Decoding Interleaved Gabidulin Codes using Alekhnovich's Algorithm

Sven Puchinger^a, Sven Müelich^a, David Mödinger^b, Johan Rosenkilde né Nielsen^c and Martin Bossert^{a 1}

^aInstitute of Communications Engineering, Ulm University, Ulm, Germany ^bInstitute of Distributed Systems, Ulm University, Ulm, Germany

 c Department of Applied Mathematics \mathcal{C} Computer Science, Technical University of Denmark, Lyngby, Denmark

Abstract

We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an $O(\ell^3 n^{(\omega+1)/2} \log(n))$ decoding algorithm for ℓ -Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent, improving in the exponent of n compared to previous results.

Keywords: Gabidulin Codes, Characteristic Zero, Low-Rank Matrix Recovery

1 Introduction

It is shown in [\[1\]](#page-5-0) that *Interleaved Gabidulin codes* of *length* $n \in \mathbb{N}$ and *interleaving degree* $\ell \in \mathbb{N}$ can be error- and erasure-decoded by transforming the

 1 Email: sven.puchinger@uni-ulm.de, sven.mueelich@uni-ulm.de,

david.moedinger@uni-ulm.de, jsrn@jsrn.dk, martin.bossert@uni-ulm.de,

following skew polynomial [\[2\]](#page-5-1) matrix into weak Popov form (cf. Section 2^2 2^2)

$$
\mathbf{B} = \begin{bmatrix} x^{\gamma_0} & s_1 x^{\gamma_1} & s_2 x^{\gamma_2} & \dots & s_\ell x^{\gamma} \\ 0 & g_1 x^{\gamma_1} & 0 & \dots & 0 \\ 0 & 0 & g_2 x^{\gamma_2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & g_\ell x^{\gamma} \end{bmatrix},
$$
(1)

where the skew polynomials $s_1, \ldots, s_\ell, g_1, \ldots, g_\ell$ and the non-negative integers $\gamma_0, \ldots, \gamma_\ell$ arise from the decoding problem and are known at the receiver. Due to lack of space, we cannot give a description of Interleaved Gabidulin codes, the mentioned procedure and the resulting decoding radius here and therefore refer to $[1, Section 3.1.3]$ $[1, Section 3.1.3]$ $[1, Section 3.1.3]$. By adapting row reduction 3 algorithms known for polynomial rings $\mathbb{F}[x]$ to skew polynomials, a decoding complexity of $O(\ell n^2)$ can be achieved [\[1\]](#page-5-0). In this paper, we adapt Alekhnovich's algorithm [\[7\]](#page-5-2) for row reduction of $\mathbb{F}[x]$ matrices to the skew polynomial case.

2 Preliminaries

Let F be a finite field and σ an F-automorphism. A skew polynomial ring $\mathbb{F}[x,\sigma]$ [\[2\]](#page-5-1) contains polynomials of the form $a = \sum_{i=0}^{\deg a} a_i x^i$, where $a_i \in \mathbb{F}$ and $a_{\text{deg }a} \neq 0$ (deg a is the *degree* of a), which are multiplied according to the rule $x \cdot a = \sigma(a) \cdot x$, extended recursively to arbitrary degrees. This ring is noncommutative in general. All polynomials in this paper are skew polynomials.

It was shown in [\[6\]](#page-5-3) for linearized polynomials and generalized in [\[3\]](#page-5-4) to arbitrary skew polynomials that two such polynomials of degrees $\leq s$ can be multiplied with complexity $\mathcal{M}(s) \in O(s^{(\omega+1)/2})$ in operations over \mathbb{F} , where ω is the matrix multiplication exponent.

A polynomial a has length len a if $a_i = 0$ for all $i = 0, \ldots, \deg a - \operatorname{len} a$ and $a_{\deg a-\lg a+1} \neq 0$. We can write $a = \tilde{a}x^{\deg a-\lg a+1}$, where $\deg \tilde{a} \leq \lg a$, and multiply $a, b \in \mathbb{F}[x, \sigma]$ by $a \cdot b = [\tilde{a} \cdot \sigma^{\deg a - \text{len } a+1}(\tilde{b})] x^{\deg a + \deg a - \text{len } a - \text{len } b+1}$. Computing $\sigma^i(\alpha)$ with $\alpha \in \mathbb{F}$, $i \in \mathbb{N}$ is in $O(1)$ (cf. [\[3\]](#page-5-4)). Hence, a and b of length s can be multiplied in $\mathcal{M}(s)$ time, although possibly deg a, deg $b \gg s$.

Vectors \bf{v} and matrices \bf{M} are denoted by bold and small/capital letters. Indices start at 1, e.g. $\mathbf{v} = (v_1, \ldots, v_r)$ for $r \in \mathbb{N}$. $\mathbf{E}_{i,j}$ is the matrix containing only one non-zero entry $= 1$ at position (i, j) and **I** is the identity matrix. We denote the *i*th row of a matrix **M** by \mathbf{m}_i . The degree of a vector $\mathbf{v} \in \mathbb{F}[x, \sigma]^r$ is the maximum of the degrees of its components deg $\mathbf{v} = \max_i {\{\text{deg } v_i\}}$ and

² Afterwards, the corresponding information words are obtained by ℓ many divisions of skew polynomials of degree $O(n)$, which can be done in $O(\ell n^{(\omega+1)/2} \log(n))$ time [\[3\]](#page-5-4).

³ By row reduction we mean to transform a matrix into weak Popov form by row operations.

the degree of a matrix **M** is the sum of its rows' degrees $\deg \mathbf{M} = \sum_i \deg \mathbf{m}_i$.

The leading position (LP) of \bf{v} is the rightmost position of maximal degree $LP(\mathbf{v}) = \max\{i : \text{deg } v_i = \text{deg } \mathbf{v}\}.$ The leading coefficient (LC) of a polynomial a is $LT(a) = a_{\text{deg }a}x^{\text{deg }a}$ and the leading term (LT) of a vector **v** is $LT(\mathbf{v}) =$ $v_{\text{LP}(v)}$. A matrix $\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}$ is in weak Popov form (wPf) if the leading positions of its rows are pairwise distinct. E.g., the following matrix is in wPf since $LP(\mathbf{m}_1) = 2$ and $LP(\mathbf{m}_2) = 1$

$$
\mathbf{M} = \begin{bmatrix} x^2 + x & x^2 + 1 \\ x^4 & x^3 + x^2 + x + 1 \end{bmatrix}.
$$

Similar to [\[7\]](#page-5-2), we define an *accuracy approximation to depth* $t \in \mathbb{N}_0$ of skew polynomials as $a|_t = \sum_{i=\deg a-t+1}^{\deg a} a_i x^i$. For vectors, it is defined as $\mathbf{v}|_t = (v_1|_{\min\{0,t-(\deg \mathbf{v}-\deg v_1)\}},\ldots,v_r|_{\min\{0,t-(\deg \mathbf{v}-\deg v_r)\}})$ and for matrices rowwise. E.g., with M as above,

$$
\mathbf{M}|_2 = \begin{bmatrix} x^2 + x & x^2 \\ x^4 & x^3 \end{bmatrix} \text{ and } \mathbf{M}|_1 = \begin{bmatrix} x^2 & x^2 \\ x^4 & 0 \end{bmatrix}.
$$

We can extend the definition of the length of a polynomial to vectors \bf{v} as len $\mathbf{v} = \max_i {\text{deg } \mathbf{v} - \text{deg } v_i + \text{len } v_i}$ and to matrices as len $\mathbf{M} = \max_i {\text{len } \mathbf{m}_i}$. With this notation, we have $\text{len}(a|_t) \leq t$, $\text{len}(\mathbf{v}|_t) \leq t$ and $\text{len}(\mathbf{M}|_t) \leq t$.

3 Alekhnovich's Algorithm over Skew Polynomials

Alekhnovich's algorithm [\[7\]](#page-5-2) was proposed for transforming matrices over ordinary polynomials $\mathbb{F}[x]$ into wPf. Here, we show that, with a few modifications, it also works with skew polynomials. As in the original paper, we prove the correctness of Algorithm [2](#page-3-0) (main algorithm) using the auxiliary Algorithm [1.](#page-2-0)

Algorithm 1 $R(M)$

Input: Module basis $\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}$ with deg $\mathbf{M} = n$ Output: $\mathbf{U} \in \mathbb{F}[x, \sigma]^{r \times r}$: $\mathbf{U} \cdot \mathbf{M}$ is in wPf or $\deg(\mathbf{U} \cdot \mathbf{M}) \leq \deg \mathbf{M} - 1$ 1. $U \leftarrow I$

- 2. While deg $M = n$ and M is not in wPf
- 3. Find i, j such that $LP(m_i) = LP(m_j)$ and $\deg m_i \geq \deg m_j$
- 4. $\delta \leftarrow \deg \mathbf{m}_i \deg \mathbf{m}_j \text{ and } \alpha \leftarrow \text{LC}(\text{LT}(\mathbf{m}_i))/\theta^{\delta}(\text{LC}(\text{LT}(\mathbf{m}_j)))$
- 5. $\mathbf{U} \leftarrow (\mathbf{I} \alpha x^{\delta} \mathbf{E}_{i,j}) \cdot \mathbf{U}$ and $\mathbf{M} \leftarrow (\mathbf{I} \alpha x^{\delta} \mathbf{E}_{i,j}) \cdot \mathbf{M}$
- 6. Return U

Theorem 3.[1](#page-2-0) Algorithm 1 is correct and if $len(M) \leq 1$, it is in $O(r^3)$.

Proof. Inside the while loop, the algorithm performs a so-called *simple trans*-formation (ST). It is shown in [\[1\]](#page-5-0) that such an ST on an $\mathbb{F}[x, \sigma]$ -matrix M preserves both its rank and row space (this does not trivially follow from the $\mathbb{F}[x]$ case due to non-commutativity) and reduces either $\text{LP}(\mathbf{m}_i)$ or deg \mathbf{m}_i . At some point, M is in wPf, or deg m_i and likewise deg M is reduced by one. The matrix U keeps track of the STs, i.e. multiplying M by $(I - \alpha x^{\delta} \mathbf{E}_{i,j})$ from the left is the same as applying an ST on M. At termination, $M = U \cdot M'$, where M' is the input matrix of the algorithm. Since $\sum_i LP(m_i)$ can be decreased at most r^2 times without changing deg M, the algorithm performs at most r^2 STs. Multiplying $(I - \alpha x^{\delta}E_{i,j})$ by a matrix V consists of scaling a row with αx^{δ} and adding it to another (target) row. Due to the accuracy approximation, all monomials of the non-zero polynomials in the scaled and the target row have the same power, implying a cost of r for each ST. The claim follows. \Box

We can decrease a matrix' degree by at least t or transform it into wPf by t recursive calls of Algorithm [1.](#page-2-0) We can write this as $R(M, t) = U \cdot R(U \cdot M)$, where $U = R(M, t - 1)$ for $t > 1$ and $U = I$ if $t = 1$. As in [\[7\]](#page-5-2), we speed this method up by two modifications. The first one is a divide- $&\&$ -conquer (D $&\&$ C) trick, where instead of reducing the degree of a " $(t-1)$ -reduced" matrix $\mathbf{U} \cdot \mathbf{M}$ by 1 as above, we reduce a "t'-reduced" matrix by another $t-t'$ for an arbitrary t'. For $t' \approx t/2$, the recursion tree has a balanced workload.

Lemma 3.2 Let $t' < t$ and $\mathbf{U} = \mathbf{R}(\mathbf{M}, t')$. Then, $R(M, t) = R[\mathbf{U} \cdot \mathbf{M}, t - (\deg \mathbf{M} - \deg(\mathbf{U} \cdot \mathbf{M}))] \cdot \mathbf{U}.$

Proof. U reduces reduces deg M by at least t' or transforms M into wPf. Multiplication by $R[\mathbf{U} \cdot \mathbf{M}, t - (\deg \mathbf{M} - \deg(\mathbf{U} \cdot \mathbf{M}))]$ further reduces the degree of this matrix by $t - (\deg M - \deg(U \cdot M)) \geq t - t'$ (or $U \cdot M$ in wPf).

The second lemma allows to compute only on the top coefficients of the input matrix inside the divide-&-conquer tree, reducing the overall complexity.

Lemma 3.3 $R(M, t) = R(M|_t, t)$

Proof. Arguments completely analogous to the $\mathbb{F}[x]$ case of [\[7,](#page-5-2) Lemma 2.7] \Box \Box

Lemma 3.4 R(M, t) contains polynomials of length $\leq t$.

Proof. The proof works as in the $\mathbb{F}[x]$ case, cf. [\[7,](#page-5-2) Lemma 2.8], by taking care of the fact that $\alpha x^a \cdot \beta x^b = \alpha \sigma^c(\beta) x^{a+b}$ for all $\alpha, \beta \in \mathbb{F}$, $a, b \in \mathbb{N}_0$.

Algorithm 2 $\hat{R}(M, t)$ *Input: Module basis* $\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}$ with deg $\mathbf{M} = n$ Output: $\mathbf{U} \in \mathbb{F}[x, \sigma]^{r \times r}$: $\mathbf{U} \cdot \mathbf{M}$ is in wPf or $\deg(\mathbf{U} \cdot \mathbf{M}) \leq \deg \mathbf{M} - t$

- 1. If $t = 1$, then Return $R(M|_1)$
- 2. $\mathbf{U}_1 \leftarrow \hat{\mathbf{R}}(\mathbf{M}|_t, \lfloor t/2 \rfloor)$ and $\mathbf{M}_1 \leftarrow \mathbf{U}_1 \cdot \mathbf{M}|_t$
- 3. Return $\hat{R}(\mathbf{M}_1, t - (\deg \mathbf{M}|_t - \deg \mathbf{M}_1)) \cdot \mathbf{U}_1$

Theorem 3.5 Algorithm [2](#page-3-0) is correct and has complexity $O(r^3 \mathcal{M}(t))$.

Proof. Correctness follows from $R(M, t) = R(M, t)$ by induction (for $t = 1$, see Theorem [3.1\)](#page-2-1). Let $\hat{\mathbf{U}} = \hat{\mathbf{R}}(\mathbf{M}|_t, \hat{\mathbf{L}}_2^{\mathbf{t}})$ $(\frac{t}{2})$ and $\mathbf{U} = \text{R}(\mathbf{M}|_t, \lfloor \frac{t}{2} \rfloor)$ $\frac{t}{2}$). Then,

$$
\hat{\mathcal{R}}(\mathbf{M},t) = \hat{\mathcal{R}}(\hat{\mathbf{U}} \cdot \mathbf{M}|_t, t - (\deg \mathbf{M}|_t - \deg(\hat{\mathbf{U}} \cdot \mathbf{M}|_t))) \cdot \hat{\mathbf{U}} \n\stackrel{\text{(i)}}{=} \mathcal{R}(\mathbf{U} \cdot \mathbf{M}|_t, t - (\deg \mathbf{M}|_t - \deg(\mathbf{U} \cdot \mathbf{M}|_t))) \cdot \mathbf{U} \stackrel{\text{(ii)}}{=} \mathcal{R}(\mathbf{M}|_t, t) \stackrel{\text{(iii)}}{=} \mathcal{R}(\mathbf{M},t),
$$

where (i) follows from the induction hypothesis, (ii) by Lemma [3.2,](#page-3-1) and (iii) by Lemma [3.3.](#page-3-2) Algorithm [2](#page-3-0) calls itself twice on inputs of sizes $\approx \frac{t}{2}$ $\frac{t}{2}$. The only other costly operations are the matrix multiplications in Lines 2 and 3 of matrices containing only polynomials of length $\leq t$ (cf. Lemma [3.4\)](#page-3-3). This costs^{[4](#page-4-0)} r^2 times r multiplications $\mathcal{M}(t)$ and r^2 times r additions $O(t)$ of polynomials of length $\leq t$, having complexity $O(r^3\mathcal{M}(t))$. The recursive complexity relation reads $f(t) = 2 \cdot f(\frac{t}{2})$ $\frac{t}{2}$ + $O(r^3\mathcal{M}(t))$. By the master theorem, we get $f(t) \in O(t f(1) + r^3 \mathcal{M}(t))$. The base case operation R(M|₁) with cost $f(1)$ is called at most t times since it decreases deg M by 1 each time. Since len(M|₁) ≤ 1 , $f(1) \in O(r^3)$ by Theorem [3.1.](#page-2-1) Hence, $f(t) \in O(r^3\mathcal{M}(t))$. \Box

4 Implications and Conclusion

The *orthogonality defect* [\[1\]](#page-5-0) of a square, full-rank, skew polynomial matrix \bf{M} is $\Delta(\mathbf{M}) = \deg \mathbf{M} - \deg \det \mathbf{M}$, where deg det is the "determinant degree" function, see [\[1\]](#page-5-0). A matrix M in wPf has $\Delta(M) = 0$ and deg det M is invariant under row operations. Thus, if V is in wPf and obtained from M by simple transformations, then deg $V = \Delta(V) + \deg \det V = \deg M - \Delta(M)$. With $\Delta(M) \geq 0$, this implies that R(M, $\Delta(M)$) · M is always in wPf. It was shown in [\[1\]](#page-5-0) that **B** from Equation [\(1\)](#page-1-3) has orthogonality defect $\Delta(\mathbf{B}) \in O(n)$, which implies the following theorem.

Theorem 4.1 (Main Statement) $\hat{R}(B, \Delta(B)) \cdot B$ is in wPf. This implies that we can decode Interleaved Gabidulin codes in^{[5](#page-4-1)} $O(\ell^3 n^{(\omega+1)/2} \log(n))$.

⁴ In D&C matrix multiplication algorithms, the length of polynomials in intermediate computations might be much larger than t . Thus, we have to compute it naively in cubic time. ⁵ The $log(n)$ factor is due to the divisions in the decoding algorithm, following the row reduction step (see Footnote [2\)](#page-1-1) and can be omitted if $log(n) \in o(\ell^2)$.

Table [1](#page-5-5) compares the complexities of known decoding algorithms for Interleaved Gabidulin codes. Which algorithm is asymptotically fastest depends on the relative size of ℓ and n. Usually, one considers $n \gg \ell$, in which case the algorithms in this paper and in [\[4\]](#page-5-6) provide—to the best of our knowledge—the fastest known algorithms for decoding Interleaved Gabidulin codes.

Algorithm	Complexity
Skew Berlekamp–Massey [5]	$O(\ell n^2)$
Skew Berlekamp–Massey (D&C) [4] \vert	$O(\ell^K n^{\frac{\omega+1}{2}} \log(n)),$ possibly $\frac{6}{K} = 3$
Skew Demand–Driven* $[1]$	$O(\ell n^2)$
Skew Alekhnovich [*] (Theorem 3.5)	$\overline{O(\ell^3 n^{\frac{\omega+1}{2}} \log(n))} \subseteq^{\dagger} O(\ell^3 n^{1.69} \log(n))$
Table 1	

Comparison of decoding algorithms for Interleaved Gabidulin codes. Algorithms marked with ^{*} are based on the row reduction problem of [\[1\]](#page-5-0). [†]Example $\omega \approx 2.37$.

In the case of Gabidulin codes $(\ell = 1)$, we obtain an alternative to the Linearized Extended Euclidean algorithm from [\[6\]](#page-5-3) of the same complexity. The algorithms are equivalent up to the implementation of a simple transformation.

References

- [1] S. Puchinger, J. Rosenkilde né Nielsen, W. Li, and V. Sidorenko, "Row Reduction Applied to Rank-Metric and Subspace Codes," *Des. Codes Cryptogr.*, DOI: 10.1007/s10623-016-0257-9, arXiv preprint 1510.04728, 2016.
- [2] O. Ore, "Theory of Non-commutative Polynomials," *Ann. Math.*, pp. 480–508, 1933.
- [3] S. Puchinger and A. Wachter-Zeh, "Fast Operations on Linearized Polynomials and their Applications in Coding Theory," *Submitted to: Journal of Symbolic Computation*, 2016, arXiv preprint 1512.06520.
- [4] V. Sidorenko and M. Bossert, "Fast Skew-Feedback Shift-Register Synthesis," *Des. Codes Cryptogr.*, vol. 70, no. 1-2, pp. 55-67, 2014.
- [5] V. Sidorenko, L. Jiang, and M. Bossert, "Skew-Feedback Shift-Register Synthesis and Decoding Interleaved Gabidulin Codes," *IEEE Trans. Inf. Theory*, vol. 57, no. 2, pp. 621–632, 2011.
- [6] A. Wachter-Zeh, "Decoding of Block and Convolutional Codes in Rank Metric," Ph.D. dissertation, Ulm University and University of Rennes, 2013.
- [7] M. Alekhnovich, "Linear Diophantine Equations over Polynomials and Soft Decoding of Reed–Solomon Codes," *IEEE Trans. Inf. Theory*, vol. 51, no. 7, pp. 2257–2265, 2005.

⁶ In [\[4\]](#page-5-6), the complexity is given as $O(n^{\frac{\omega+1}{2}} \log(n))$ and ℓ is considered to be constant. By a rough estimate, the complexity becomes $O(\ell^{\mathcal{O}(1)} n^{\frac{\omega+1}{2}} \log(n))$ when including ℓ . We believe the exponent of ℓ is really 3 (or possibly ω) but this should be further analyzed.