄S i ) be the individual cost, payments of i

o each vessel k and optimal cost, each under the assumption that 

essel i reported 

˜ d i . In the proof of Theorem 4.4 , we know that

hat the individual costs for the true deadline and the shortened 

eadline are 

i + 

∑ 

k ∈ ̄S i −1 

P ′ ik = C opt ( ̄S i ) − C opt ( ̄S i −1 ) (33) 

nd 

˜ 
i + 

∑ 

k ∈ ̄S i −1 

˜ P ′ ik = 

˜ C opt ( ̄S i ) − C opt ( ̄S i −1 ) (34) 

espectively. However, since a shorter deadline of vessel i is more 

estrictive in the optimization, it has to hold that C opt ( ̄S i ) ≤ ˜ C opt ( ̄S i ) .

hus, the total cost of the system can only decrease and therefore 

t follows 

i + 

∑ 

k ∈ ̄S i −1 

P ′ ik ≤ ˜ ζi + 

∑ 

k ∈ ̄S i −1 

˜ P ′ ik . (35) 
282 
herefore, we have shown that vessel i cannot reduce its cost by 

eporting a non-truthful deadline. �

A similar result does not hold for reporting of non-truthful cost 

unctions. If a vessel reports a cost function, which is steeper than 

is true cost function, it receives a higher payment for deviating 

is speed and therefore he can reduce his cost by doing so. How- 

ver, cost functions are defined in the technical manual of a vessel 

nd therefore it is physically impossible for skippers to lie about 

hem. 

. A MILP-formulation for finding a social optimum 

First, we show that even deciding on existence of a feasible so- 

ution to the optimization problem ( feasibility check ) is strongly 

P-complete. Consider an instance of the classic machine schedul- 

ng problem sequencing with release times and deadlines . The 

roblem is known to be strongly NP-complete, see e.g., Garey and 

ohnson (1979) . Given a set J of n tasks and, for each task j ∈ J,

 length p j ∈ Z + , a release time r j ∈ Z + 
0 

, and a deadline d j ∈ Z + ,
he question is whether there exists a one-processor schedule for J

hat satisfies the release time constraints and meets all the dead- 

ines. We reduce sequencing with release times and deadlines to 

easibility check . Given an instance of sequencing with release 

imes and deadlines , we create an instance of feasibility check 

s follows. Let each job be represented by a vessel with a j = r j ,

 j = d j and T j = p j . Furthermore, let set U contain all vessels, set 

inimum speed to 0 and let the maximum speed be unbounded. 

ext, set capacity to 1 and lockage duration equal to 0. Clearly, 

n instance of sequencing with release times and deadlines is a 

es-instance if and only if the corresponding instance of feasibility 

heck is a yes-instance. 

Next, we describe a MILP-formulation that can be used to com- 

ute a social optimum. This formulation is an adjustment of the 

odel from Passchyn et al. (2016a) . In their paper, the authors pro- 

ose a model to minimize emission on a waterway with multiple 

ocks. Our program differs from that model in a few ways. First of 

ll, it is a bit simpler as we solve a single lock scheduling prob- 

em. On the other hand, our model takes into account a need for 

ompensation for the lost time in case of a slow speed towards 

he lock, and/or for a high speed towards the lock. We give a brief 

verview of the model. For more details, we refer the interested 

eader to Passchyn et al. (2016a) . 

We introduce the variables v̄ i,p = 

1 
v i,p 

and let Ē ( ̄v ) express the 

missions as a function of the reciprocal of vessel speed, v̄ i,p . To 

nable the usage of MILP, we use a piece-wise linear approxima- 

ion of Ē ( ̄v ) . The decision variables in the model are based on pos-

ible lockages. It is clear that for each lock, the number of lock- 

ges in the optimal solution does not need to be greater than dou- 

le the number of ships. Thus, the upper bound for the number 

f lockages is defined as K = 2 | S| . The set of possible lockages is

efined as K = { 1 , . . . , K } . In addition to variables v̄ i , we introduce 

or all k ∈ K t k as the starting time of the k ’th lockage and for each

 ∈ S and k ∈ K we define: 

 i,k = 

{
1 , if vessel i is handled by the k th lock movement. 
0 , otherwise 

The mathematical programming formulation, presented below, 

eturns an optimal strategy profile for a set of vessels. 

in 

∑ 

i ∈ S 
Ē ( ̄v i ) (36) 

ubject to 

A i ≤ t k − l d ̄v i,d + M 

A,u 
i 

( 

1 −
k ∑ 

κ=0 

z i,κ

) 

∀ i ∈ U, k ∈ K 

(37) 
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P

 i ≤ t k − l d ̄v i,u + M 

A,d 
i 

(1 −
k ∑ 

κ=0 

z i,κ ) ∀ i ∈ D, k ∈ K (38) 

 i ≥ t k + T + 

∑ 

j∈ S 
z j,k T j + l d ̄v i,u − M 

D,u 
i 

(1 −
K ∑ 

κ= k 
z i,κ ) ∀ i ∈ U, k ∈ K 

(39) 

 i ≥ t k + T + 

∑ 

j∈ S 
z j,k T j + l u ̄v i,d − M 

D,d 
i 

(1 −
K ∑ 

κ= k 
z i,κ ) ∀ i ∈ D, k ∈ K 

(40) ∑ 

k ∈K 

z i,k = 1 ∀ i ∈ S (41) 

 k ≥ t k −1 + T + 

∑ 

j∈ S 
z j,k −1 T j ∀ k ∈ K \ { 1 } (42) 

 i,k + z j,k ≤ 1 ∀ i ∈ U, j ∈ D, k ∈ K (43) 

 i,k −1 + z j,k ≤ 1 ∀ i, j ∈ U, k ∈ K \ { 1 } (44) 

 i,k −1 + z j,k ≤ 1 ∀ i, j ∈ D, k ∈ K \ { 1 } (45) 

∑ 

i ∈ S 
z i,k ≤ C ∀ k ∈ K (46) 

 / v max ≤ v̄ i,p ≤ 1 / v min ∀ i ∈ S, p ∈ { u, p } (47) 

 i,k ∈ { 0 , 1 } ∀ i ∈ S, k ∈ K (48) 

 k ∈ R + ∀ k ∈ K (49) 

The objective function (36) minimizes the aggregated costs of 

he individual vessels. Constraints (37) and (38) ensure that vessels 

rrive at the lock before their respective lockage time has started 

nd constraints (39) and (40) ensure that vessels are leaving the 

ystem before their deadline. Constraints (39) - (42) are based on 

alues M 

A,u , M 

A,d , M 

D,u and M 

D,d , which are large constants speci-

ed in Passchyn et al. (2016a) 

Constraints (41) to (46) are used to model the working of the 

ockages. Thus, (41) ensures that each vessel is scheduled on ex- 

ctly one lockage, while (42) ensures that difference between any 

wo starting times of lockages is at least the lockage duration, 

 + 

∑ 

i ∈ S T i . Constraint (43) guarantees that a lockage does not con- 

ain vessels coming from opposing sides of the river. Furthermore, 

he requirement that lockages are alternating between opposing 

ides is ensured by constraints (44) and (45) . Finally, constraint 

46) restricts lockages to carry only as many vessels as specified 

y the capacity, C. 

. Online setting 

The assumption of perfect information on arrival times is likely 

o be violated in real-life. That is, there is no information prior to 

he arrival of the vessels at the boundaries of the system. Each 

ime a vessel enters, the optimal speed and payments are re- 

omputed taking into account the location of the vessels already 

resent on the waterway. Note that the definition of a social op- 

imum and a best response of a player are dependent on the in- 

ormation setting of the game. Therefore, we have to dynamically 

edefine/adjust these quantities in an online setting. 

Let the distance between vessel i and the exit of the waterway 

t time t be denoted by h t 
i 
. Furthermore, define h S = (h t 

i 
) i ∈ S . The

est response of vessel i, given the strategies of the other vessels, 
283 
s defined as the strategy that minimizes the cost of vessel i con- 

itional on the position of the other vessels at time t . The cost of 

essel i under strategy profile v conditional on the position of all 

essels in set S̄ at time t is denoted as C i 
(
v S̄ | h 

t 
S̄ 

)
. The social op- 

imum is defined as a strategy profile, which provides the lowest 

ossible cost given the positions of vessels in S̄ at time t . 

Similar to the offline setting, the algorithm sequentially deter- 

ines optimal speeds and payments at the arrival of each vessel. 

n each iteration, a set S̄ i is constructed containing all vessels cur- 

ently in the system. Assume that vessel i arrives and vessels in 

¯
 have not left the waterway yet. Moreover, the payments P ′ 

j, j ′ for 

ll k ≤ j ′ < j < i and the guaranteed costs ζ j for all k ≤ j < i are

ssumed to be given. Since each vessel is at a different position, 

ayments and costs are normalized to units per kilometers. There- 

ore, we solve the following optimization problem: determine new 

elocities of the vessels from S̄ i such that the sum of the costs and 

ayments for vessel i is minimized, while the normalized total cost 

f each vessel k ≤ j < i is at most the normalized guaranteed cost. 

iven the following relations 

 

a i 
opt,k 

( ̄S i ) = C k 
(
v ′ 

S̄ i 
| h 

a i 
S̄ i 

) ∀ k ∈ S̄ i , (50) 

 

′ 
i,k := C a i 

opt,k 
( ̄S i ) − h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
∀ k ∈ S̄ i \ { i } , 

(51) 

i := C a i 
opt,i 

( ̄S i ) (52) 

e define the online optimization problem as 

in v S̄ i 
: P i, j 

( 

C i 
(
v S̄ i | h 

a i 
S̄ i 

)
+ 

∑ 

k ∈ ̄S i \ { i } 
P i,k 

) 

(53) 

ubject to 

C k 
(
v S̄ i | h 

a i 
S̄ i 

)
h 

a i 
k 

− P i,k 

h 

a i 
k 

−
∑ 

j∈ ̄S i \ { i } 
j>k 

P ′ 
j,k 

h 

a j 
k 

≤ ζk 

l d + l u 
∀ k ∈ S̄ i \ { i } . (54) 

Again, it can be shown that the two conditions for an efficient 

ayment mechanism are fulfilled in the online setting. The proof 

s similar to the one discussed in the offline case. The resulting 

lgorithm is given in Algorithm 2 . 

Theorem 6.1 below shows that the strategy profile is again 

quivalent to the social optimum, conditionally on the position of 

layers at arrival time of vessel i . Thus, the optimal strategy profile 

s an output of Algorithm 2 . 

heorem 6.1. v ′ 
S̄ i 

= arg min ( v 
S̄ i 

∑ 

k ∈ ̄S i C k 
(
v S̄ i 

| h 

a i 
S̄ i 

)
or equivalently 

 

′ 
S̄ i 

= v ∗
S̄ i 

roof. Consider the mathematical program given in equations (53) 

nd (54). Note, that the constraint can be defined for all k ∈ 

¯
 \ { i } : 

C k 
(
v S̄ i | h 

a i 
S̄ i 

)
h 

a i 
k 

− P i,k 

h 

a i 
k 

−
∑ 

j∈ ̄S i \ { i } 
j>k 

P ′ 
j,k 

h 

a j 
k 

≤ ζk 

l d + l u 
(55) 

hich can be rewritten as: 

 i,k ≥ C k 
(
v S̄ i | h 

a i 
S̄ i 

)
− h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ∗

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
(56) 
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Algorithm 2: Payment mechanism Online Setting. 

Input : (L := (C, T , P, L u , L d ) , U, D, (a i , d i , v min , v max ) i ∈ U∪ D ) 
Output : Optimal set of speeds and payments. 

Vessel i arrives in the system at time a i : 

For each vessel currently present in the waterway, update 

the distance to the destination as follows:; 

h 
a i 
i 

= l d if i ∈ U ; 

h 
a i 
i 

= l u if i ∈ D ; 

h 
a i 
j 

= h 
a i −1 

j 
− v ∗

j 
(a i − a i −1 ) for j ∈ S i −1 ; 

Let S̄ i be the set of vessels in the waterway at time a i as 

follows:; 

S̄ i = ∅ if i = 0 ; 

S̄ i = S̄ i −1 \ 
{ 

j ∈ S̄ i −1 | h a i j 
≤ 0 

} 

; 

if S̄ i 
 = ∅ then 

Compute C 
a i 
opt ( ̄S i ) and let v ∗

S̄ i 
be the optimal parameters; 

C a i 
opt,k 

( ̄S i ) = C k 
(
v ∗

S̄ i 
| h 

a i 
S̄ i 

) ∀ k ∈ S̄ i ; 

P ∗i,k := C a i 
opt,k 

( ̄S i ) −h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ∗

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
∀ k ∈ S̄ i \ { i } ; 

ζi := C a i 
opt,i 

( ̄S i ) ; 

else 

ζi = min 

v i 
C i (v i ) ; 

end 

S̄ i = S̄ i −1 ∪ { i } ; 

s

P

w

v

∈

=

v

T

ζ

P

i

P

w

C

ζ

o

o

T

C

l

C

ζ

7

e

v

Note that with the same argument as in Theorem 4.4 , the con- 

traint must be binding: 

 i,k = C k 
(
v S̄ i | h 

a i 
S̄ i 

)
− h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ∗

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
(57) 

Then we can reformulate the objective function in the following 

ay. 

 

′ 
S̄ i 

∈ arg min v S̄ i 
: P i, j 

( 

C i 
(
v S̄ i | h 

a i 
S̄ i 

)
+ 

∑ 

k ∈ ̄S i \ { i } 
P i,k 

) 

(58) 

∈ arg min v S̄ i 
: P i, j 

(
C i 

(
v S̄ i | h 

a i 
S̄ i 

)
+ 

∑ 

k ∈ ̄S i \ { i } C k 
(
v S̄ i | h 

a i 
S̄ i 

)
−h 

a i 
k 

(∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 
a j 

k 

)
+ 

ζk 

l d + l u 

)) (59) 

∈ arg min v S̄ i 
: P i, j 

(∑ 

k ∈ ̄S i 

(
C k 

(
v j∈ ̄S i | h 

a i 
S̄ i 

))
−∑ 

k ∈ ̄S i \ { i } h 

a i 
k 

(∑ 

j∈ ̄S i −1 

j>k 

(
P ′ 

j,k 

h 
a j 

k 

)
+ 

ζk 

l d + l u 

)) (60) 

 arg min v S̄ i 
: P i, j 

( ∑ 

k ∈ ̄S i 

(
C k 

(
v S̄ i | h 

a i 
S̄ i 

))) 

(61) 

 v ∗
S̄ i 

(62) 
� l

284 
Likewise, Theorem 6.2 shows that it is the best response for 

essel i to obey the payment mechanism. 

heorem 6.2. In Algorithm 2 for each S̄ i , it holds that 

i + 

∑ 

k ∈ ̄S \ { i } 
P i,k ≤ C i 

(
v i , v ∗S̄ \ { i } | h 

a i 
S̄ i 

)
for all v i ∈ V i . (63) 

roof. Note that by (55) to (57), we know that after every iteration 

, it holds for every k ∈ S̄ i \ { i } 

 

′ 
i,k = C a i 

opt,k 
( ̄S i ) − h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
(64) 

hich can be rewritten as 

 

a i 
opt,k 

( ̄S i ) = P ′ i,k + h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
(65) 

= h 

a i 
k 

(∑ 

j∈ ̄S i 
j>k 

(
P ∗

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)
(66) 

This leads to the following equality. 

i + 

∑ 

k ∈ ̄S \ { i } 
P ′ i,k 

= C a i 
opt,i 

( ̄S i ) + 

∑ 

k ∈ ̄S \ { i } 

⎛ 

⎜ ⎝ 

C a i 
opt,k 

( ̄S i ) − h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)⎞ 

⎟ ⎠ 

(67) 

= 

∑ 

k ∈ ̄S 
C a i 

opt,k 
( ̄S i ) −

∑ 

k ∈ ̄S \ { i } 

⎛ 

⎜ ⎝ 

h 

a i 
k 

( ∑ 

j∈ ̄S i \ { i } 
j>k 

(
P ′ 

j,k 

h 

a j 
k 

)
+ 

ζk 

l d + l u 

)⎞ 

⎟ ⎠ 

(68) 

= 

∑ 

k ∈ ̄S 
C a i 

opt,k 
( ̄S i ) −

∑ 

k ∈ ̄S \ { i } 
C a i 

opt,k 
( ̄S i \ { i } ) (69) 

= C a i opt ( ̄S i ) − C a i opt ( ̄S i \ { i } ) (70) 

Furthermore, we know that, by definition, the social optimum 

f the set S̄ i cannot have a higher cost than the sum of the social 

ptimum of the set S̄ i \ { i } plus any individual strategy of vessel i . 

herefore, we can formulate the following inequality. 

 

a i 
opt ( ̄S i ) ≤ C i (v i , v ∗S̄ i \ { i } ) + C a i opt ( ̄S i \ { i } ) for all v i ∈ V i (71) 

Then by rewriting the inequality and using the result estab- 

ished in (67) - (70) 

 

a i 
opt ( ̄S i ) − C a i opt ( ̄S i \ { i } ) ≤ C i (v i , v ∗S̄ i −1 

) for all v i ∈ V i (72) 

i + 

∑ 

k ∈ ̄S i −1 

P ∗ik ≤ C i (v i , v ∗S̄ i −1 
) for all v i ∈ V i (73) 

�

. Future work 

Note that under iterative payment scheme, whenever a vessel 

nters the system, its total fuel cost and payments to the other 

essels become known, and will not change anymore. Hence, the 

ock operator can also serve as a bank: whenever a vessel crosses 
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V  
he lock, it pays (or receives) the payments. This implies that the 

ock operator needs a cash reserve, as it is likely that the first ves-

els entering the lock receive money from the vessels that did not 

rrive at the lock yet. Clearly, this cash reserve needs to be at most 

he cost of an optimal profile minus the minimum fuel cost of all 

arlier vessels. An interesting open question arises: what is the 

inimum amount of cash reserves needed to cover all payments 

ithout any risk of bankruptcy. 

Furthermore, we assume that missing the deadline results in 

 infinite cost for skippers. A reasonable assumption is to assume 

hat a delay results in a specified cost. Therefore, an interesting - 

ut probably challenging - question would be to know if similar 

esults apply if we the assumptions on delayed skippers changes. 
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