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Abstract. In this note, we present an infinite family of promise prob-
lems which can be solved exactly by just tuning transition amplitudes of a
two-state quantum finite automata operating in realtime mode, whereas
the size of the corresponding classical automata grow without bound.
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1 Introduction

The exact quantum computation has been widely examined for partial
(promise) and total functions (e.g. [BH97, BV97, BBC+98, BCdWZ99,
Kla00, BdW03, MNYW05, FI09, YFSA10]). On the other hand, in au-
tomata theory, only two results have been obtained:

(i) Klauck [Kla00] has shown that realtime quantum finite automata
(QFAs) cannot be more concise than realtime deterministic finite au-
tomata (DFAs) 1 in case of language recognition,

(ii) Murakami et. al. [MNYW05] have shown that there is a promise prob-
lem solvable by quantum pushdown automata but not by any deter-
ministic pushdown automata.

⋆ Ambainis was supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA/044, FP7
Marie Curie International Reintegration Grant PIRG02-GA-2007-224886 and FP7
FET-Open project QCS.

⋆⋆ Yakaryılmaz was partially supported by the Scientific and Technological Research
Council of Turkey (TÜBİTAK) with grant 108E142 and FP7 FET-Open project
QCS.

1 The proof was basically given for Kondacs-Watrous realtime QFA model [KW97]
but it can be extended for any model of realtime QFAs including the most general
ones [Cia01,BMP03,Hir10,YS11].
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In this note, we consider succinctness of realtime QFAs for promise
problems. We present an infinite family of promise problems which can be
solved exactly by just tuning transition amplitudes of a two-state rtQFAs,
whereas the size of the corresponding classical automata grow without
bound.

2 Background

Throughout the paper,

(i) Σ denotes the input alphabet not containing left- and right-end mark-
ers (¢ and $, respectively) and Σ̃ = Σ ∪ {¢, $},

(ii) ε is the empty string,
(iii) wi is the ith symbol of a given string w, and
(iv) w̃ represents the string ¢w$, for w ∈ Σ∗.

Moreover, all machines presented in the paper operate in realtime mode.
That is, the input head moves one square to the right in each step and
the computation stops after reading $.

A promise problem is a pair A = (Ayes, Ano), where Ayes, Ano ⊆ Σ∗

and Ayes∩Ano = ∅ [Wat09]. A promise problem A = (Ayes, Ano) is solved
exactly by a machine M if each string in Ayes (resp., Ano) is accepted
(resp., rejected) exactly by M. Note that, if Ayes = Ano, this is the same
as the recognition of a language (Ayes).

We give our quantum result with the most restricted of the known
QFA model, i.e. Moore-Crutchfield quantum finite automaton (MCQFA)
[MC00], (see [YS11] for the definition of the most general QFA model).

A MCQFA is a 5-tuple

M = (Q,Σ, {Uσ | σ ∈ Σ̃}, q1, Qa),

where Q is the set of states, q1 is the initial state, Qa ⊆ Q and is the
set of accepting states, and Uσ’s are unitary operators. The computation
of a MCQFA on a given input string w ∈ Σ∗ can be traced by a |Q|-
dimensional vector. This vector is initially set to |v0〉 = (1 0 · · · 0)T and
evolves according to

|vi〉 = Uw̃i
|vi−1〉, 1 ≤ i ≤ |w̃|.

At the end of the computation, w is accepted (resp., rejected) with prob-
ability ||Pav|w̃|||

2 (resp., ||Prv|w̃|||
2), where Pa =

∑

q∈Qa
|q〉〈q| and Pr =

I −Pa. If we replace the unitary operation with a zero-one left stochastic
operator, we obtains a realtime DFA (which we call simply a DFA).



3 The main results

Let Ak
yes = {ai2

k

| i is a nonnegative even integer} and Ak
no = {ai2

k

|
i is a positive odd integer} be two unary languages, where k is a positive
integer. We will show that a two-state MCQFA can solve promise problem
Ak = (Ak

yes, A
k
no), but any DFA (and so any PFA) must have at least 2N

states to solve the same problem exactly.

Theorem 1. Promise problem Ak = (Ak
yes, A

k
no) can be solved by a two-

state MCQFA Mk exactly.

Proof. We will use a well-known technique given in [AF98]. Let N = 2k

and Mk = (Q,Σ, {Uσ | σ ∈ Σ̃}, q1, Qa), where Q = {q1, q2}, Σ = {a},
Qa = {q1}, U¢ = U$ = I, and Ua is a rotation in |q1〉-|q2〉 plane with
angle θ = π

2N , i.e.,

Ua =

(

cos θ − sin θ
sin θ cos θ

)

.

The computation begins with |q1〉 and after reading each block of N a’s,
the following pattern is followed by Mk:

|q1〉
aN
−→ |q2〉

aN
−→ −|q1〉

aN
−→ −|q2〉

aN
−→ |q1〉

aN
−→ · · · .

Therefore, it is obvious that Mk solves promise problem Ak exactly.

Lemma 1. Any DFA solving Ak = (Ak
yes, A

k
no) exactly must have at least

2k+1 states.

Proof. Let N = 2k and D be a m-state DFA solving Ak exactly. We show
that m cannot be less than 2N .

Since both Ak
yes and Ak

no contain infinitely many unary strings, there
must be a chain of t states, say s0, . . . , st−1 such that, for sufficiently long
strings, D enters this chain in which D transmits from si to s(i+1 mod t)

when reading an a, where 0 ≤ i ≤ t− 1 and 0 < t ≤ m.
Without lose of generality, we assume that D accepts the input if it

is in s0 before reading $. Thus, D rejects the input if it is in s(N mod t)

before reading $. Let Sa be the set of {s(i2N mod t) | i ≥ 0}. Then, D
accepts the input if it is in one of the states in Sa before reading $. Note
that s(N mod t) /∈ Sa.

Let d = gcd(t, 2N), t′ = t
d
, and S′ be the set {sid | 0 ≤ i < t′}. Since

Sa ⊆ S′ and |S′| = t′, we can easily follow Sa = S′ if we show |Sa| ≥ t′.
Firstly, we show that each i satisfying (i2N ≡ 0 mod t) must be

a multiple of t′: For such an i, there exists a j such that i2N = jt. By



dividing both sides with t = dt′, we get i
t′

2N
d

= j. This implies that i must
be a multiple of t′ since left side must be an integer and gcd(t′, 2N) = 1.

Secondly, we show that there is no i1 and i2, i.e. t
′ > i1 > i2 ≥ 0, such

that (i12N ≡ i22N mod t). If so, we have (i12N − i22N ≡ 0 mod t)
and then ((i1 − i2)2N ≡ 0 mod t). This implies that (i1 − i2) must be a
multiple of t′. This is a contradiction.

Thus, for each i ∈ {0, . . . , t′ − 1}, we obtain a different value of (i2N
mod t) and so |Sa| contains at least t

′ elements.

If gcd(t,N) = d, then s(N mod t) also becomes a member of Sa. There-
fore, gcd(t,N) must be different than gcd(t, 2N). This can only be possible
whenever t is a multiple of 2N . Therefore, m cannot be less than 2N .

Since a 2k+1-state DFA solving promise problem Ak exactly can be
constructed in a straightforward way, we obtain the following theorem.

Theorem 2. The minimal DFA solving the promise problem Ak = (Ak
yes, A

k
no)

exactly has 2k+1 states.

4 Concluding remarks

In this paper, we identify a case in which the superiority of quantum
computation to classical one cannot be bounded. For this purpose, we use
an infinite family of two unary disjoint languages containing the strings
of the form (a2n)∗ and an(a2n)∗, respectively, where n is a power of 2.

What happens if n is not an exact power of 2? For quantum case,
we can still solve the same problem with 2 states. On the other hand,
for the classical case, the minimum number of states is determined by
the biggest factor of the number, which is a power of 2. Let k, l >
0. Let N = 2k(2l + 1) and AN = (AN

yes, A
N
no) (where AN

yes = {aiN |

i is a nonnegative even integer} and AN
no = {aiN | i is a positive odd integer})

be a promise problem.

Corollary 1. The minimal DFA solving promise problem AN = (AN
yes, A

N
no)

exactly has 2k+1 states. 2

Therefore, if N is an odd integer, a DFA only needs 2 states to solve the
related promise problems.

2 The proof can be obtained by using almost the same technique given in Section 2.
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