
ar
X

iv
:1

60
4.

05
89

9v
2 

 [
cs

.I
T

] 
 1

5 
Se

p 
20

16

Decoding Interleaved Gabidulin Codes using
Alekhnovich’s Algorithm

Sven Puchingera, Sven Müelicha, David Mödingerb,

Johan Rosenkilde né Nielsenc and Martin Bosserta 1

aInstitute of Communications Engineering, Ulm University, Ulm, Germany

bInstitute of Distributed Systems, Ulm University, Ulm, Germany

cDepartment of Applied Mathematics & Computer Science, Technical University of

Denmark, Lyngby, Denmark

Abstract

We prove that Alekhnovich’s algorithm can be used for row reduction of skew
polynomial matrices. This yields an O(ℓ3n(ω+1)/2 log(n)) decoding algorithm for
ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication ex-
ponent, improving in the exponent of n compared to previous results.
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1 Introduction

It is shown in [1] that Interleaved Gabidulin codes of length n ∈ N and inter-

leaving degree ℓ ∈ N can be error- and erasure-decoded by transforming the
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following skew polynomial [2] matrix into weak Popov form (cf. Section 2) 2 :

B =









xγ0 s1x
γ1 s2x

γ2 . . . sℓx
γℓ

0 g1x
γ1 0 . . . 0

0 0 g2x
γ2 . . . 0

...
...

...
. . .

...
0 0 0 . . . gℓx

γℓ









, (1)

where the skew polynomials s1, . . . , sℓ, g1, . . . , gℓ and the non-negative integers
γ0, . . . , γℓ arise from the decoding problem and are known at the receiver. Due
to lack of space, we cannot give a description of Interleaved Gabidulin codes,
the mentioned procedure and the resulting decoding radius here and therefore
refer to [1, Section 3.1.3]. By adapting row reduction 3 algorithms known for
polynomial rings F[x] to skew polynomials, a decoding complexity of O(ℓn2)
can be achieved [1]. In this paper, we adapt Alekhnovich’s algorithm [7] for
row reduction of F[x] matrices to the skew polynomial case.

2 Preliminaries

Let F be a finite field and σ an F-automorphism. A skew polynomial ring

F[x, σ] [2] contains polynomials of the form a =
∑deg a

i=0 aix
i, where ai ∈ F and

adeg a 6= 0 (deg a is the degree of a), which are multiplied according to the rule
x · a = σ(a) · x, extended recursively to arbitrary degrees. This ring is non-
commutative in general. All polynomials in this paper are skew polynomials.

It was shown in [6] for linearized polynomials and generalized in [3] to
arbitrary skew polynomials that two such polynomials of degrees ≤ s can be
multiplied with complexityM(s) ∈ O(s(ω+1)/2) in operations over F, where ω
is the matrix multiplication exponent.

A polynomial a has length len a if ai = 0 for all i = 0, . . . , deg a − len a
and adeg a−len a+1 6= 0. We can write a = ãxdeg a−len a+1, where deg ã ≤ len a,
and multiply a, b ∈ F[x, σ] by a · b = [ã · σdeg a−len a+1(b̃)]xdeg a+deg a−len a−len b+1.
Computing σi(α) with α ∈ F, i ∈ N is in O(1) (cf. [3]). Hence, a and b of
length s can be multiplied inM(s) time, although possibly deg a, deg b≫ s.

Vectors v and matrices M are denoted by bold and small/capital letters.
Indices start at 1, e.g. v = (v1, . . . , vr) for r ∈ N. Ei,j is the matrix containing
only one non-zero entry = 1 at position (i, j) and I is the identity matrix. We
denote the ith row of a matrix M by mi. The degree of a vector v ∈ F[x, σ]r

is the maximum of the degrees of its components deg v = maxi{deg vi} and

2 Afterwards, the corresponding information words are obtained by ℓ many divisions of
skew polynomials of degree O(n), which can be done in O(ℓn(ω+1)/2 log(n)) time [3].
3 By row reduction we mean to transform a matrix into weak Popov form by row operations.



the degree of a matrix M is the sum of its rows’ degrees degM =
∑

i degmi.

The leading position (LP) of v is the rightmost position of maximal degree
LP(v) = max{i : deg vi = deg v}. The leading coefficient (LC) of a polynomial
a is LT(a) = adeg ax

deg a and the leading term (LT) of a vector v is LT(v) =
vLP(v). A matrix M ∈ F[x, σ]r×r is in weak Popov form (wPf) if the leading
positions of its rows are pairwise distinct. E.g., the following matrix is in wPf
since LP(m1) = 2 and LP(m2) = 1

M =
[

x2 + x x2 + 1
x4 x3 + x2 + x+ 1

]

.

Similar to [7], we define an accuracy approximation to depth t ∈ N0 of
skew polynomials as a|t =

∑deg a
i=deg a−t+1 aix

i. For vectors, it is defined as
v|t = (v1|min{0,t−(deg v−deg v1)}, . . . , vr|min{0,t−(deg v−deg vr)}) and for matrices row-
wise. E.g., with M as above,

M|2 =
[

x2 + x x2

x4 x3

]

and M|1 =
[

x2 x2

x4 0

]

.

We can extend the definition of the length of a polynomial to vectors v as
lenv = maxi{deg v−deg vi+len vi} and to matrices as lenM = maxi{lenmi}.
With this notation, we have len(a|t) ≤ t, len(v|t) ≤ t and len(M|t) ≤ t.

3 Alekhnovich’s Algorithm over Skew Polynomials

Alekhnovich’s algorithm [7] was proposed for transforming matrices over ordi-
nary polynomials F[x] into wPf. Here, we show that, with a few modifications,
it also works with skew polynomials. As in the original paper, we prove the
correctness of Algorithm 2 (main algorithm) using the auxiliary Algorithm 1.

Algorithm 1 R(M)
Input: Module basis M ∈ F[x, σ]r×r with degM = n
Output: U ∈ F[x, σ]r×r: U ·M is in wPf or deg(U ·M) ≤ degM− 1
1. U← I

2. While degM = n and M is not in wPf

3. Find i, j such that LP(mi) = LP(mj) and degmi ≥ degmj

4. δ ← degmi − degmj and α← LC(LT(mi))/θ
δ(LC(LT(mj)))

5. U← (I− αxδ
Ei,j) ·U and M← (I− αxδ

Ei,j) ·M
6. Return U

Theorem 3.1 Algorithm 1 is correct and if len(M) ≤ 1, it is in O (r3).

Proof. Inside the while loop, the algorithm performs a so-called simple trans-

formation (ST). It is shown in [1] that such an ST on an F[x, σ]-matrix M



preserves both its rank and row space (this does not trivially follow from the
F[x] case due to non-commutativity) and reduces either LP(mi) or degmi. At
some point, M is in wPf, or degmi and likewise degM is reduced by one. The
matrix U keeps track of the STs, i.e. multiplying M by (I−αxδ

Ei,j) from the
left is the same as applying an ST on M. At termination, M = U ·M′, where
M

′ is the input matrix of the algorithm. Since
∑

i LP(mi) can be decreased
at most r2 times without changing degM, the algorithm performs at most r2

STs. Multiplying (I−αxδ
Ei,j) by a matrix V consists of scaling a row with αxδ

and adding it to another (target) row. Due to the accuracy approximation,
all monomials of the non-zero polynomials in the scaled and the target row
have the same power, implying a cost of r for each ST. The claim follows. ✷

We can decrease a matrix’ degree by at least t or transform it into wPf by
t recursive calls of Algorithm 1. We can write this as R(M, t) = U ·R(U ·M),
where U = R(M, t− 1) for t > 1 and U = I if t = 1. As in [7], we speed this
method up by two modifications. The first one is a divide-&-conquer (D&C)
trick, where instead of reducing the degree of a “(t−1)-reduced” matrix U ·M
by 1 as above, we reduce a “t′-reduced” matrix by another t−t′ for an arbitrary
t′. For t′ ≈ t/2, the recursion tree has a balanced workload.

Lemma 3.2 Let t′ < t and U = R(M, t′). Then,

R(M, t) = R
[

U ·M, t− (degM− deg(U ·M))
]

·U.

Proof. U reduces reduces degM by at least t′ or transforms M into wPf.
Multiplication by R[U ·M, t − (degM − deg(U ·M))] further reduces the
degree of this matrix by t− (degM−deg(U ·M)) ≥ t− t′ (or U ·M in wPf).✷

The second lemma allows to compute only on the top coefficients of the
input matrix inside the divide-&-conquer tree, reducing the overall complexity.

Lemma 3.3 R(M, t) = R(M|t, t)

Proof. Arguments completely analogous to the F[x] case of [7, Lemma 2.7]
hold. ✷

Lemma 3.4 R(M, t) contains polynomials of length ≤ t.

Proof. The proof works as in the F[x] case, cf. [7, Lemma 2.8], by taking care
of the fact that αxa · βxb = ασc(β)xa+b for all α, β ∈ F, a, b ∈ N0. ✷

Algorithm 2 R̂(M, t)
Input: Module basis M ∈ F[x, σ]r×r with degM = n
Output: U ∈ F[x, σ]r×r: U ·M is in wPf or deg(U ·M) ≤ degM− t



1. If t = 1, then Return R(M|1)
2. U1 ← R̂(M|t, ⌊t/2⌋) and M1 ← U1 ·M|t
3. Return R̂(M1, t− (degM|t − degM1)) ·U1

Theorem 3.5 Algorithm 2 is correct and has complexity O(r3M(t)).

Proof. Correctness follows from R(M, t) = R̂(M, t) by induction (for t = 1,
see Theorem 3.1). Let Û = R̂(M|t, ⌊

t
2
⌋) and U = R(M|t, ⌊

t
2
⌋). Then,

R̂(M, t) = R̂(Û ·M|t, t− (degM|t − deg(Û ·M|t))) · Û
(i)
=R(U ·M|t, t− (degM|t − deg(U ·M|t))) ·U

(ii)
= R(M|t, t)

(iii)
= R(M, t),

where (i) follows from the induction hypothesis, (ii) by Lemma 3.2, and (iii)
by Lemma 3.3. Algorithm 2 calls itself twice on inputs of sizes ≈ t

2
. The

only other costly operations are the matrix multiplications in Lines 2 and
3 of matrices containing only polynomials of length ≤ t (cf. Lemma 3.4).
This costs 4 r2 times r multiplications M(t) and r2 times r additions O(t)
of polynomials of length ≤ t, having complexity O(r3M(t)). The recursive
complexity relation reads f(t) = 2 ·f( t

2
)+O(r3M(t)). By the master theorem,

we get f(t) ∈ O(tf(1) + r3M(t)). The base case operation R(M|1) with cost
f(1) is called at most t times since it decreases degM by 1 each time. Since
len(M|1) ≤ 1, f(1) ∈ O (r3) by Theorem 3.1. Hence, f(t) ∈ O(r3M(t)). ✷

4 Implications and Conclusion

The orthogonality defect [1] of a square, full-rank, skew polynomial matrix M

is ∆(M) = degM − deg detM, where deg det is the “determinant degree”
function, see [1]. A matrix M in wPf has ∆(M) = 0 and deg detM is invariant
under row operations. Thus, if V is in wPf and obtained from M by simple
transformations, then degV = ∆(V) + deg detV = degM − ∆(M). With
∆(M) ≥ 0, this implies that R̂(M,∆(M)) ·M is always in wPf. It was shown
in [1] that B from Equation (1) has orthogonality defect ∆(B) ∈ O(n), which
implies the following theorem.

Theorem 4.1 (Main Statement) R̂(B,∆(B)) · B is in wPf. This implies

that we can decode Interleaved Gabidulin codes in 5 O(ℓ3n(ω+1)/2 log(n)).

4 In D&C matrix multiplication algorithms, the length of polynomials in intermediate com-
putations might be much larger than t. Thus, we have to compute it naively in cubic time.
5 The log(n) factor is due to the divisions in the decoding algorithm, following the row
reduction step (see Footnote 2) and can be omitted if log(n) ∈ o(ℓ2).



Table 1 compares the complexities of known decoding algorithms for In-
terleaved Gabidulin codes. Which algorithm is asymptotically fastest depends
on the relative size of ℓ and n. Usually, one considers n≫ ℓ, in which case the
algorithms in this paper and in [4] provide—to the best of our knowledge—the
fastest known algorithms for decoding Interleaved Gabidulin codes.

Algorithm Complexity

Skew Berlekamp–Massey [5] O(ℓn2)

Skew Berlekamp–Massey (D&C) [4] O(ℓKn
ω+1

2 log(n)), possibly 6K = 3

Skew Demand–Driven∗ [1] O(ℓn2)

Skew Alekhnovich∗ (Theorem 3.5) O(ℓ3n
ω+1

2 log(n)) ⊆† O(ℓ3n1.69 log(n))

Table 1
Comparison of decoding algorithms for Interleaved Gabidulin codes. Algorithms

marked with ∗ are based on the row reduction problem of [1]. †Example ω ≈ 2.37.

In the case of Gabidulin codes (ℓ = 1), we obtain an alternative to the
Linearized Extended Euclidean algorithm from [6] of the same complexity. The
algorithms are equivalent up to the implementation of a simple transformation.
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