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Abstract. The main goal of this note is to provide a First-Order Logic with Betweenness (FOLB) axiomatization
of the main classes of graphs occurring in Metric Graph Theory, in analogy to Tarski’s axiomatization of Euclidean
geometry. We provide such an axiomatization for weakly modular graphs and their principal subclasses (median and
modular graphs, bridged graphs, Helly graphs, dual polar graphs, etc), basis graphs of matroids and even ∆-matroids,
partial cubes and their subclasses (ample partial cubes, tope graphs of oriented matroids and complexes of oriented
matroids, bipartite Pasch and Peano graphs, cellular and hypercellular partial cubes, almost-median graphs, netlike
partial cubes), and Gromov hyperbolic graphs. On the other hand, we show that some classes of graphs (including
chordal, planar, Eulerian, and dismantlable graphs), closely related with Metric Graph Theory, but defined in a
combinatorial or topological way, do not allow such an axiomatization.

1. Introduction

First-Order Logic (FOL) is the language of classical logic most widely used in various areas
of mathematics and computer science. First-order logic uses quantified variables over non-logical
objects and allows the use of sentences that contain variables. The first-order language of graph
theory is defined in the usual way with variables ranging over the vertex-set and the edge relation
as the primitive relation. However, not many graph properties can be expressed using this logic:
such fundamental properties as Connectivity, Acyclicity, Bipartiteness, Planarity, Eulerian, and
Hamiltonian Path are not first-order definable on finite graphs [114, 160]. Therefore developing a
comprehensive first-order theory on graphs with more expressive power is an important problem.
A possible approach towards such a theory is to transpose to graphs Tarski’s axiomatic approach
to Euclidean geometry [147,157,158].

Tarski developed a First-Order Logic theory of Euclidean geometry using only “points” as the
“primitive geometric objects” in contrast to other theories of Euclidean geometry of Hilbert and
Birkhoff, where points, lines, planes, etc., are all primitive “geometrical objects”. In Tarski’s theory,
there are two primitive geometrical relations (predicats): the ternary relation B of “betweenness”
and the quaternary relation ≡ of “equidistance” or “congruence of segments”. The elegance of
Tarski’s axiomatic theory of geometry is that the axiom system admits elimination of quantifiers:
that is, every formula is provably equivalent (on the basis of the axioms) to a Boolean combination
of basic formulas. The theory is complete: every assertion is either provable or refutable; the theory
is decidable – there is a mechanical procedure for determining whether or not any given assertion
is provable and also there is a constructive consistency proof for the theory. Tarski’s axioms are an
axiom set for the substantial fragment of Euclidean geometry that is formulable in first-order logic
with identity, and requiring no set theory [147,157,158].

The main goal of this article is the First-Order Logic axiomatization of Metric Graph Theory
using the notion of Betweenness, in a similar vein as Tarski’s First-Order Logic approach to Eu-
clidean geometry. The natural betweenness on graphs is the metric betweenness (or shortest path
betweenness) resulting from the standard path metric d of connected graphs G = (V,E) and defined
using the ternary relation B(abc) on the vertex set V of a graph G meaning that “the vertex b lies
on some shortest path of G between the vertices a and c”. We abbreviate the Fist Order Logic with
Betweenness of graphs by FOLB.
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The main subject of Metric Graph Theory (MGT) is the investigation and characterization of
graph classes whose metric satisfies main properties of classical metric geometries like Euclidean
`2-geometry (and more generally, the `1- and `∞-geometries), hyperbolic spaces, hypercubes, trees.
Such central properties are convexity of balls, Helly property for balls, geometry of geodesic or
metric triangles, isometric and low-distortion embeddings, the retractions, the four-point conditions,
uniqueness or existence of medians, etc. The main classes of graphs central to MGT are median
graphs, Helly graphs, partial cubes and `1–graphs, bridged graphs, graphs with convex balls, Gromov
hyperbolic graphs, modular and weakly modular graphs. Other classes surprisingly arise from
combinatorics and geometry: basis graphs of matroids, even ∆-matroids, tope graphs of oriented
matroids, dual polar spaces. For a survey of classes arising in MGT, see the survey [14]). For a
theory of weakly modular graphs and their subclasses, see the paper [50] and for partial cubes and
`1-graphs, see the books [80] and [99].

In this paper, we show that all these graph classes occurring in MGT are definable in FOLB. On
the other hand, we show that chordal graphs, dismantlable graphs, Eulerian graphs, planar graphs,
and partial Johnson graphs are not definable in FOLB. Chordal graphs form a subclass of bridged
graphs, dismantlable graphs form a superclass of bridged and Helly graphs, partial Johnson graphs
generalize partial cubes. Since often the FOLB-definability of a graph class is based not on its initial
definition but on a characterization, which is not the principal or nicest one, when we introduce
a graph class we define it, briefly motivate its importance, and present the used characterization.
Then we refer to mentioned above papers and books or to other references for a more detailed
treatment of each class. Notice that many of the classes from metric graph theory contain all trees
but not all cycles; they are often defined by forbidding isometric subgraphs and cycles of given
lengths. Consequently, these classes cannot be defined in the standard First Order Logic on graphs:
indeed, the proof establishing that Acyclicity is not FOL-definable immediately implies that such
classes are not FOL-definable.

The paper is organized as follows. In Section 2 we present the main basic definitions about
graphs and First Order Logic. We also recall the Ehrenfeucht-Fraïssé games as the tool of proving
that some queries are not definable in FOL for graphs. In Section 3 we introduce the First Order
Logic with Betweenness for graphs and give the first examples of queries which are definable in this
logic. In Section 4 we show that weakly modular graphs and their main subclasses and super-classes
occurring in Metric Graph Theory are FOLB-definable. In Section 5 we show FOLB-definability
of partial cubes and some of their subclasses and super-classes. Section 6 is devoted to FOLB-
definability of Gromov hyperbolic graphs. In Section 7, we establish that some classes of graphs are
not FOLB-definable. In Section 8, we explain how such FOLB characterization lead to polynomial
time recognition algorithms.

2. Preliminaries

In this section, we recall the main definitions about graphs and the first-order logic. In the three
subsections about first-order logic we closely follow the paper [114] by Kolaitis (we also use the book
by Libkin [118]).

2.1. Graphs. A graph G = (V,E) consists of a set of vertices V := V (G) and a set of edges
E := E(G) ⊆ V × V . All graphs considered in this paper are finite, undirected, connected,
and contain no multiple edges nor loops. For two distinct vertices v, w ∈ V we write v ∼ w
(respectively, v � w) when there is an (respectively, there is no) edge connecting v with w, that
is, when vw := {v, w} ∈ E. For vertices v, w1, . . . , wk, we write v ∼ w1, . . . , wk (respectively,
v � w1, . . . , wk) or v ∼ A (respectively, v � A) when v ∼ wi (respectively, v � wi), for each
i = 1, . . . , k, where A = {w1, . . . , wk}. As maps between graphs G = (V,E) and G′ = (V ′, E′) we
always consider simplicial maps, that is functions of the form f : V → V ′ such that if v ∼ w in G
then f(v) = f(w) or f(v) ∼ f(w) in G′. A (u,w)–path (v0 = u, v1, . . . , vk = w) of length k is a
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sequence of vertices with vi ∼ vi+1. If k = 2, then we call P a 2-path of G. If vi 6= vj for |i− j| ≥ 1,
then P is called a simple (a, b)–path. A k–cycle (v0, v1, . . . , vk−1) is a path (v0, v1, . . . , vk−1, v0). For
a subset A ⊆ V, the subgraph of G = (V,E) induced by A is the graph G(A) = (A,E′) such that
uv ∈ E′ if and only if uv ∈ E (G(A) is sometimes called a full subgraph of G). A square uvwz
(respectively, triangle uvw, pentagon uvwxz) is an induced 4–cycle (u, v, w, z) (respectively, 3–cycle
(u, v, w), 5-cycle (u, v, w, x, z)).

The distance d(u, v) = dG(u, v) between two vertices u and v of a graph G is the length of a
shortest (u, v)–path. For a vertex v of G and an integer r ≥ 1, we denote by Br(v,G) (or by
Br(v)) the ball in G (and the subgraph induced by this ball) of radius r centered at v, that is,
Br(v,G) = {x ∈ V : d(v, x) ≤ r}. More generally, the r–ball around a set A ⊆ V is the set (or the
subgraph induced by) Br(A,G) = {v ∈ V : d(v,A) ≤ r}, where d(v,A) = min{d(v, x) : x ∈ A}. As
usual, N(v) = B1(v,G) \ {v} denotes the set of neighbors of a vertex v in G. A graph G = (V,E) is
isometrically embeddable into a graph H = (W,F ) if there exists a mapping ϕ : V → W such that
dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V . More generally, for an integer k ≥ 1, a graph
G = (V,E) is scale k embeddable into a graph H = (W,F ) if there exists a mapping ϕ : V → W
such that dH(ϕ(u), ϕ(v)) = k · dG(u, v) for all vertices u, v ∈ V . A retraction ϕ of a graph G
is an idempotent nonexpansive mapping of G into itself, that is, ϕ2 = ϕ : V (G) → V (G) with
d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ W . The subgraph of G induced by the image of G under ϕ is
referred to as a retract of G.

The interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths, that is,
of all vertices (metrically) between u and v: I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. If
d(u, v) = 2, then I(u, v) is called a 2-interval. A 2-interval I(u, v) is called thick if I(u, v) contains
two non-adjacent vertices x, y ∈ I(u, v) \ {u, v}. A graph G is called thick if all 2-intervals of G
are thick. A subgraph of G (or the corresponding vertex-set A) is called convex if it includes the
interval of G between any pair of its vertices. The smallest convex subgraph containing a given
subgraph S is called the convex hull of S and is denoted by conv(S). A halfspace is a convex set
of G whose complement is convex. An induced subgraph H (or the corresponding vertex-set of H)
of a graph G is gated if for every vertex x outside H there exists a vertex x′ in H (the gate of x)
such that x′ ∈ I(x, y) for any y of H. Gated sets are convex and the intersection of two gated sets
is gated. By Zorn’s lemma there exists a smallest gated subgraph containing a given subgraph S,
called the gated hull of S.

Let Gi, i ∈ Λ be an arbitrary family of graphs. The Cartesian product
∏
i∈ΛGi is a graph whose

vertices are all functions x : i 7→ xi, xi ∈ V (Gi) and two vertices x, y are adjacent if there exists an
index j ∈ Λ such that xjyj ∈ E(Gj) and xi = yi for all i 6= j. Note that a Cartesian product of
infinitely many nontrivial graphs is disconnected. Therefore, in this case the connected components
of the Cartesian product are called weak Cartesian products. The direct product �i∈ΛGi of graphs
Gi, i ∈ Λ is a graph having the same set of vertices as the Cartesian product and two vertices x, y
are adjacent if xiyi ∈ E(Gi) or xi = yi for all i ∈ Λ.

We continue with the definition of some graphs. The complete graph on n vertices is denote
by Kn and the complete bipartite graph with parts of size n and m by Kn,m. The wheel Wk is a
graph obtained by connecting a single vertex – the central vertex c – to all vertices of the k–cycle
(x1, x2, . . . , xk); the almost wheel W−k is the graph obtained from Wk by deleting a spoke (i.e.,
an edge between the central vertex c and a vertex xi of the k–cycle). Analogously K−4 and K−3,3
are the graphs obtained from K4 and K3,3 by removing one edge. An n–octahedron Kn×2 (or, a
hyperoctahedron, for short) is the complete graph K2n on 2n vertices minus a perfect matching. A
hypercube Qm of dimension m is a graph having the subsets of a set X of size m as vertices and two
such sets A,B are adjacent in Qm if and only if |A4B| = 1. A halved cube 1

2Qm has the vertices of
a hypercube Qm corresponding to subsets of X of even cardinality as vertices and two such vertices
are adjacent in 1

2Qm if and only if their distance in Qm is 2 (analogously one can define a halved
cube on finite subsets of odd cardinality). For a positive integer k, the Johnson graph J(m, k) has
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the subsets of X of size k as vertices and two such vertices are adjacent in J(m, k) if and only if their
distance in Qm is 2. All Johnson graphs J(m, k) with even k are isometric subgraphs of the halved
cube 1

2Qm and the halved cube 1
2Qm is scale 2 embedded in the hypercube Qm. The hypercube

Qm can be viewed as the Cartesian product of m copies of K2. The Hamming graph Hm1,...,md
is a

Cartesian product of the complete graphs Km1 , . . .Kmd
.

2.2. First-Order Logic (FOL). In this subsection we recall the main definitions from First-Order
Logic. A vocabulary σ = (P1, . . . , c1, . . . , cs) consists of a set of constant symbols and a set of relation
symbols (called also predicates) of specified arities. Given a vocabulary σ, the variables and the
constant symbols are the σ-terms. The set of formulas is defined inductively as follows:

• given terms t1, . . . , tk and a k-ary predicate P , then P (t1, . . . , tk) is a formula;;
• for each formulas F, F ′, ¬F, (F ∧ F ′), and F ∨ F ′) are formulas;
• if F is a formula and x is a variable, then ∃xF and ∀xF are formulas.

Atomic formulas are those constructed according to the first rule. A general first-order formula
is build up from atomic formulas using Boolean connectives and the two quantifiers. Given a
vocabulary σ, a σ-structure is a tuple A = (A,PA

1 , . . . , P
A
m , c

A
1 , . . . c

A
1 ) consisting of

• a non-empty set A, called the universe;
• for each constant ci, an element cAi of A;
• for each k-ary predicate Pi in σ, a k-ary relation PA

i ⊂ A× · · · ×A︸ ︷︷ ︸
k

.

A finite σ-structure is a σ-structure A whose universe A is finite.
Let A = (A,PA

1 , . . . , P
A
m , c

A
1 , . . . , c

A
s ) and B = (B,PB

1 , . . . , P
B
m , c

B
1 , . . . , c

B
s ) be two σ-structures.

An isomorphism between A and B is a mapping h : A→ B that satisfies the following conditions:
• h is a one-to-one and onto function;
• for every constant symbol cj , j = 1, . . . , s, we have h(cAj ) = cBj ;
• for each relation symbol Pi, i = 1, . . . ,m, of arity t and any t-tuple (a1, . . . , at) from A, we
have PA

i (a1, . . . , at) if and only if PB
i (h(a1), . . . , h(at)).

Given two structures A = (A,PA
1 , . . . , P

A
m , c

A
1 , . . . , c

A
s ) and B = (B,PB

1 , . . . , P
B
m , c

B
1 , . . . , c

B
s ),

B is a substructure of A if B ⊆ A, each PB
i is the restriction of PA

i to B (which means that
PB
i = PA

i ∩ Bt) and cBj = cAj , j = 1, . . . , s. If A is a σ-structure and D is a subset of A, then
the substructure of A generated by D is the structure A � D having the set D ∪ {cA1 , . . . , cAs } as
its universe and having the restrictions of the relations PA

i on D ∪ {cA1 , . . . , cAs } as its relations. A
partial isomorphism from A to B is an isomorphism from a substructure of A to a substructure of
B. Given a structure A, a variable x, and a ∈ A, the structure A[x 7→a] is the same as A except that
xA[x→a] = a.

Example 1. A (undirected) graph is a σ-structure G = (V,E) with the vertex-set V as the universe
and the vocabulary σ with one binary relation symbol E, where E is interpreted as the edge relation.
The subgraph of G induced by a set of vertices D of G is the substructure of G generated by D.

Let A be a σ-structure with universe A. The value A[t] of each term t is an element of the
universe A, inductively defined as follows:

• for a constant symbol c, set A[c] = cA;
• for a variable x, set A[x] = xA;
• for a term f(t1, . . . , fk), where f is a k-ary function symbol and t1, . . . , tk are terms, set
A[f(t1, . . . , tk)] = fA(A[t1], . . . ,A[tk]).

The satisfaction relation A � F (which means that A satisfies F or that A models F) between
a σ-structure A and σ-formula F is defined by induction over the structure of F :

• A � P (t1, . . . , tk) if and only if (A[t1], . . . ,A[tk]) ∈ PA;
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• A � (F ∧ F ′) if and only if A � F and A � F ′;
• A � (F ∨ F ′) if and only if A � F or A � F ′;
• A � ¬F if and only if A 2 F ;
• A � ∃xF if and only if there exists a ∈ A such that A[x 7→a] � F ;
• A � ∀xF if and only if A[x 7→a] � F for all a ∈ A;
• A � t1 = t2 if and only if A[t1] = A[t2].

A first-order formula F over signature σ is satisfiable if A � F for some σ-structure A. If F is
not satisfiable it is called unsatisfiable. F is called valid if A � F for every σ-structure A.

Following the terminology of [114, 118], we continue with the concept of query, one of the most
fundamental concepts in finite model theory. Let σ be a vocabulary. A class of σ-structures is a
collection C of σ-structures that is closed under isomorphisms. A k-ary query on C is a mapping Q
with domain C such that Q is preserved under isomorphisms and Q(A) is a k-ary relation on A for
all A ∈ C. A Boolean query on C is a mapping Q : C → {0, 1} that is preserved under isomorphisms.
Consequently, Q can be identified with the subclass C′ = {A ∈ C : Q(A) = 1} of C. For example,
the Connectivity query on graphs G = (V,E) is the Boolean query such that Connectivity(G) = 1 if
and only if the graph G is connected. Queries are mathematical objects that formalize the concept
of a “property” of structures and makes it possible to define what means for such a “property” to be
expressible in some logic.

Let L be a (first-order) logic and C a class of σ-structures. A k-ary query Q on C is L-definable
if there exists a formula F (x1, . . . , xk) of L with x1, . . . , xk as free variables and such that for every
A ∈ C, Q(A) = {(a1, . . . , ak) ∈ Ak : A � F (a1, . . . , ak)}. A Boolean query Q on C is L-definable if
there exists an L-formula F such that for every A ∈ C, Q(A) = 1 if and only if A � F . Let L(C)
denotes the collection of all L-definable queries on C.

The expressive power of a logic L on a class C of finite structures is defined by the collection
of L-definable queries on C, i.e., is to determine which queries on C are L-definable and which are
not. To show that a query Q is definable, it suffices to find some L-formula that defines it on every
structure in C. In contrast, showing that Q is not L-definable entails showing that no formula of L
defines the property. One of the main tools in proving that a query is not definable in first-order
logic of finite graphs is the method of Ehrenfeucht-Fraïssé games, defined in the next subsection.

2.3. Ehrenfeucht-Fraïssé games. Let r be a positive integer, σ a vocabulary, and A and B two
σ-structures. The r-move Ehrenfeucht-Fraïssé game on A and B is played between two players,
called the Spoiler and the Duplicator. Each run of the game has r moves. In each move, the Spoiler
plays first and picks an element from the universe A ofA or from the universe B ofB; the Duplicator
then responds by picking an element of the other structure (i.e., if Spoiler picked an element from
A, then the Duplicator picks and element from B, and vice versa). Let ai ∈ A and bi ∈ B be the
two elements picked by the Spoiler and the Duplicator in their i-th move, 1 ≤ i ≤ r.

• The Duplicator wins the run (a1, b1), . . . , (ar, br) if the mapping ai 7→ bi, i = 1, . . . , r and
cAj 7→ cBj , j = 1, . . . , s is a partial isomorphism from A to B, which means that it is an
isomorphism between the substructure A � {a1, . . . , ar} of A restricted to {a1, . . . , ar} and
the substructure B � {b1, . . . , br} of B restricted to {b1, . . . , br}. otherwise, the Spoiler wins
the run (a1, b1), . . . , (ar, br).
• The Duplicator wins the r-move Ehrenfeucht-Fraïssé game on A and B if the Duplicator can
win every run of the game, i.e., if (s)he has a winning strategy for the Ehrenfeucht-Fraïssé
game. Otherwise, the Spoiler wins the r-move Ehrenfeucht-Fraïssé game.
• We write A ∼r B to denote that the Duplicator wins the r-move Ehrenfeucht-Fraïssé game
on A and B.

From this definition follows that ∼r is an equivalence relation on the class of all σ-structures. For
a formal definition of the winning strategy for the Duplicator, see for example [114, Definition 3.4].
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Ehrenfeucht-Fraïssé games characterize definability in first-order logic. To describe this connection,
we need the following definition.

Let F be a first-order formula over a vocabulary σ. The quantifier rank of F , denoted by qr(F ),
is defined inductively in the following way:

• if F is atomic, then qr(F ) = 0;
• if F is of the form ¬F ′, then qr(F ) = qr(F ′);
• if F is of the form F ′ ∨ F ′′ or of the form F ′ ∧ F ′′, then qr(F ) = max{qr(F ′), qr(F ′′)};
• if F is of the form ∃xF ′ or of the form ∀xF ′, then qr(F ) = qr(F ′) + 1.

For a positive integer r and two σ-structures A and B, A ≡r B denotes that A and B satisfy
the same first-order sentences of quantifier rank r; ≡r is an equivalence relation on the class of all
σ-structures. The main result of Ehrenfeucht and Fraïssé asserts that the equivalence relations ≡r
and ∼r coincide:

Theorem 2 ( [87, 90]). Let r be a positive integer and let A and B be two σ-structures. Then the
following two conditions are equivalent:

(i) A ≡r B, i.e., A and B have the same first-order sentences of quantifier rank r;
(ii) A ∼r B, i.e., the Duplicator wins the r-move Ehrenfeucht-Fraïssé game on A and B.

Moreover, ≡r has finitely many equivalence classes and each ≡r-equivalence class is definable by a
first-order sentence of quantified rank r.

For a proof of this theorem, see [114]. A consequence of this theorem is the following result:

Theorem 3. Let C be a class of σ-structures and Q be a Boolean query on C. Then the following
statements are equivalent:

(a) Q is first-order definable on C;
(b) there exists a positive integer r such that, for every A,B ∈ C, if Q(A) = 1 and the Duplicator

wins the r-move Ehrenfeucht-Fraïssé game on A and B, then Q(B) = 1.

This theorem provides the following method for studying first-order definability of Boolean queries
on classes of σ-structures. Let C be a σ-structure and Q be a Boolean query on C. To show that
Q is not first-order definable on C, it suffices to show that for every positive integer r there are
Ar,Br ∈ C such that

• Q(Ar) = 1 and Q(Br) = 0;
• the Duplicator wins the r-move Ehrenfeucht-Fraïssé game on A and B.

The method is also complete, i.e., if Q is not first-order definable on C, then for every positive integer
r such structures Ar and Br exist.

2.4. What can be expressed and what cannot be expressed in FOL for graphs. Recall
that an undirected graph is a σ-structure G = (V,E) with the universe V and the vocabulary σ
with one binary relation symbol E (interpreted as the edge relation) such that E(u, v) ⇒ E(v, u)
and (∀u)(¬E(u, u)). We start with a few queries on graphs, which are first-order definable:

Example 4. Let H = (V ′, E′) be a graph with vertex-set V ′ = {1, . . . , p}. The Boolean query
SubgraphH meaning “G contains H as an induced subgraph” is definable by the first-order formula

SubgraphH ≡ (∃v1)(∃v2) · · · (∃vp)(
∧
ij∈E′

E(vi, vj) ∧
∧
ij /∈E′

¬E(vi, vj)).

This implies that the query SubgraphH1,...,Hp
meaning “G contains at least one of the graphs

H1, . . . ,Hp as an induced subgraph” is also first-order definable.
Analogously, the binary query “there exists a path of length k from x to y” is definable by the

first order formula

ϕk(x, y) := (∃v1)(∃v2) · · · (∃vk−1)(E(x, v1) ∧ E(v1, v2) ∧ · · · ∧ E(vk−2, vk−1) ∧ E(vk−1, y)).
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Using the formulas ϕk, one can show that the binary query dist≤k(x, y) meaning that “the distance
between x and y is at most k” is definable by the first order formula

dist≤k(x, y) ≡ ϕk(x, y) ∨ ϕk−1(x, y)) ∨ · · · ∨ ϕ1(x, y) ∨ (x = y).

The binary query distk(x, y) meaning that “the distance between x and y is at most k” can then be
defined as the first order formula

distk(x, y) ≡ dist≤k(x, y) ∧ ¬dist≤k−1(x, y).

Using the last queries, one can easily show that the Boolean queries IsometricH and IsometricH1,...,Hp

meaning “G contains H as an isometric subgraph” and “G contains at least one of the graphs
H1, . . . ,Hp as an isometric subgraph” are also first-order definable. For example, if H is a graph
with the vertex-set {1, . . . , p}, then IsometricH is definable by the formula

IsometricH ≡ (∃v1)(∃v2) · · · (∃vp)

 p∧
k=1

 ∧
{i,j}:dH(i,j)=k

distk(vi, vj)

 .

On the other hand, the most queries on graphs are not first-order definable, in particular the
following well-known queries:

• The Acyclicity query is the Boolean query such that Acyclicity(G) = 1 iff G is an acyclic
graph;
• The Bipartite query is the Boolean query such that Bipartite(G) = 1 iff G is a bipartite
graph;
• The Connectivity query is the Boolean query such that Connectivity(G) = 1 iff G is a con-
nected graph;
• The Even query is the Boolean query such that Even(G) = 1 iff G has an even number of
vertices.

All these results can be obtained via Ehrenfeucht-Fraïssé games [114,118].

3. First Order Logic with Betweenness (FOLB)

In this section, we introduce the first-order logic with betweenness. Betweenness was first for-
mulated in geometry and nowadays has a rich history. Euclid, Pasch, Hilbert, Peano, and Tarski
studied betweeness in Euclidean geometry axiomatically. Menger [122] and Blumenthal [41] investi-
gated metric betweeness, i.e., betweenness in general metric spaces. Inspired by the work of Pasch,
Pitcher and Smiley [135] and Sholander [148–150] were the first to investigate betweenness in the
discrete setting: in lattices, partial orders, trees, and median semilattices. In graphs, the study of
metric betweenness was initiated by Mulder [125]. Prenowitz and Jantosciak [141] were the first to
investigate the notion of betweenness in the setting of abstract convexity by introducing the concept
of join space. Hedliková represented the betweenness relation as a ternary relation and introduced
the concept of ternary space; the betweenness relation in a ternary space unifies the metric, order
and lattice betweenness. Finally, this led to the equivalent concept of geometric interval space [162].

3.1. Betweenness and interval spaces. Let X be any finite set. For each pair u, v of points
in X, let uv be a subset of X, called the interval between u and v. Then X is a (finite) interval
space [162] if and only if

(I1) u ∈ uv;
(I2) uv = vu;

Every interval space gives rise to a betweenness relation: we will say that a point x is between the
points u and v (notation uxv) if x ∈ uv. The interval space X is said to be geometric if it satisfies
the following three conditions for all u, v, w, x ∈ X [27, 163]:

(I3) uu = {u},

7



(I4) w ∈ uv implies uw ⊆ uv,
(I5) v, w ∈ ux and v ∈ uw implies w ∈ vx.

A particular instance of geometric interval space is any metric space (X, d): the intervals are the
metric intervals uv = {x ∈ X : d(u, x) + d(x, v) = d(u, v)}.

For each point u one defines the base-point relation at u as follows: x ≤u y if and only if x ∈ uy.
The next lemma summarizes an equivalent description of geometric interval spaces [162, Section
27]:

Lemma 1. An interval space X is geometric if and only if it satisfies the following conditions:
(a) w ∈ ux and x ∈ uw implies w = x;
(b) v ∈ uw and w ∈ ux implies v ∈ ux and w ∈ vx;
(c) for each point u the base-point relation ≤u is a partial order such that for any v ≤u w we

have vw = {x : v ≤u x ≤u w}.

Let X be any set together with a ternary relation uxv. If u,w, v ∈ X and uwv, then w is said to
be between u and v. The interval uv is defined as the set of all w ∈ X between u and v. A ternary
space (which can be equally called a space with betweenness) is a set X together with a ternary
relation uxv satisfying the following conditions [100]:
(B1) uwv implies vwu;
(B2) uwv and uvw implies v = w;
(B3) uwv and uvx implies wvx and uwx.
From Lemma 1 it follows that a geometric interval space is exactly a ternary space satisfying the

property that u ∈ uv (i.e., uuv) for all u, v ∈ X.
An interval uv of an interval space X is called an edge if u 6= v and uv = {u, v}; the edges then

form the graph G(X) of the interval space X.

Lemma 2 ([9]). Let X be a finite geometric interval space. Then the graph G(X) of X is connected.

The graph G(X) of a finite geometric interval space X can be regarded as a metric space, where
the standard graph-metric d accounts the lengths of shortest paths in the graph. We denote by
I(u, v) = {x ∈ X : x on a shortest path between u and v} the corresponding intervals in G(X)
which have to be distinguished from the intervals uv in X. An interval space X is called graphic [9,
162] if the equality uv = I(u, v) holds for all points u, v of the space.

A simple sufficient condition for a finite interval space to be graphic was given in [9]. An interval
space X is said to satisfy the triangle condition if for any three points u, v, w in X with
(ITC) uv ∩ uw = {u}, uv ∩ vw = {v}, and uw ∩ vw = {w}, the intervals uv, uw, vw are edges

whenever at least one of them is an edge.

Theorem 5 ( [9]). A finite geometric interval space X satisfying the axiom (ITC) is graphic.

Graphic interval spaces have been characterized by Mulder and Nebeský [126] (improving over
the previous such characterizations obtained by Nebeský). Additionally, to axioms (I1)-(I5) of a
geometric interval space, they require two additional axioms introduced in [129]:

(I6) uu′ = {u, u′}, vv′ = {v, v′}, u ∈ u′v′, and u′, v′ ∈ uv imply v ∈ u′v′;
(I7) uu′ = {u, u′}, vv′ = {v, v′}, u′ ∈ uv, v′ /∈ uv, and v /∈ u′v′ imply u′ ∈ uv′.

Theorem 6 ( [126]). A finite geometric interval space X is graphic if and only if it satisfies the
axioms (I6) and (I7).

Observe that if Y is a subset of an interval space X, we can define an interval structure on Y
by taking the intersection of the interval uv in X with Y for any pair u, v ∈ Y . If X is a graphic
interval space, then Y endowed with this inherited interval structure is also a graphic interval space.
Note however that G(Y ) may be different from the subgraph of G(X) induced by Y .
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3.2. FOLB for graphs. Given a ternary predicate B on a finite set V , we define the binary
predicate EB on V as follows: EB(u, v) := u 6= v ∧ (B(u, x, v) =⇒ (x = u) ∨ (x = v)).

A graphic interval structure is a σ-structure (V,B) where V is a finite set and B is a ternary
predicate on V satisfying the following axioms:
(IB1) ∀u∀vB(u, u, v)
(IB2) ∀u∀v∀xB(u, x, v) =⇒ B(v, x, u)
(IB3) ∀u∀xB(u, x, u) =⇒ x = u
(IB4) ∀u∀v∀w∀xB(u,w, v) ∧ B(u, x, w) =⇒ B(u, x, v)
(IB5) ∀u∀v∀w∀xB(u, v, x) ∧ B(u,w, x) ∧ B(u, v, w) =⇒ B(v, w, x)
(IB6) ∀u∀u′∀v∀v′ EB(u, u′) ∧ EB(v, v′) ∧ B(u′, u, v′) ∧ B(u, u′, v) ∧ B(u, v′, v) =⇒ B(u′, v, v′)
(IB7) ∀u∀u′∀v∀v′ EB(u, u′) ∧ EB(v, v′) ∧ B(u, u′, v) ∧ ¬B(u, v′, v) ∧ ¬B(u′, v, v′) =⇒ B(u, u′, v′).

Observe that since B satisfies (IB2), GB = (V,EB) is an undirected graph seen as a σ′-structure
(as defined in Section 2.4). By Lemma 2, GB is a connected graph. Since B satisfies (IB1)–(IB7),
by Theorem 6, for any u, v, x ∈ V , x ∈ IGB

(u, v) if and only if B(u, x, v). When B(u, x, v) is true,
it means that x belongs to the interval IGB

(u, v).
When considering the class C of σ-structures (V,B) satisfying axioms (IB1)–(IB7), we say that a

query Q on C is definable in first order logic with betweeness (FOLB-definable) if it can be defined
by a first order formula F over (V,B).

Observe that by the definition of EB, any FOL-definable query is also FOLB-definable. In par-
ticular the queries distk and dist≤k are FOLB-definable.

3.3. What can be expressed in FOLB for graphs: first results. There are properties in
FOLB that cannot be expressed using only FOL. Namely, we prove that Bipartite and Tree are
FOLB-definable, where Tree is Acyclicity∧Connectivity. Since in FOLB we consider only connected
graphs, Connectivity is a trivial query in FOLB.

A graph is bipartite if and only if for any edge uv and any vertex x, the distances from x to u
and to v are different, and thus if and only if either u ∈ IG(x, v) or v ∈ IG(x, u). Consequently,
Bipartite is definable by the following FOLB-formula:

Bipartite ≡ (∀u∀v∀xEB(u, v) =⇒ B(x, u, v) ∨ B(x, v, u)) .

A tree is bipartite. In a bipartite connected graph, if G is not a tree, there are two vertices
u, x such that u has two neighbors in the interval IG(u, x). Indeed, consider a cycle C and an
arbitrary vertex x. Let u be the vertex of C that is the furthest from x. Since G is bipartite, the
two neighbors v, w of x on C belong to the interval I(x, u). Consequently, Tree is definable by the
following FOLB-formula:

Tree ≡ (Bipartite∧∀u∀v∀w∀xEB(u, v) ∧ EB(u,w) ∧ B(x, v, u) ∧ B(x,w, u) =⇒ v = w) .

We will use the predicates triangle(x, y, z), square(x, y, z, u), and pentagon(x, y, z, u, v), which are
true if and only if the vertices x, y, z, x, y, z, u, and x, y, z, u, v induce respectively a triangle, a
square, or a pentagon of a graph G. We will also use the predicate closest(v, x, y), which is true if
and only of the intervals I(x, v) and I(y, v) intersects only in the vertex v. closest(v, x, y) can be
written as the FOLB-formula (∀v′B(x, v′, v) ∧ B(y, v′, v) =⇒ v′ = v).

Given four vertices u, v, x, y of G, the following predicate express that x and y belong to a common
shortest path going from u to v (reaching first x and then y):

colinear(u, x, y, v) ≡ B(u, x, v) ∧ B(x, y, v)

Three vertices x, y, z of a graph G define a metric triangle xyz [64] if I(x, y) ∩ I(x, z) = {x},
I(x, y) ∩ I(y, z) = {y}, and I(x, z) ∩ I(y, z) = {z}. This can be expressed using the predicate

metric-triangle(x, y, z) ≡ closest(x, y, z) ∧ closest(y, x, z) ∧ closest(z, x, y).

The size of a metric triangle xyz is max(d(x, y), d(x, z), d(y, z)).
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Given three vertices x, y, z, a metric triangle x′y′z′ is a quasi-median of x, y, z if d(x, y) = d(x, x′)+
d(x′, y′) + d(y′, y), d(x, z) = d(x, x′) + d(x′, z′) + d(z′, z), and d(y, z) = d(y, y′) + d(y′, z′) + d(z′, z),
For any vertices x, y, z, one can obtain a quasi-median x′y′z′ of x, y, z by taking x′ ∈ I(x, y)∩I(x, z)
furthest from x, y′ ∈ I(x′, y)∩ I(y, z) furthest from y, and z′ ∈ I(x′, z)∩ I(y′, z) furthest from z. It
can be expressed by the following predicate:

quasi-median(x, y, z, x′, y′, z′) ≡metric-triangle(x′, y′, z′) ∧ colinear(x, x′, y′, y)

∧ colinear(x, x′, z′, z) ∧ colinear(y, y′, z′, z).

A quasi-median x′y′z′ of x, y, z such that x′ = y′ = z′ is called a median of x, y, z. Equivalently,
m belongs to I(x, y) ∩ I(x, z) ∩ I(y, z).

median(x, y, z,m) ≡ quasi-median(x, y, z,m,m,m)

≡ B(x,m, y) ∧ B(x,m, z) ∧ B(y,m, z).

The following metric conditions on a graph G play an important way in the definition of many
graph classes:

• Triangle Condition (TC): for any three vertices v, x, y such that d(v, x) = d(v, y) and x ∼ y,
there exists a vertex z ∈ I(x, v) ∩ I(y, v) such that xzy is a triangle of G;
• Quadrangle Condition (QC): for any four vertices v, x, y, u such that d(v, x) = d(v, y) =
d(v, u)− 1 and u ∼ x, y, x � y, there exists a vertex z ∈ I(x, v) ∩ I(y, v) such that xzyu is
a square of G;
• Triangle-Pentagon Condition (TPC): for any three vertices v, x, y such that d(v, x) = d(v, y)
and x ∼ y, either there exists a vertex z ∈ I(x, v) ∩ I(y, v) such that xzy is a triangle of
G, or there exist vertices z, x′, y′ such that xx′zy′y is a pentagon of G, z ∈ I(x, v)∩ I(y, v),
and d(x, z) = d(y, z) = 2;
• Interval Neighborhood Condition (INC): for any two distinct vertices u, v ∈ V , the neighbors
of u in I(u, v) form a clique.

We denote the respective queries by Triangle-Condition, Quadrangle-Condition, Pentagon-Condition,
and Interval-Neighborhood-Condition and we show that these properties are FOLB-definable:

Triangle-Condition ≡ ∀v∀x∀yEB(x, y) ∧ closest(v, x, y) =⇒ triangle(x, y, v)

Quadrangle-Condition ≡ ∀v∀x∀y∀uEB(u, x) ∧ EB(u, y) ∧ ¬EB(x, y)

∧ B(u, x, v) ∧ B(x, u, y) ∧ B(u, y, v) ∧ closest(v, x, y)

=⇒ square(u, x, v, y)

Triangle-Pentagon-Condition ≡ ∀v∀x∀yEB(x, y) ∧ closest(v, x, y) =⇒ triangle(x, y, v)

∨ ∃x′∃y′ pentagon(x, x′, v, y′, y)

Interval-Neighborhood-Condition ≡ ∀u∀v∀x∀yEB(u, x) ∧ EB(u, y) ∧ B(u, x, v) ∧ B(u, y, v)

=⇒ EB(x, y).

Observe that if a graph G satisfies INC, then G does not contain any square. Moreover, when G
satisfies QC, G satisfies INC if and only if G does not contain any square.

4. Weakly modular graphs, their subclasses and superclasses

In this section, we present the FOLB-definability of weakly modular graphs and their main sub-
classes and super-classes, which constitute an important part of Metric Graph Theory. Subclasses
of weakly modular graphs are the following classes of graphs: median, modular, quasi-modular,
quasi-median, pseudo-modular, weakly median, bridged and weakly bridged, Helly, dually polar,

10



and sweakly modular. Meshed graphs constitute a super-class of weakly modular graphs. Basis
graphs of matroids and of even ∆-matroids are subclasses of meshed graphs.

4.1. Weakly modular graphs. Weakly modular graphs have been introduced in the papers [64]
and [9]. A nice local-to-global theory of weakly modular graphs and their subclasses mentioned
above has been developed in the recent paper [50]. For results about weakly modular graphs, the
reader can consult the survey [14] and the paper [50].

A graph is weakly modular if it satisfies the triangle condition (TC) and the quadrangle condition
(QC). Thus being weakly modular can be expressed by the following FOLB-query:

Weakly Modular ≡ Triangle-Condition∧Quadrangle-Condition .

In [64], weakly modular graphs have been characterized as graphs in which metric triangles xyz
are strongly equilateral, i.e., for any u ∈ I(y, z), we have d(x, u) = d(x, y) = d(x, z). In fact, this
characterization leads to another FOLB query characterizing weakly modular graphs:

strongly-equilateral(x, y, z) ≡ ∀u∀vEB(u, v) =⇒(
((B(y, u, z) ∧ B(y, v, z)) =⇒ ¬(B(x, u, v) ∨ B(x, v, u)))

∧ ((B(x, u, z) ∧ B(x, v, z)) =⇒ ¬(B(y, u, v) ∨ B(y, v, u)))

∧ ((B(x, u, y) ∧ B(x, v, y)) =⇒ ¬(B(z, u, v) ∨ B(z, v, u)))
)

Strongly-Equilateral Triangles ≡ ∀x∀y∀z strongly-equilateral(x, y, z)

The predicate strongly-equilateral(x, y, z) establishes that for any adjacent vertices u, v of I(y, z)
(for I(x, y) and I(x, z), the arguments are similar), we have u /∈ I(x, v) and v /∈ I(x, u), yielding
d(x, u) = d(x, v). Consequently, the connectedness of I(y, z) establishes that all vertices of I(y, z)
have the same distance to x. This shows that strongly-equilateral(x, y, z) is true if and only if xyz
is a strongly equilateral metric triangle.

Weakly Modular ≡ Strongly-Equilateral Triangles.

We say that a graph G has equilateral metric triangles if every metric triangle xyz of G is
equilateral, i.e., d(x, y) = d(x, z) = d(y, z). One can ask if graphs with equilateral metric triangles
are FOLB-definable.

A modular graph is a bipartite weakly modular graph, i.e., a bipartite graph satisfying the
quadrangle condition. Thus being modular can be expressed by the following FOLB-queries:

Modular ≡ Bipartite∧Weakly Modular
≡ Bipartite∧Quadrangle-Condition .

A graph is pseudo-modular [21] if it satisfies the triangle condition and if for any three vertices
v, x, y such that d(x, y) = 2 and d(v, x) = d(v, y) = k, there exists a vertex z ∼ x, y such that
d(v, z) = k− 1. The second property can be viewed as a strengthening of the quadrangle condition.
In fact, a graph is pseudo-modular if and only if all metric triangles have size at most 1 and can
thus be FOLB-defined by the following formula:

Pseudo-Modular ≡ ∀x∀y∀zmetric-triangle(x, y, z) =⇒ (x = y = z) ∨ triangle(x, y, z).

A quasi-modular graph is a K−4 -free weakly modular graph [23] and thus being quasi-modular is
a FOLB-definable property.

Quasi-Modular ≡Weakly Modular ∧ ¬SubgraphK−4 .
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Quasi-modular graphs are pseudo-modular but the converse inclusion does not hold.
A graph G = (V,E) is called meshed [14] if the following condition (QC−) is satisfied for any

three vertices v, x, y with d(x, y) = 2: there exists a common neighbor z of x and y such that
2d(v, z) ≤ d(v, x) + d(v, y). This condition seems to be a relaxation, but it implies the triangle
condition (that is not implied by the quadrangle condition). Conversely, (TC) and (QC) imply
(QC−) and thus weakly modular graphs are meshed. In meshed graphs, any metric triangle xyz is
equilateral [12].

Lemma 3. G is a meshed graph if and only if for any metric triangle vxy, if d(x, y) = 2, then
d(v, x) = d(v, y) = 2 and there exists z ∼ x, y such that d(v, z) = 2.

Proof. Let G be a meshed graph and consider a metric triangle vxy such that d(x, y) = 2. Since
metric triangles in meshed graphs are equilateral, we have d(v, x) = d(v, y) = 2, and by (QC−),
there exists z ∼ x, y such that d(v, z) ≤ 2. If d(v, z) = 1, then z ∈ I(v, x) ∩ I(v, y) ∩ I(x, y) and
thus vxy is not a metric triangle. Consequently, d(v, z) = 2.

Consider now a graph G such that for any metric triangle vxy of G with d(x, y) = 2, we have
d(v, x) = d(v, y) = 2 and there exists z ∼ x, y such that d(v, z) = 2. We show that (QC−) holds in
G. Consider three vertices v, x, y such that d(x, y) = 2 and let v′x′y′ be a metric triangle such that
v′, x′ ∈ I(v, x), v′, y′ ∈ I(v, y), and x′, y′ ∈ I(x, y). If x 6= x′, then either x′ = y (if y ∈ I(x, v)) or
x′ ∼ x, y. In the first case, let z be a common neighbor of x and y and in the second case, let z = x′.
In both cases, observe that d(v, z) = d(v, x)− 1 ≤ d(v, y) + 1 and thus (QC−) holds for v, x, y. We
can thus assume now that x = x′ and for similar reasons that y = y′. Since d(x, y) = 2, we know
by hypothesis that d(v′, x) = d(v′, y) = 2 and that there exists z ∼ x, y such that d(v′, z) = 2.
Consequently, d(v, z) ≤ d(v, v′) + d(v′, z) = d(v, v′) + 2 = d(v, v′) + d(v′, x) = d(v, x) = d(v, y) and
thus (QC−) holds for v, x, y. �

Consequently, meshedness of a graph can be written as the following FOLB query:

Meshed ≡ ∀v∀x∀ymetric-triangle(v, x, y) ∧ dist2(x, y) =⇒ dist2(x, v) ∧ dist2(y, v)

∧ (∃z EB(x, z) ∧ EB(y, z) ∧ dist2(z, v)).

The previous lemma establishes that meshed graphs are precisely the graphs in which every metric
triangle xyz of size 2, there exists a common neighbor of y and z at distance 2 from x. Therefore
one can ask whether meshed graphs are exactly the graph where for each metric triangle xyz, y and
z can be connected by a shortest path in which all vertices have the same distance to x.

4.2. Median graphs. Median graphs constitute the most important class of graphs in Metric
Graph Theory. This is due to the occurrence of median graphs in completely different areas of
mathematics and computer science. This is also due to their deep and rich combinatorial and
geometric structure, which was an inspiration for most of subsequent generalizations. Median
graphs originally arise in universal algebra [4, 32] and their properties have been first investigated
in [125, 128]. It was shown in [69, 144] that the cube complexes of median graphs are exactly
the CAT(0) cube complexes, i.e., cube complexes of global non-positive curvature. CAT(0) cube
complexes, introduced and nicely characterized in [95] in a local-to-global way, are now one of
the principal objects of investigation in geometric group theory [145]. Median graphs also occur in
Computer Science: by [28] they are exactly the domains of event structures (one of the basic abstract
models of concurrency) [131] and median-closed subsets of hypercubes are exactly the solution sets
of 2-SAT formulas [127,146]. The bijections between median graphs, CAT(0) cube complexes, and
event structures have been used in [48, 49, 71] to disprove three conjectures in concurrency theory.
Finally, median graphs, viewed as median closures of sets of vertices of a hypercube, contain all
most parsimonious (Steiner) trees [24] and as such have been extensively applied in human genetics.
For a survey on median graphs and their connections with other discrete and geometric structures,
see the books [99,116], the surveys [14,115], and the paper [50].
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Figure 1. Forbidden subgraphs

A graphG ismedian if any triplet of vertices has a unique median. Notice that, in modular graphs,
any triplet of vertices has at least one median, and thus median graphs are the modular graphs where
the medians are unique. Equivalently, median graphs are modular graphs not containing induced
K2,3 [125].

Modular ≡ ∀x∀y∀z∃mmedian(x, y, z,m)

≡ ∀x∀y∀zmetric-triangle(x, y, z) =⇒ (x = y = z)

Median ≡ ∀x∀y∀z∃!mmedian(x, y, z,m)

≡ Modular ∧ ¬SubgraphK2,3
.

Quasi-median graphs has been introduced and studied in [23] and pseudo-median graphs has been
introduced in [22]. For applications of quasi-median graphs in geometric group theory, see the PhD
thesis [92]. Weakly median graphs has been introduced and characterized in [11, 64]. For results
and bibliographic references about quasi-median and weakly median graphs, see the survey [14].

A quasi-median (respectively, pseudo-median, weakly median) graph is a quasi-modular (respec-
tively, pseudo-modular, weakly modular) graph in which each triplet of vertices has a unique quasi-
median. These definitions already show that quasi-median, pseudo-median, and weakly median
graphs can be expressed by FOLB-queries. These classes of graphs have also been characterized
within their superclasses by forbidden subgraphs (see Figure 1). Therefore, similarly to median
graphs, we can describe these classes by the following FOLB-queries.

Quasi-Median ≡ Quasi-Modular ∧ ¬SubgraphK2,3

Pseudo-Median ≡ Pseudo-Modular ∧ ¬SubgraphH1,H2,H3,H4

Weakly Median ≡Weakly Modular ∧ ¬SubgraphH1,H2,H3,H4
.

4.3. Bridged graphs and graphs with convex balls. The convexity of balls and the convexity of
neighborhoods of convex sets are fundamental features of geodesic metric spaces, which are globally
nonpositively curved [39]. CAT(0) (alias nonpositively curved geodesic metric spaces), introduced
by Gromov in his seminal paper [95], and groups acting on them are fundamental objects of study
in metric geometry and geometric group theory. The graphs with convex balls have been introduced
and characterized in [91,155] as graphs without embedded isometric cycles of lengths different from
3 and 5 and in which all neighbors of a vertex u on shortest (u, v)-paths form a clique. One of
their important subclass is the class of bridged graphs: these are the graphs without embedded
isometric cycles of length greater than 3 and they are exactly the graphs in which the balls around
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convex sets are convex [91,155]. It was proved in [69] that the simplicial complexes having bridged
graphs as 1-skeletons are the simply connected simplicial complexes in which the links of vertices are
flag complexes without embedded 4- and 5-cycles. Under this form, bridged graphs and complexes
have been rediscovered in [109] under the name “systolic complexes” and have been investigated
in geometric group theory as the good combinatorial analogs of CAT(0) metric spaces. Weakly
systolic (alias weakly bridged) graphs and complexes have been introduced in [132] and further
studied in [75], where it is shown that they are exactly the weakly modular graphs with convex
balls. More recently, a detailed investigation of graphs with convex balls and of their triangle-
pentagon complexes has been provided in [53].

A graph G is a graph with convex balls if all balls of G are convex sets. A graph G is called bridged
if all neighborhoods of convex sets are convex. Bridged graphs are exactly weakly modular graphs
without C4 and C5 as induced subgraphs [64]. Weakly bridged graphs are the weakly modular graphs
with convex balls; they are exactly the weakly modular graphs without C4 [75]. More recently, it was
shown in [53] that graphs with convex balls are exactly the graphs satisfying the Triangle-Pentagon
and the Interval Neighborhood Conditions.

We can thus describe these classes by the following FOLB-queries:

Bridged ≡Weakly Modular ∧ ¬SubgraphC4,C5

Weakly Bridged ≡Weakly Modular ∧ ¬SubgraphC4

≡Weakly Modular ∧ Interval-Neighborhood-Condition

Convex Balls ≡ Triangle-Pentagon-Condition∧ Interval-Neighborhood-Condition .

Bucolic graphs have been introduced and studied in [38] and they are the graphs that can be
obtained by retractions from Cartesian products of weakly bridged graphs. This is a far reaching
common generalization of median graphs and (weakly) bridged graphs. Notice that median graphs
are exactly the graphs which can be obtained from cubes (Cartesian products of edges) via gated
amalgamations. The bucolic graphs are exactly the graphs which can be obtained from Cartesian
products of weakly bridged graphs by gated amalgamations. It was shown in [38] that prism
complexes of bucolic graphs have many properties of CAT(0) spaces.

Bucolic graphs have been characterized in [38] as weakly modular graphs without K2,3, W4, and
W−4 as induced subgraphs. Consequently, they can be characterized by the following FOLB-query:

Bucolic ≡Weakly Modular ∧ ¬SubgraphK2,3,W4,W
−
4
.

4.4. Helly graphs. A geodesic metric space is injective if any family of pairwise intersecting balls
has a non-empty intersection. Similarly to CAT(0) spaces, injective metric spaces (called also
hyperconvex spaces or absolute retracts) appear independently in various fields of mathematics and
computer science: in topology and metric geometry, in combinatorics, in functional analysis and
fixed point theory, and in algorithmics. The distinguishing feature of injective spaces is that any
metric space admits an injective hull, i.e., the smallest injective space into which the input space
isometrically embeds [84, 107]. Helly graphs are a discrete counterpart of injective metric spaces
and, again, there are many equivalent definitions of such graphs, hence they are also known as e.g.
absolute retracts [25, 26, 133, 142]. More recently, a local-to-global characterization of Helly graphs
has been given in [50] and the groups acting on Helly graphs have been investigated in [51].

A family of subsets F of a set X satisfies the Helly property if for any subfamily F ′ of F , the
intersection

⋂
F ′ =

⋂
{F : F ∈ F ′} is nonempty if and only if F ∩ F ′ 6= ∅ for any pair F, F ′ ∈ F ′.

A graph G is a Helly graph if the family of balls of G has the Helly property. A clique-Helly
graph is a graph in which the collection of maximal cliques has the Helly property. Observe that
each Helly graph is clique-Helly but the converse does not hold: indeed, clique-Hellyness is a local
property while Hellyness is a global property. It was shown in [50] that G is Helly if and only if G
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is clique-Helly and the clique complex X(G) of a graph G is simply connected. The following result
also follows from [50]:

Lemma 4. A graph G is Helly if and only if G is a clique-Helly weakly modular graph in which any
C4 is included in a W4.

Clique-Hellyness of a graph can be characterized by the following condition [82, 156] that is a
particular case of the Berge-Duchet condition [30]. A graph G is clique-Helly if and only if for any
triangle T of G the set T ∗ of all vertices of G adjacent with at least two vertices of T contains a
vertex adjacent to all remaining vertices of T ∗.

Since it is easy to express the fact that any square is included in a 4-wheel, we can describe Helly
and clique-Helly graphs by the following FOLB-queries.

C4W4 ≡ ∀w∀x∀y∀z square(w, x, y, z) =⇒ ∃u (EB(w, u) ∧ EB(x, u) ∧ EB(y, u) ∧ EB(z, u))

Clique-Helly ≡ ∀x∀y∀z triangle(x, y, z) =⇒
(
∃u∀v

(
v 6= u ∧ (triangle(x, y, v) ∨ triangle(x, z, v)

∨ triangle(y, z, v))
)

=⇒ EB(u, v)
)

Helly ≡ Clique-Helly ∧Weakly Modular ∧ C4W4.

4.5. Dual polar graphs, sweakly modular graphs, and basis graphs. Projective and polar
spaces are the most fundamental types of incidence geometries; for definition and for a full account of
their theory, see [152,159]. Dual polar spaces are duals of polar spaces, seen as incidence geometries.
It was observed in [14] that dual polar graphs, which are the collinearity graphs of dual polar spaces,
are weakly modular. This is a simple consequence of Cameron’s characterization [46] of dual polar
graphs (which is of metric type). Notice also that there is a local-to-global characterization of dual
polar graphs, due to Brouwer and Cohen [40]. Moreover, it was shown in [50] that dual polar graphs
are exactly the thick weakly modular graphs without K−4 and K−3,3 as isometric subgraphs.

The swm-graphs (sweakly modular graphs) represent a natural extension of dual polar graphs,
because they are defined as the weakly modular graphs not containing induced K−4 and isometric
K−3,3 [50]. They also extend the strongly modular graphs of [102], that are exactly the modular graphs
not containing induced K−4 and isometric K−3,3. Strongly modular graphs arise in the dichotomy
theorem of [102] as exactly the graphs for which the multifacility location problem (alias the 0-
extension problem) is polynomial. One can define a cell structure on sweakly modular graphs, where
cells are orthoschemes corresponding to gated dual polar graphs. In [50], various characterization
and properties of cell complexes arising from swm-graphs are given.

Due to the characterizations of dual polar graphs and swm-graphs given above, they can be
described by the following FOLB-queries:

Thick ≡ ∀u∀vdist2(u, v) =⇒ ∃x∃y square(u, x, v, y)

Dual Polar ≡Weakly Modular ∧ Thick ∧ ¬IsometricK−4 ,K
−
3,3

Strongly Modular ≡ Modular ∧ ¬IsometricK−4 ,K
−
3,3

Sweakly Modular ≡Weakly Modular ∧ ¬IsometricK−4 ,K
−
3,3
.

Matroids constitute an important unifying structure in combinatorics, geometry, algorithmics,
and combinatorial optimization [143]. Matroids can be defined in several equivalent ways, in par-
ticular in terms of bases. Basis graphs of matroids have the bases as vertex-sets and elementary
exchanges as edges. Basis graphs faithfully represent their matroids, thus studying the basis graph
amounts to studying the matroid itself. Basis graphs are also know to coincide with the 1-skeleton
of the basis polytope of a matroid. Maurer [121] characterized basis graphs of matroids in a pretty
way by involving two local conditions and a global metric condition. He also conjectured that
the metric conjecture can be replaced by a local condition and simple connectivity of its triangle-
square complex. This conjecture was confirmed in [47]. Delta-matroids constitute an interesting
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generalization of matroids. They have been introduced in different but independent way in the
papers [43, 54] and [85] and later have been considered as the Lagrangian matroids in the context
of Coxeter matroids [42]. A characterization of basis graphs of even Delta-matroids in the spirit of
Maurer’s characterization was given in [70]. Using it, a local-to-global characterization was given
in [47].

A matroid on a finite set of elements I is a collection B of subsets of I, called bases, which satisfy
the following exchange axiom: for all A,B ∈ B and a ∈ A \ B there exists b ∈ B \ A such that
A \ {a} ∪ {b} ∈ B (the base A \ {a} ∪ {b} is obtained from the base A by an elementary exchange).
The basis graph G = G(B) of a matroid B is the graph whose vertices are the bases of B and edges
are the pairs A,B of bases differing by an elementary exchange, i.e., |A∆B| = 2. Delta-matroids
are defined in the same way as the matroids by replacing everywhere in the basis exchange axiom
the set difference by the symmetric difference. An even Delta-matroid is a delta-matroid in which
all bases have an even number of elements. The basis graph of an even Delta-matroid is defined
in the same way as the basis graph of a matroid. The basis graphs of matroids are isometric
subgraphs of Johnson graphs (because all bases have the same cardinality) and the basis graphs of
even Delta-matroids are isometric subgraphs of halved-cubes (because all bases have even size).

By Maurer’s [121] characterization and its improvement provided in [47], a graph is the basis
graph of a matroid if and only if it satisfies the two following conditions:

• Positioning Condition (PosC): for any square wxyz and any vertex v, d(v, w) + d(v, y) =
d(v, x) + d(v, z).
• 2-Interval Condition 3 (2IC3): for any two vertices u, v at distance 2, I(u, v) induces a
square, a pyramid, or a 3-octahedron.

In fact, Maurer’s characterization also uses the link condition that the neighborhood of each vertex
induces the line graph of a bipartite graph, however he conjectured that this condition is redundant
and this was confirmed in [47].

Observe that the positioning condition can be restated as follows: for any square S = wxyz and
any vertex v, either all vertices of S are at the same distance k to v, or two adjacent vertices of S
are at distance k from v and the two other adjacent vertices are at distance k+ 1 of v, or one vertex
is at distance k + 1 of v, its neighbors are at distance k of v, and the fourth vertex is at distance
k − 1 of v. This can be written as the following FOLB query:

Positioning-Condition ≡ ∀v∀w∀x∀y∀z square(w, x, y, z)
=⇒ (B(w, z, v) ∧ B(w, x, v) =⇒ B(z, y, v) ∧ B(x, y, v))

∧ (B(z, w, v) ∧ B(x,w, v) =⇒ B(y, z, v) ∧ B(y, x, v))) .

Obviously, the 2-interval condition can also be written as a FOLB-query 2-Interval-Condition-3
which is long but can be obtained in a straightforward way from the definition.

By the result of [70], a graph is the basis graph of an even ∆-matroid if and only if it satisfies
the Positioning Condition (PosC) and the following two conditions:

• 2-Interval Condition 4 (2IC4): for any two vertices u, v at distance 2, I(u, v) contains a
square and is a subgraph of a 4-octahedron.
• Link Condition (LC): the neighborhood of each vertex induces the line graph of a graph.

For the same reasons as for (2IC3), (2IC4) can be described by a FOLB-query.
By a theorem of Beineke [29], a graph is a line graph if and only if does not contain a graph from

a list of nine forbidden induced subgraphs W5 = F0, F1, F2, . . . , F8 (see [70, Fig.1]). For each Fi, let
F ′i be the graph obtained from Fi by adding a universal vertex to Fi. A graph G satisfies the link
condition if and only if G does not contain any F ′i as an induced subgraph. Consequently, basis
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graphs of matroids and of even ∆-matroids can be described by the following queries:

Matroids ≡ 2-Interval-Condition-3 ∧ Positioning-Condition
∆-Matroids ≡ 2-Interval-Condition-4 ∧ Positioning-Condition ∧ ¬SubgraphF ′0,F ′1...,F ′8 .

Notice also that Johnson graphs are the basis graphs of uniform matroids. In view of the charac-
terizations of basis graphs of matroids, Johnson graphs are exactly the graphs satisfying (PosC) and
in which each 2-interval is a 3-octahedron. Analogously, the halved cubes are the graphs satisfying
the Positionning Condition, in which each 2-interval is a 3-octahedron, and in which the neighbor-
hood of each vertex is the complete graph. Clearly, these versions of (2IC3), (2IC4), and (LC) are
FOLB-definable.

5. Partial cubes, their subclasses and superclasses

In this section, we present the FOLB-definability of partial cubes and their main subclasses and
super-classes, which alltogether constitute another important part of Metric Graph Theory. Sub-
classes of partial cubes are the following classes of graphs: median, ample, oriented matroids, com-
plexes of oriented matroid, bipartite Pasch, bipartite Peano, cellular, hypercellular, two-dimensional
partial cubes, partial cubes of VC-dimension d, almost median, and semimedian graphs. Partial
Hamming graphs is a superclass of partial cubes containing quasi-median graphs as a subclass.
Partial Johnson graphs, partial halved-cubes, and `1-graphs are three very important and general
super-classes of partial cubes. Basis graphs of matroids are partial Johnson graphs and basis graphs
of even ∆-matroids are partial halved-cubes.

5.1. Partial cubes and partial Hamming graphs. The partial cubes are the graphs which
admits an isometric embedding into hypercubes. Even if at first look it seems that this class of
graphs is quite restricted, many classes of graphs arising in geometry or combinatorics are partial
cubes. Already Deligne [79] noticed that the number of hyperplanes separating two regions defined
by arrangements of hyperplanes in Rd coincide with the distance between these regions in the graph
of regions, whence these graphs are partial cubes. Partial cubes also occur in the paper of Graham
and Pollak [96] about the compact routing in graphs.

Partial cubes have been nicely characterized by Djoković [81] via the convexity of half-spaces.
Namely, he proved that a graph G = (V,E) is a partial cube if and only if G is bipartite and for any
edge uv the sets W (u, v) = {x ∈ V : d(x, u) < d(x, v)} and W (v, u) = {x ∈ V : d(x, v) < d(x, u)}
are complementary halfspaces of G. Djoković also introduced the parallelism relation between the
edges of a partial cube: two edges e = uv and e′ = u′v′ of a bipartite graph G are in relation Θ if
W (u, v) = W (u′, v′) and W (v, u) = W (v′, u′). The relation Θ is reflexive and symmetric and it is
shown in [81] that Θ is transitive (i.e., is an equivalence relation) if and only if G is a partial cube.

Djoković’s characterization of partial cubes in terms of convexity of the sets W (u, v) and W (v, u)
leads to the FOLB-definability of partial cubes:

convex-halfspace(u, v) ≡ ∀x∀y∀zB(x, u, v) ∧ B(y, u, v) ∧ B(x, z, y) =⇒ B(z, u, v)

convex-complement(u, v) ≡ ∀x∀y∀z(¬B(x, u, v)) ∧ (¬B(y, u, v)) ∧ B(x, z, y) =⇒ (¬B(z, u, v)).

Partial Cube ≡ Bipartite∧∀u∀vEB(u, v) =⇒ convex-halfspace(u, v) ∧ convex-complement(u, v)

≡ Bipartite∧∀u∀vEB(u, v) =⇒ convex-halfspace(u, v) ∧ convex-halfspace(v, u)

≡ Bipartite∧∀u∀vEB(u, v) =⇒ convex-halfspace(u, v).

Recall that Hamming graphs are Cartesian products of cliques. Consequently, hypercubes are
binary Hamming graphs, i.e., Cartesian products of edges. The study of partial Hamming graphs
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(i.e., of graphs which are isometrically embeddable into Hamming graphs) was initiated by Win-
kler [166]. Answering a question raised in [166], several characterizations of partial Hamming graphs
have been given in the papers [65] and [165]. Quasi-median graphs are partial Hamming graphs.

For FOLB-definability of partial Hamming graphs, we will use the following characterization
from [65], which is in the spirit of Djoković’s theorem. For any edge uv of a graph G, letW=(u, v) =
{x ∈ V : d(x, u) = d(x, v)}. Then the sets W (u, v),W (v, u), and W=(u, v) partition the vertex-set
of G. According to [65], a graph G is a partial Hamming graph if and only of for any edge uv the
sets W (u, v),W (v, u),W=(u, v) and their complements are convex (i.e., are halfspaces of G).

convex-halfspace-eq(u, v) ≡ ∀x∀y∀z¬(B(x, u, v) ∨ B(x, v, u)) ∧ ¬(B(y, u, v) ∨ B(y, v, u)) ∧ B(x, z, y)

=⇒ ¬(B(z, u, v) ∨ B(z, v, u))

convex-complement-eq(u, v) ≡ ∀x∀y∀z(B(x, u, v) ∨ B(x, v, u)) ∧ (B(y, u, v) ∨ B(y, v, u)) ∧ B(x, z, y)

=⇒ (B(z, u, v) ∨ B(z, v, u)).

Consequently, we obtain:

Partial Hamming ≡ ∀u∀vEB(u, v) =⇒ convex-halfspace(u, v) ∧ convex-halfspace(v, u)∧
convex-halfspace-eq(u, v) ∧ convex-complement(u, v) ∧ convex-complement(v, u)∧
convex-complement-eq(u, v)

≡ ∀u∀vEB(u, v) =⇒ convex-halfspace(u, v) ∧ convex-halfspace-eq(u, v)

∧ convex-complement(u, v) ∧ convex-complement-eq(u, v).

An `1-graph is a graph which admits an isometric embedding into some Rn endowed with the
`1-metric. A partial Johnson graph is a graph which admits an isometric embedding into a Johnson
graph and a partial halved cube is a graph which admits an isometric embedding into a halved cube.
Notice that basis graphs of matroids are partial Johnson graphs and basis graphs of even Delta-
matroids are partial halved cubes [70]. Weakly median graphs are `1-graphs [11]. For other classes
of `1-graphs, see the survey [14]. The `1-graphs have been characterized by Shpectorov [151],
who first proved that `1-graphs are exactly the graphs which admit a scale k embedding into a
hypercube for some finite k. Second, he proved that a graph G is an `1-graph if and only if
G is isometrically embeddable into the Cartesian product of complete graphs, hyperoctahedra,
and halved cubes. The factors and the embedding can be efficiently constructed from G, which
lead to a polynomial time recognition of `1-graphs. Nevertheless the characterization of `1-graphs
given in [151] cannot be used for FOLB-definability of `1-graphs. The characterization of partial
halved cubes is also open and was formulated as an open question already in [80]. A Djoković-like
characterization of partial Johnson graphs was given in [72], where it was proved that a graph
G is a partial Johnson graph if and only if (1) for any edge uv the set W=(u, v) consists of at
most two connected components W ′=(u, v),W ′′=(u, v) (which are allowed to be empty) such that
(W (u, v) ∪W ′=(u, v),W (v, u) ∪W ′′=(u, v)) and (W (u, v) ∪W ′′=(u, v),W (v, u) ∪W ′=(u, v)) are pairs
of complementary halfspaces of G and (2) a specially defined atom graph of G is the line graph
of a bipartite graph. While condition (1) is FOLB-definable, condition (2) (which is in the same
vein as the link condition for basis graphs of matroids, which was fortunately redundant) is not.
In fact, in the last section we will show that being a partial Johnson graph is not FOLB-definable.
This is mainly due to the fact that even wheels are partial Johnson graphs and odd wheels are not
(but even and odd wheels are embeddable into halved cubes). The case of partial halved cubes and
`1-graphs is open:

Question 7. Are classes of partial halved cubes and `1-graphs FOLB-definable?

5.2. Ample classes, OMs, and COMs. That median graphs are partial cubes has been shown
in [125]. Another class of partial cubes extending median graphs is the class of ample/lopsided/extremal
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graphs, introduced independently in [15, 36, 117] (using different but equivalent definitions). The
basic definition of ample graphs is via shattering: the vertex-sets of such graphs are set families
F and such a graph G is ample if whenever some set Y is obtained by shattering by F , then G
contains a cube whose coordinate set is Y . A closer to the subject of this section, is the following
characterization of ampleness provided in [15]: a subgraph G of a hypercube is ample if any two
parallel cubes of G can be connected in G by a geodesic gallery. In case of vertices, this is just
the reformulation of being a partial cube. In general, two parallel cubes are two cubes of G having
the same set of coordinates and a geodesic gallery is a shortest path consisting of parallel cubes
only. Other combinatorial, recursive, and metric characterizations of ample graphs can be found
in [15, 36, 117]. We will use a nice characterization of Lawrence [117] asserting that a subgraph G
of a hypercube is ample if and only if any subgraph H of G that is closed by taking antipodes is
either a cube or empty. Additionally to median graphs, ample graphs comprise other interesting
subclasses, for example the convex geometries [86], an important combinatorial structure arising in
abstract convexity.

Oriented matroids (OMs), co-invented by Bland and Las Vergnas [33] and Folkman and Lawrence [89],
represent a unified combinatorial theory of orientations of ordinary matroids. They capture the ba-
sic properties of sign vectors representing the circuits in a directed graph and the regions in a central
hyperplane arrangement in Rm. Oriented matroids are systems of sign vectors (i.e., {−1, 0,+1}-
vectors) satisfying three simple axioms (composition, strong elimination, and symmetry) and may
be defined in a multitude of ways, see the book by Björner et al. [35]. Complexes of Oriented Ma-
troids (COMs) were introduced not long ago in [16] as a natural common generalization of ample
classes and OMs. They satisfy the same set of three axioms as OMs, where one of the axioms (of
symmetry) was relaxed (to local symmetry). Ample classes can be seen as COMs with cubical cells,
while OMs are COMs with a single cell. In general COMs, the cells are OMs glued together in
such a way that the resulting cell complex is contractible. In the realizable setting, a COM corre-
sponds to the intersection pattern of a hyperplane arrangement (not necessarily central) with an
open convex. Notice that realizable ample classes correspond to the intersection pattern of a convex
set with coordinate hyperplanes of Rm [117] and that realizable OMs correspond to the regions in
a central hyperplane arrangement in Rm. COMs contains other important classes of geometric and
combinatorial objects: it is shown in [16] that linear extensions of a poset or acyclic orientations
of mixed graphs, and CAT(0) Coxeter complexes (arising in geometric group theory [78, 98]) are
COMs.

The topes of an OM or a COM L are the maximal sign vectors of L with respect to the order on
sign vectors where 0 < −1 and 0 < +1. In both cases, they are {−1,+1}-vectors, thus they can
be viewed as subsets of vertices of the hypercube of dimension m (the size of the ground set). The
tope graphs of OMs and COMs are the subgraphs of the hypercube Qm induced by the set of topes.
Generalizing the observation of [79], it was shown in [34] (see also [35]) that tope graphs of OMs
are partial cubes. In fact, tope graphs of OMs are centrally-symmetric and are isometric subgraphs
of Qm, i.e., are antipodal partial cubes [34]. A characterization of tope graphs of OMs was given
in [77]. That tope graphs of COMs are also partial cubes has been shown in [16].

A nice characterization of tope graphs of COMs was recently given by Knauer and Marc [113].
This characterization is nice also because, similarly to how COMs unify ample sets and OMs, this
result unifies the characterization of ample graphs of Lawrence [117] and the characterization of tope
graphs of OMs of da Silva [77]. An antipodal graph is a graph such that for any vertex v there exists
a vertex v⊥ such that any vertex x of G is metrically between v and v⊥, i.e.. x ∈ I(v, v⊥). Then
the result of [113] says that a partial cube G is a tope graph of a COM if and only if any antipodal
subgraph of G is gated. To obtain the characterization of ample graphs of [117], additionally we
have to require that each antipodal subgraph of G is a cube. To obtain the characterization of tope
graphs of OMs of [77] one has to require that G itself is antipodal.
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Since antipodal graphs are necessarily intervals, first we write two predicates antipodal-int(u, v)
and gated-int(u, v), which are true if and only if the subgraph induced by I(u, v) is respectively
antipodal or gated. Then we write the predicate cube-int(u, v) which is true if and only if I(u, v)
induces a cube. This uses the characterization of hypercubes as median graphs in which each
2-interval is a square, i.e., as thick median graphs [20].

antipodal-int(u, v) ≡ ∀xB(u, x, v) =⇒ (∃y∀zB(u, z, v) ⇐⇒ B(x, z, y))

gated-int(u, v) ≡ ∀x∃x′B(u, x′, v) ∧
(
∀yB(u, y, v) =⇒ B(x, x′, y)

)
cube-int(u, v) ≡

(
∀x∀y∀zB(u, x, v) ∧ B(u, y, v) ∧ B(u, z, v)

=⇒ ∃mmedian(x, y, z,m) ∧ B(u,m, v)
)

∧
(
∀x∀yB(u, x, v) ∧ B(u, y, v) ∧ dist2(x, y)

=⇒ ∃a∃b a 6= b ∧ EB(a, x) ∧ EB(a, y) ∧ EB(b, x) ∧ EB(b, y)
)
.

This leads us to the FOLB-definability of ample graphs, tope graphs of OMs, and tope graphs of
COMs:

COM ≡ Partial Cube ∧ ∀u∀v antipodal-int(u, v) =⇒ gated-int(u, v)

Ample ≡ COM ∧ ∀u∀v antipodal-int(u, v) =⇒ cube-int(u, v)

Antipodal ≡ ∀x∃y∀zB(x, z, y)

Oriented Matroid ≡ COM ∧ Antipodal.

5.3. Pasch, Peano, cellular and hypercellular graphs. Some classes of graphs in Metric Graph
Theory arise from the theory of abstract convexity and are motivated by the properties of classical
(Euclidean) convexity. In previous section, we already considered graphs with convex balls and
bridged graphs, which are discrete analogs of the fundamental properties of Euclidean convexity
that balls are convex and that neighborhoods of convex sets are also convex. One fundamental
property of Euclidean convexity is separability: any two disjoint convex sets can be separated
by complementary halfspaces and thus can be separated by a hyperplane. Its generalization to
topological vector spaces is the Hahn–Banach theorem. One consequence of this separability result
is that any convex set is the intersection of all half-spaces containing it. Another geometric property
of Euclidean convexity is that the convex hull of a convex set A and a point x is the union of all
segments [x, p] with p ∈ A.

A convexity structure [154, 162] is a pair (X, C), where X is a set and C is a family of subsets of
X containing ∅ and X, and closed by taking intersections and directed unions. The members of C
are called convex subsets. Given S ⊂ X, the intersection of all convex subsets containing S is called
the convex hull of S and is denoted by conv(S). A convexity C is called domain finite if a set is
convex if and only if it contains the convex hull of its finite subsets and of arity k if a set is convex if
and only if it contains the convex hull of its subsets of size at most k. Geodesic convexity in graphs
and, more generally, the convexity in interval spaces, are examples of convexity structures of arity
2.

A convexity structure is join-hull commutative (JHC) if for any convex set A and any point x,
conv(A ∪ {x}) =

⋃
a∈A conv(a, x). In the case of interval spaces and graphs one can consider a

stronger version: convexity structure is join-hull commutative if for any convex set A and any point
x, conv(A ∪ {x}) =

⋃
a∈A I(a, x). The definition implies that join-hull commutative domain finite

convex structures have arity 2. Join-hull commutativity is also equivalent to the more general prop-
erty that conv(A∪B) =

⋃
a∈A,b∈B conv(a, b) [111]. It was shown in [45] that join-hull commutativity

is equivalent to the classical axiom in geometry, called the Peano axiom: for any u, v, w ∈ X, for
any x ∈ conv(w, v), and for any y ∈ conv(u, x) there exists z ∈ conv(u, v) such that y ∈ conv(w, z).
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If the convexity structure is defined by an interval structure, then the Peano axiom can be rewritten
as: for any u, v, w ∈ X, for any x ∈ I(w, v), and for any y ∈ I(u, x) there exists z ∈ I(u, v) such
that y ∈ I(w, z).

For convexity structures there exist several non-equivalent separability properties [154,162]:

• (S2) any distinct two points x, y can be separated by complementary halfspaces, i.e., there
exist H,X \H ∈ C such that x ∈ H and y ∈ X \H;
• (S3) any convex set C and point x /∈ C can be separated by complementary halfspaces;
• (S4) any disjoint convex sets A,B ∈ C can be separated by complementary halfspaces.

(S4) is often called Kakutani separation property [161,162]. One can easily see that (S3) is equivalent
to the fact that each convex set C is the intersection of the halfspaces containing C. Ellis [88] proved
that if a convexity is join-hull commutativity, (S4) is equivalent to the Pasch axiom from geometry
(this result was rediscovered by [161]). However not any (S4) convexity is JHC: for example, the
geodesic convexity of the graph consisting of a 4-wheel W4 plus a vertex x adjacent to two adjacent
vertices of the 4-cycle C4 of W4 is (S4) but not JHC: if the convex set A consists of the edge of
C4 not incident to x, then conv(A ∪ {x}) consists of all vertices of the graphs, while

⋃
a∈A I(a, x)

does not contain the central vertex of W4. However, it was shown in [60, 66] that for all convexity
structures of arity 2 (in particular for geodesic convexity in graphs), the Pasch axiom is equivalent
to (S4) (analogous conditions were also established for all arities). In case of geodesic convexity in
graphs, (S4) implies that the intervals are convex, thus the Pasch axiom can be written in terms of
intervals. Recall that the Pasch axiom is one of the main axioms in Tarski’s and Hilbert’s systems
of axioms of geometry. For convexities of arity 2, the Pasch axiom can be formulated as follows:
for any u, v, w ∈ X, for any x ∈ conv(w, u), y ∈ conv(w, v), there exists z ∈ conv(u, y)∩ conv(v, x).
For graphs this is equivalent to: for any u, v, w ∈ X, for any x ∈ I(w, u), y ∈ I(w, v), there exists
z ∈ I(u, y) ∩ I(v, x).

The weakly median graphs are exactly the Pasch and also Pasch-Peano weakly modular graphs [66].
Bipartite Pasch graphs are partial cubes and they have been characterized in [61,66] in terms of pc-
minors. It was shown in [113] that bipartite Pasch graphs are tope graphs of COMs. Median graphs
are Pasch. Bipartite Peano graphs are also partial cubes [63, 140] and they have been investigated
in [140]. Pasch-Peano graphs have been investigated in [17] (see these results in the book [162]).

One can easily show (see [1, 8, 61, 63]) that for bipartite graphs the conditions (S2) and (S3) are
equivalent and they are both equivalent to the fact that G is a partial cube. However, beyond
bipartite graphs, no characterization of graphs or convexity structures satisfying (S3) (similar to
that for (S4) provided in [60,66]) is known. On the other hand, the importance of (S3) was recently
highlighted by a general result of [124] showing that in (S3) convexity structures, Radon number
characterizes the existence of weak ε-nets. Nevertheless, under join-hull commutativity it was shown
in [60] that (S3) is equivalent to the following Pasch-like condition, called sand-glass axiom in [162]:
for any u, v, u′, v′, y such that y ∈ conv(u, u′) ∩ conv(v, v′) and for any x ∈ conv(u, v) there exists
x′ ∈ conv(u′, v′) such that y ∈ conv(x, x′).

Finally, we will say that a graph G is a graph with convex intervals if all intervals I(u, v) of G
are convex sets. Graphs satisfying separability properties (S3) and (S4) as well as graphs satisfying
(JHC) with intervals are graphs with convex intervals. Property of having convex intervals is FOLB-
definable:

Convex Intervals ≡ ∀u∀v∀x∀y∀z (B(u, x, v) ∧ B(u, y, v) ∧ B(x, z, y)) =⇒ B(u, z, v).

The join hull commutativity is also FOLB-definable:

JHC ≡ Peano ≡ ∀u∀v∀w∀x∀y (B(v, x, w) ∧ B(u, y, x)) =⇒ ∃z (B(u, z, v) ∧ B(w, y, z)) .

JHCBipartite ≡ Peano ∧ Partial Cube.
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Finally, summarizing the results about the separability properties (S2), (S3) and (S4), we obtain
the following FOLB-definability:

Pasch ≡ ∀u∀v∀w∀x∀y (B(u, x, w) ∧ B(v, y, w)) =⇒ ∃z (B(u, z, y) ∧ B(v, z, x))

Sand Glass ≡ ∀u∀v∀u′∀v′∀x∀y
(
B(u, y, u′) ∧ B(v, y, v′) ∧ B(u, x, v)

)
=⇒ ∃x′

(
B(u′, x′, v′) ∧ B(x, y, x′)

)
S4separability ≡ Pasch

S3separability ∧ Peano ≡ Sand Glass ∧ Peano
Pasch-Peano ≡ Pasch ∧ Peano

Bipartite Pasch ≡ Pasch ∧ Partial Cube
Bipartite Peano ≡ Peano ∧ Partial Cube

Partial Cube ≡ S2separability ∧ Bipartite ≡ S3separability ∧ Bipartite

Weakly Median ≡Weakly Modular Pasch ≡ Pasch-Peano ∧Weakly Modular.

Question 8. Are the separation properties (S2) and (S3) on graphs FOLB-definable? Can (S3) be
characterized by a condition on a fixed number of vertices?

Cellular graphs are the bipartite graphs whose distance is totally decomposable in the sense of
Bandelt and Dress [18]. Their structure has been investigated in [10], where it is shown that in such
graphs all isometric cycles are gated and that the graph itself can be obtained from its isometric
cycles via gated amalgamations. Moreover, cellular graphs are characterized in [10] in terms of
convexity: those are exactly the bipartite graphs for which conv(S) =

⋃
x,y∈S I(x, y) holds for any set

S and equivalently are exactly the bipartite graphs for which conv(u, v, w) = I(u, v)∪I(v, w)∪I(w, u)
for any three vertices u, v, w. This last characterization shows FOLB-definability of cellular graphs:

Cellular ≡ Bipartite∧∀u∀v∀w∀x∀y∀z
(

B(u, x, v) ∨ B(v, x, w) ∨ B(w, x, u)
)
∧ B(x, z, y)

∧
(

B(u, y, v) ∨ B(v, y, w) ∨ B(w, y, u)
)

=⇒
(

B(u, z, v) ∨ B(v, z, w) ∨ B(w, z, u)
)
.

5.4. Almost-median, semi-median graphs and netlike partial cubes. Almost-median graphs
and semi-median graphs introduced in [106] are two classes of partial cubes generalizing median
graphs and ample partial cubes. Given an edge uv of a partial cube G, the boundary U(u, v)
of the halfspace W (u, v) is the set of vertices of W (u, v) having a neighbor in the complementary
halfspaceW (v, u), i.e., the vertices ofW (u, v) that are incident to an edge in the Θ-class of the edge
uv. The boundaries U(u, v) and U(v, u) induce isomorphic subgraphs of G and these subgraphs are
isomorphic to the hyperplane H(uv) of the Θ-class of the edge uv. The hyperplane H(uv) has the
middles of the edges of the Θ-class Θ(uv) and the middles of the edges u′v′ and u′′v′′ are adjacent
if u′v′v′′u′′ is a square of G. The hyperplanes play an important role in the theory of median
graphs viewed as CAT(0) cube complexes. Median graphs are in fact the partial cubes in which all
boundaries are gated/convex [6]. The boundaries and the hyperplanes of ample partial cubes are
also ample and this characterizes ample partial cubes [15]. Almost-median and semi-median graphs
are a generalization of median and ample classes. A partial cube G is almost-median (respectively,
semi-median) if all boundaries are isometric (respectively, connected) subgraphs of G, i.e., they
are partial cubes. From their definition, almost-median graphs can be described by the following
FOLB-query:

Almost Median ≡ Partial Cube ∧ ∀u∀v∀x′∀y′∀x′′∀y′′ EB(u, v) ∧ B(x′, u, v) ∧ B(x′′, v, u) ∧ EB(x′, x′′)

∧ B(y′, u, v) ∧ B(y′′, v, u) ∧ EB(y′, y′′) ∧ ¬EB(x′, y′) =⇒ ∃z′∃z′′B(x′, z′, y′)

∧ B(x′′, z′′, y′′) ∧ EB(z′, z′′)
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Almost-median graphs have characterized in [37,112,133]. By a result of [112] and [133], a partial
cube is almost-median if and only if it satisfies the following almost quadrangle condition.

• Almost Quadrangle Condition (AQC): for any four vertices v, x, y, u such that d(v, x) =
d(v, y) = d(v, u)− 1 and u ∼ x, y, x � y, there exists z ∈ I(x, v) and w ∈ I(u, z) such that
xzwu is a square of G;

The corresponding FOLB query is:

Almost-Quadrangle-Condition ≡∀v∀x∀y∀uEB(u, x) ∧ EB(u, y) ∧ B(u, x, v) ∧ B(x, u, y) ∧ B(u, y, v)∧
x 6= y ∧ (¬EB(x, y)) =⇒ ∃z∃wB(x, z, v) ∧ square(u, x, z, w)

Consequently almost-median graphs can also be described by the following FOLB-query.

Almost Median ≡ Partial Cube ∧ Almost-Quadrangle-Condition

Question 9. Are semi-median graphs FOLB-definable?

Netlike partial cubes form another class of partial cubes that is defined by some property of its
boundaries.

For a graph H, we denote by CV (H) the set of vertices belonging to a cycle of H. We denote also
3V (H) the set of vertices of degree at least 3 in H. Given a subset A of the vertices of a graph G, we
denote by I(A) the subgraph induced by the set

⋃
x,y∈A I(x, y). Notice that the convex hull conv(A)

of A can be obtained by iterating applications of the operator I and that I(conv(A)) = conv(A).
Finally, a set A of vertices of G is ph-stable [136] if for all u, v ∈ I(A), there exists w ∈ A such
that v ∈ I(u,w). A set A of vertices is C-convex if CV (I(A)) ⊆ A. Analogously, a set A of
vertices is degree-3-convex if 3V (I(A)) ⊆ A. According to Polat [136], a partial cube G is netlike
if for every edge uv, the boundaries U(u, v) and U(v, u) are C-convex. Median graphs, cellular
bipartite graphs and benzenoids are example of netlike partial cubes. By [136, Theorem 3.8], a
partial cube G is netlike if and only if for each edge uv of G, the boundaries U(u, v) and U(v, u)
are ph-stable and degree-3-convex. This characterization allows to show that netliked partial cubes
are FOLB-definable.

InBdy(u, v, z) ≡ ∃z′B(v, u, z) ∧ B(u, v, z′) ∧ EB(z, z′)

InIntBdy(u, v, z) ≡ ∃z′∃z′′ InBdy(u, v, z′) ∧ InBdy(u, v, z′′) ∧ B(z′, z, z′′)

ph-stable(u, v) ≡ ∀x∀y InIntBdy(u, v, x) ∧ InIntBdy(u, v, y) =⇒ ∃w InBdy(u, v, x) ∧ B(x, y, w)

deg-3-conv(u, v) ≡ ∀z∀y1∀y2∀y3 InIntBdy(u, v, z) ∧ InIntBdy(u, v, y1) ∧ InIntBdy(u, v, y2)

∧ InIntBdy(u, v, y3) ∧ EB(z, y1) ∧ EB(z, y2) ∧ EB(z, y3) ∧ y1 6= y2

∧ y1 6= y3 ∧ y2 6= y3 =⇒ InBdy(u, v, z)

Netlike Partial Cube ≡ Partial Cube ∧ ∀u∀v (EB(u, v) =⇒ ph-stable(u, v) ∧ deg-3-conv(u, v))

For other results on netlike partial cubes, see the series of papers of Polat [136–139].

6. Gromov hyperbolic graphs and their subclasses

6.1. Hyperbolic graphs. Hyperbolic metric spaces and Hyperbolic graphs have been defined by
Gromov [95] and is a fundamental object of study in geometric group theory. A graph G is δ–
hyperbolic [39, 95] if for any four vertices u, v, x, y of X, the two larger of the three distance sums
d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x) differ by at most 2δ ≥ 0. The hyperbolicity
of a graph G is δ∗(G) = inf{δ : G is δ-hyperbolic}. For graphs (and geodesic metric spaces), δ–
hyperbolicity can be defined (up to a constant factor) as spaces in which all geodesic triangles are
δ–slim. In a graph G a geodesic triangle δ(x, y, z) is a triplet of vertices x, y, z and a triplet of
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geodesics (shortest paths) [x, y], [x, z], and [y, z]. A geodesic triangle ∆(x, y, z) is called δ–slim if
for any point u on the geodesic [x, y] the distance from u to [x, z]∪ [z, y] is at most δ. If a graph G
has δ-slim triangles, then G is 2δ-hyperbolic and conversely if G is δ-hyperbolic, then G has 3δ-slim
triangles (see [39,93]). There are many other characterizations of δ-hyperbolicity [39,93,95] such as
characterizations via δ-thin triangles, thinness of intervals, or linear isoperimetric inequality.

We give a new “definition” of hyperbolicity that relaxes the slimness of geodesic triangles. We
say that a graph G is interval-δ-slim if for any triplets of vertices x, y, z and for each u ∈ I(y, z),
there exists v ∈ I(x, y) ∪ I(x, z) such that d(u, v) ≤ δ.

Lemma 5. If G is interval-δ-slim, then G has 3δ-slim triangles and G is 6δ-hyperbolic.
Conversely, if G is δ-hyperbolic, then G has 3δ-slim triangles and G is interval-3δ-slim.

Proof. Suppose that G is interval-δ-slim. Observe first that G has 2δ-thin intervals, i.e., for any
u, v ∈ I(x, y) such that d(u, x) = d(v, x), we have d(u, v) ≤ 2δ. Indeed consider the triplet x, y, v
and the vertex u ∈ I(x, y). Since G is interval-δ-slim, there exists a vertex t ∈ I(v, x)∪ I(v, y) with
d(u, t) ≤ δ. Without loss of generality, suppose that t ∈ I(v, x). Consequently, d(v, t) + d(t, x) =
d(v, x) = d(u, x) ≤ d(u, t) + d(t, x) and thus d(v, t) ≤ d(u, t) ≤ δ. Now pick any geodesic triangle
∆(x, y, z) and u ∈ [y, z]. Since G is interval-δ-slim, there exists v ∈ I(x, y)∪I(x, z) with d(u, v) ≤ δ.
Let v ∈ I(x, y) and let w ∈ [x, y] such that d(x, v) = d(x,w). By the 2δ-thinness of the intervals,
d(v, w) ≤ 2δ and thus d(u,w) ≤ 3δ by the triangle inequality. Consequently, G has 3δ-slim triangles
and is 6δ-hyperbolic since graphs with δ-slim triangles are 2δ-hyperbolic.

Conversely, if G has δ-slim triangles, then trivially G is interval-δ-slim and the second assertion
of the theorem follows from the fact that δ-hyperbolic graphs have 3δ-slim triangles. �

It seems challenging to find a FOLB-query characterizing the graphs whose hyperbolicity is at
most δ. However, we can characterize in FOLB interval-δ-slim graphs by the following query.

Interval-Slimδ ≡ ∀x∀y∀z∀uB(y, u, z) =⇒ ∃v(B(x, v, y) ∨ B(x, v, z)) ∧ dist≤δ(u, v)

By Lemma 5, for any graph G, if G satisfies Interval-Slimδ then δ∗(G) ≤ 6δ and if G does not
satisfy Interval-Slimδ, then δ∗(G) > δ/3. When the hyperbolicity δ∗(G) of G is between δ/3 and 6δ,
G can satisfy the query Interval-Slimδ or not.

6.2. Subclasses of hyperbolic graphs. In geometric group theory several types of hyperbolic
graphs and complexes are investigated. This is due to the fact that the groups acting geometrically
on a hyperbolic graph satisfy strong properties [39, 93, 95]. Among such classes of graphs are the
curve graphs and the arc graphs. The curve graph of a compact oriented surface S is the graph
whose vertex set is the set of homotopy classes of essential simple closed curves and whose edges
correspond to disjoint curves. The arc graph of S is the subgraph of the curve graph induced by the
vertices that are homotopy classes of arcs. It was proved in [119] and [120] that curve graphs and
arc graphs are hyperbolic, i.e., they have finite hyperbolicity (notice that these graphs are not finite,
they are not even locally finite). Later work by various authors gave alternate proofs of this fact and
better information on the hyperbolicity of the curve complex [3, 44]. Finally, it was shown in [101]
that arc graphs are 7-hyperbolic and that curve graphs are 17-hyperbolic. Unfortunately, there is
no characterization of arc graphs and curve graphs, therefore their FOLB-definability is an open
(and probably difficult) question. Hyperbolic systolic and CAT(0) cubical complexes have been also
investigated in geometric group theory and metric graph theory. For example, it was shown in [109]
that 7-systolic complexes (i.e., systolic complexes not containing 6-wheels) are 11-hyperbolic. Later,
in [73] it was shown that in fact they are 1-hyperbolic. It was shown in [73] and [97] that a median
graph G (a 1-skeleton of a CAT(0) cube complex) is δ-hyperbolic if and only if G does not contain
isometrically embedded square δ × δ-grids. This kind of characterization of hyperbolicity in terms
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of grids (triangular or square) was generalized in [50,73] to all weakly modular graphs and a sharp
characterization of δ-hyperbolic Helly graphs was obtained in [83].

Notice that trees are 0-hyperbolic. Moreover, the 0-hyperbolic graphs are exactly the block-
graphs, i.e., the graphs in which all blocks (2-connected components) are complete graphs. The next
hyperbolicity constant is 1

2 . The graphs whose hyperbolicity is at most 1
2 have been characterized

in [13] (where they are called 1-hyperbolic graphs): these are exactly the graphs with convex balls
not containing 6 isometric subgraphs Ha, Hb, Hc, Hd, He, Hf (see Fig. 2 of [13]), which we denote by
H1, . . . ,H6. The 1-hyperbolic graphs have not yet been characterized. This class contains chordal
graphs, 7-systolic graphs, and distance hereditary graphs. A graph G is distance hereditary [19,103]
if any induced subgraph of G is an isometric subgraph, i.e., if any induced path is a shortest path.
Distance hereditary graphs have been characterized in various ways in [19, 103]. For example, it
was shown in [19] that a graph G is distance hereditary if and only if G does not contain the
following graphs as induced subgraphs: the cycles Ck, k ≥ 5, the 3-fan, the house, and the domino
(see Fig. 1-3 of [19]). Also it was shown in [19] that distance hereditary graphs are exactly the
graphs in which for any four vertices u, v, x, y among the three distance sums d(u, v) + d(x, y),
d(u, x) + d(v, y), d(u, y) + d(v, x) at least two are equal and if the two smallest distance sums are
equal, then the largest differ from them by at most 2. This shows that distance hereditary graphs
are 1-hyperbolic. For FOLB-definability of distance hereditary graphs we will use the following
characterization from [19]: for any three vertices u, v, w at least two of the following inclusions
hold: I(u, v) ⊆ I(u,w) ∪ I(w, v), I(u,w) ⊆ I(u, v) ∪ I(v, w), and I(v, w) ⊆ I(v, u) ∪ I(u,w). A
subclass of distance hereditary graphs is constituted by ptolemaic graphs [104, 110]. Those are
the graphs which verify the Ptolemaic inequality from Euclidean geometry: for any four vertices
u, v, x, y d(u, v) · d(x, y) ≤ d(u, x) · d(v, y) + d(u, y) · d(v, x). It was shown in [19] that the ptolemaic
graphs are exactly the chordal distance hereditary graphs and thus are exactly the chordal graphs
not containing the 3-fan 3F , and they are distance hereditary graphs without C4 and 3F . Notice
that ptolemaic graphs are exactly the graphs whose geodesic convexity satisfies the Krein-Milman
property that any convex set is the convex hull of its extremal vertices [153]. Notice also that block
graphs are exactly the ptolemaic graphs not containing an induced K−4 .

We conclude with the definition of graphs with αi-metrics, which been introduced and studied
in [62]. A graph G has an αi-metric [62] if for any edge vw of G and any two vertices u, x such
that v ∈ I(u,w) and w ∈ I(v, x), the inequality d(u, x) ≥ d(u, v) + d(w, x) + d(w, v)− i holds. The
motivation again comes from Euclidean geometry: if v, w are two close points and we extend the
segment [v, w] to a segment [u,w] via v and to a segment [v, x] via w, then the points v, w belong
to the segment [u, x]. Or more informally, if we shoot a ray from w trough v and a ray from v
through w, then these two rays will define a line. Therefore, the αi-metric shows how d(u, x) is
close to d(u, v)+d(v, w)+d(w, x). It was shown in [62] that ptolemaic graphs are exactly the graphs
with α0-metrics and that chordal graphs are graphs with α1-metric. The graphs with α1-metrics
have been characterized in [167]: these are exactly the graphs with convex balls not containing the
graph Hc as an isometric subgraph (where Hc is a graph from the list of forbidden subgraphs for
1
2 -hyperbolicity of [13]). It will be interesting to investigate in more details the structure and the
characterizations of graphs with αi-metrics as has been done for hyperbolic graphs. Since Euclidean
spaces have α0-metrics it is clear that α0-metrics are not hyperbolic. For graphs, the links between
δ-hyperbolic graphs and graphs with αi-metrics are less clear.

Now, we have collected all necessary material to present the FOLB-definability of all previously
defined classes of graphs. The interval functions of block graphs, ptolemaic graphs, and distance
hereditary graphs have been provided in [5,58,59]; our characterizations of those classes are different.
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Block Graph ≡ Hyperbolic0 ≡ Interval-Slim0,0 ≡ Ptolemaic ∧ ¬SubgraphK−4
Hyperbolic 1

2
≡ Convex Balls ∧ ¬IsometricHa,Hb,Hc,Hd,He,Hf

α0 −Metric ≡ Ptolemaic
α1 −Metric ≡ Convex Balls ∧ ¬IsometricHc

int-incl(u, v, w) ≡ ∀xB(u, x, v) =⇒ B(u, x, w) ∧ B(v, x, w)

Distance Hereditary ≡ ∀u∀v∀w(int-incl(u, v, w) ∧ int-incl(u,w, v))

∨ (int-incl(u, v, w) ∧ int-incl(v, w, u)) ∨ (int-incl(u,w, v) ∧ int-incl(v, w, u))

Ptolemaic ≡ Distance Hereditary ∧ ¬SubgraphC4,3F

Notice that the condition α0 is easily FOLB-definable: for any adjacent vertices v, w of G and
any two vertices u, x such that v ∈ I(u,w) and w ∈ I(v, x) we have v, w ∈ I(u, x). However, we do
not know if the class of graphs with αi-metrics with i ≥ 2 is FOLB-definable.

Summarizing the results of the last three sections, we obtain the following result about classes of
graphs from Metric Graph Theory, which are FOLB-definable:

Theorem 10. The following classes of graphs are FOLB-definable:
(a) weakly modular, modular, quasi-modular, pseudo-modular, strongly modular, sweakly modu-

lar;
(b) bipartite, median, pseudo-median, quasi-median, weakly median;
(c) bridged, weakly bridged, bucolic, graphs with convex balls, graphs with α1-metric;
(d) Helly, clique Helly, dual polar;
e) meshed, basis graphs of matroids, basis graphs of ∆-matroids;
(f) partial cubes, partial Hamming graphs, ample, tope graphs of OMs and COMs;
(g) Pasch, graphs with S4 separability, Peano, join-hull commutative, graphs with convex inter-

vals, graphs with sand-glass property, bipartite graphs with S2, bipartite graphs with S3;
(h) cellular, hypercellular, almost median, netlike partial cubes;
(i) graphs with interval δ-slim triangles, 0-hyperbolic and 1

2 -hyperbolic graphs, distance heredi-
tary, ptolemaic, block graphs.

In the next section, we will prove that some classes of graphs defined in previous sections are
not FOLB-definable. On the other hand, we do not know if the following classes of graphs are
FOLB-definable: partial halved cubes, `1-graphs, S2 graphs, S3 graphs, semi-median graphs, and
graphs of hyperbolicity at most δ.

7. Graph classes not expressable in FOLB

In the previous sections we have seen that several queries as Acyclicity and Bipartite are not
FOL-definable but are FOLB-definable. In this section, we prove that several queries remain not
definable in the extended logic FOLB. Recall that a graph G is chordal if G does not contain induced
cycles of length > 3. A graph is Eulerian if it has a circuit traversing each edge exactly once; recall
that a graph G is Eulerian if and only if G is connected and all vertices of G have even degree.
A graph G is planar if G admits a drawing in the plane such that two non-incident edges do not
intersect and two incident edges intersect only in their common end. By Kuratowski’s theorem, a
graph G is planar if an only of G does not have K3,3 and K5 as a minor. A graph G is dismantlable
if the vertices of G can be linearly ordered v1, . . . , vn such that for each 1 < i ≤ n the vertex vi is
dominated by a vertex vj , j < i in the subgraph Gi induced by {v1, . . . , vi}; vi is dominated by vj
if vj is a neighbor of vi and all other neighbors of vi in Gi are adjacent to vj (the order v1, . . . , vn is
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called a dismantling ordering). A graph G admits a distance preserving ordering (DPO for short) if
its vertices can be linearly ordered v1, . . . , vn such that for each 1 < i ≤ n the subgraph Gi induced
by {v1, . . . , vi} is an isometric subgraph of G. Any dismantling ordering is a distance preserving
ordering but the converse is not true. Finally, as defined above, recall that a graph G is a partial
Johnson graph if G isometrically embeds into a Johnson graph.

In this section, we consider the following queries:
• The Chordal query is the Boolean query such that Chordal(G) = 1 iff G is a chordal graph;
• The Planar query is the Boolean query such that Planar(G) = 1 iff G is a planar graph;
• The Eulerian query is the Boolean query such that Eulerian(G) = 1 iff G is an Eulerian
graph;
• The Dismantlable query is the Boolean query such that Dismantlable(G) = 1 iff G is a
dismantlable graph;
• The DPO query is the Boolean query such that DPO(G) = 1 iff G admits a distance
preserving ordering;
• The Partial Johnson query is the Boolean query such that Partial Johnson(G) = 1 iff G is a
partial Johnson graph.

Planar and Eulerian graphs are two classical classes of graphs [164]. Chordal graphs constitute
an important class of graphs in algorithmic graph theory due to their connection to tree decompo-
sitions [94]. Chordal graphs are bridged and 1-hyperbolic. Chordal graphs are exactly the graphs
admitting perfect elimination orderings, i.e., linear orders v1, . . . , vn such that for each 1 < i ≤ n
the neighbors of the vertex vi in Gi induce a clique. Perfect elimination orderings are dismantling
and distance preserving orders. Dismantlable graphs are exactly the cop-win graphs [130], i.e., the
finite graphs in which the cop can always catch the robber. It is known that several classes of graphs
arising in Metric Graph Theory are dismantlable: bridged [2, 67] and weakly bridged graphs [75],
squares of graphs with convex balls [53], and Helly graphs [25]. Dismantlability of graphs can be
viewed as a strong form of collapsibility of their clique complexes and can be viewed as a tool to
prove contractibility of such complexes. Deciding if a graph G is dismantlable is easy because it
reduces to recursively finding dismantlable vertices and removing them. Graphs admitting distance
preserving orderings have been introduced in [68], where it was shown that several classes of graphs
admit DPO. In [50] it is shown that all weakly modular graphs admit DPO. As shown in [52], the
partial cubes admitting a distance preserving ordering are exactly the ample partial cubes that
admit a corner peeling. Finally, it was proved in [76] that the problem of deciding if a graph has
such a DPO is NP-complete.

Proposition 1. The following queries Chordal,Planar,Dismantlable,Partial Johnson, and Eulerian
are not FOLB-definable.

Proof. The proofs are similar in spirit to the proof that the queries Acyclicity and Bipartite are not
FOL-definable using Ehrenfeucht-Fraïssé games, see [114,118].

To the query Chordal. For any r ≥ 1, let d ≥ 3r+2. Consider the graphs A = (V1, E1) and
B = (V2, E2), where A is a path (x1, x2, . . . , x4d−1, x4d) with 4d vertices and B is a union of a
path (y1, y2, . . . , y2d−1, y2d) and a cycle (y2d+1, . . . , y4d, y2d+1) with 2d vertices each. Let A∗ be the
graph obtained by adding a vertex x∗ and making it adjacent to all vertices of A and let B∗ be the
graph obtained by adding a vertex y∗ and making it adjacent to all vertices in B; see Fig. 2. By
construction, A∗ is chordal and B∗ is not chordal. Set V ∗1 := V1 ∪ {x∗} and V ∗2 := V2 ∪ {y∗}.

Let B1 and B2 be the betweenness predicates of the graphs A∗ and B∗ and let A∗ = (V ∗1 , B1)
and B∗ = (V ∗2 , B2) denote the graphic interval structures of A∗ and B∗. The edges of the graphs
A∗ and B∗ are EB1 and EB2 , respectively. Notice that both graphs A∗ and B∗ have diameter 2
and that x∗ (respectively, y∗) is contained in all intervals between two non-adjacent vertices u, v
of A (respectively, of B). Consequently, for any vertices u, v ∈ A (respectively, u, v ∈ B), we have
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Figure 2. The graphs A∗ and B∗ for the query Chordal

I(u, v) = {u, v} when dA(u, v) = 1 (respectively, dB(u, v) = 1), I(u, v) = {u, x∗, v} (respectively,
I(u, v) = {u, y∗, v}) if dA(u, v) ≥ 3 (respectively, dB(u, v) ≥ 3), and I(u, v) = {u, x∗, z, v} (respec-
tively, I(u, v) = {u, y∗, z, v}) if dA(u, v) = 2 (respectively, dB(u, v) = 2) and z is the unique common
neighbor of u and v in A (respectively, in B). Using this structure of intervals in A∗ and B∗, we
can establish the following result:

Claim 1. Let f be a partial map from V ∗1 to V ∗2 such that f(x∗) = y∗ if x∗ is in the domain X
of f or if y∗ is in the codomain Y of f . If f is an isomorphism between the subgraphs H1 and H2

induced by the sets X and Y in the graphs A∗ and B∗, respectively, then f is a partial isomorphism
between the interval structures A∗ and B∗.

Proof. Since f is an isomorphism from H1 to H2, observe that f is necessarily injective. To es-
tablish the claim, we have to show that for any u, v, z of X, we have B1(u, z, v) if and only if
B2(f(u), f(z), f(v)). This trivially holds if u = v or if z ∈ {u, v}. Since f is injective, this also
holds if f(u) = f(v) or if f(z) ∈ {f(u), f(v)}.

Thus suppose that u 6= v, f(u) 6= f(v), z /∈ {u, v} and f(z) /∈ {f(u), f(v)}. Since f is an
isomorphism from H1 to H2, we have that u ∼ v if and only if f(u) ∼ f(v). In this case, since
z /∈ {u, v} and f(z) /∈ {f(u), f(v)}, neither B1(u, z, v) nor B2(f(u), f(z), f(v)) holds. Assume now
that u � v and f(u) � f(v). Since u and v (respectively, f(u) and f(v)) are at distance 2 in A∗
(respectively, in B∗), we have B1(u, z, v) (respectively, B2(f(u), f(z), f(v))) if and only if z ∼ u, v
(respectively, f(z) ∼ f(u), f(v)). Since f is an isomorphism from H1 to H2, we have z ∼ u, v if and
only if f(z) ∼ f(u), f(v) and consequently, B1(u, z, v) if and only if B2(f(u), f(z), f(v)). This ends
the proof of the claim. �

By Claim 1, to prove that the Duplicator wins the r-move EF-games on the interval structures
A∗ and B∗ it sufficed to prove that the Duplicator wins the r-move EF-games on the graphs A∗
and B∗. We denote by ai and bi the vertices played in A∗ and B∗ at ith move of the game. Since
x∗, y∗, x1, x4d, y1, y2d play a special role in the graphs A∗ and B∗ (they are the only vertices that
are not of degree 4), we set a0 = x∗, b0 = y∗, a−1 = x1, b−1 = y1, a−2 = x4d, and b−2 = y2d.

We describe a strategy for Duplicator to ensure that at any step i of the game, the following
conditions hold for all −2 ≤ j ≤ i:
(1) aj = a0 = x∗ if and only if bj = b0 = y∗,
(2) if aj 6= x∗, then there exists an isomorphism f from the ball B3r−i(aj , A) to the ball B3r−i(bj , B)

such that f(a`) = b` (respectively, f−1(b`) = a`) for any a` ∈ B3r−i(aj , A) (respectively, b` ∈
B3r−i(bj , B)).
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Observe that by our choice of d, when aj 6= x∗ and bj 6= y∗, the ball B3r−i(aj , A) (respectively,
B3r−i(bj , B)) is a path that is an isometric subgraph of A (respectively, of B) for any 0 ≤ i ≤ r and
−2 ≤ j ≤ i. Note also that condition (2) implies that:
(3) if x∗ /∈ {aj , a`}, then dA(aj , a`) > 3r−i if and only if dB(bj , b`) > 3r−i,
(4) if x∗ /∈ {aj , a`} and dA(aj , a`) ≤ 3r−i, then dA(aj , a`) = dB(bj , b`).

Before the start of the game, we have i = 0 and the conditions (1) and (2) hold since dA(a−2, a−1) =
4d−1 ≥ 4 ·3r+2−1 > 3r and dB(b−2, b−1) = 2d−1 ≥ 2 ·3r+2−1 > 3r. Assume now that conditions
(1) and (2) hold for the first i steps of the game and assume that the Spoiler picks ai+1 ∈ A (the
case where the Spoiler picks bi+1 ∈ B is similar). First, suppose that ai+1 = aj for some j ≤ i (this
holds in particular if ai+1 ∈ {x∗, x1, x4d}). In this case, set bi+1 = bj and observe that conditions
(1) and (2) still hold after step i + 1. Thus, further suppose that ai+1 6= aj for any j ≤ i. We
distinguish two cases.

Case 1. dA(ai+1, aj) > 3r−(i+1) for all −2 ≤ j ≤ i such that aj 6= x∗.

For any −2 ≤ j ≤ i such that bj ∈ {y1, . . . , yd}, the ball B3r−(i+1)(bj , 3
r−(i+1)) contains at most

2 · 3r−(i+1) + 1 vertices. Consequently,
⋃
bj∈{y1,...,yd}B3r−(i+1)(bj , B) contains at most (i + 2)(2 ·

3r−(i+1) + 1) vertices. Since 2d ≥ 2 · 3r+2 > (i + 2)(2 · 3r−(i+1) + 1), there exists a vertex yk with
1 ≤ k ≤ 2d such that yk does not belong to any of these balls of radius 3r−(i+1), i.e., for any bj such
that bj ∈ {y1, . . . , yd}, we have dB(yk, bj) > 3r−(i+1). Let Duplicator pick bi+1 = yk and observe that
condition (1) is satisfied with this choice of bi+1. We now show that condition (2) is also satisfied.
For any 2 ≤ j ≤ i such that aj 6= x∗, we have dA(ai+1, aj) > 3r−(i+1) and dB(bi+1, bj) > 3r−(i+1). In
particular, dA(ai+1, a−2), dA(ai+1, a−1), dB(bi+1, b−1), dB(bi+1, b−1) are greater than 3r−(i+1) and
thus the balls B3r−(i+1)(ai+1, A) and B3r−(i+1)(bi+1, B) are both paths of length 3r−i that do not
contain any vertex a` or b` with ` ≤ i, and thus condition (2) is satisfied for ai+1. For all other
vertices, condition (2) trivially holds by induction hypothesis.

Case 2. There exists −2 ≤ j ≤ i such that aj 6= x∗ and dA(aj , ai+1) ≤ 3r−(i+1).

By induction hypothesis, there is an isomorphism f from the ball B3r−i(aj , A) to the ball
B3r−i(bj , B) such that for any a` ∈ B3r−i(aj , A) (respectively, b` ∈ B3r−i(bj , B)), we have f(a`) = b`
(respectively, f−1(b`) = a`). Let Duplicator pick bi+1 = f(ai+1) and note that condition (1)
holds with such a choice. We now show that condition (2) also holds. Observe that for any
−2 ≤ ` ≤ i+ 1 such that a` ∈ A and ai+1 ∈ B3r−(i+1)(a`, A), the ball B3r−(i+1)(a`, A) is included in
B3r−i(aj , A). Indeed, if dA(a`, ai+1) ≤ 3r−(i+1), we have dA(a`, aj) ≤ dA(a`, ai+1) + dA(ai+1, aj) ≤
2 · 3r−(i+1) and thus B3r−(i+1)(a`, A) is included in B3r−i(a`, A). Similarly, since dB(bi+1, bj) =

dA(ai+1, aj) ≤ 3r−(i+1), for any −2 ≤ ` ≤ i+1 such that b` ∈ B and bi+1 ∈ B3r−(i+1)(b`, B), the ball
B3r−(i+1)(b`, B) is included in B3r−i(bj , B). Therefore, ai+1 ∈ B3r−(i+1)(a`, A) if and only if bi+1 ∈
B3r−(i+1)(b`, B) and when it is the case, f induces an isomorphism between the balls B3r−(i+1)(a`, A)
and B3r−(i+1)(f(a`), B) = B3r−(i+1)(b`, B). By induction hypothesis and since f(ai+1) = bi+1, for
any −2 ≤ k ≤ i + 1 such that ak ∈ B3r−(i+1)(a`, A) (respectively, bk ∈ B3r−(i+1)(b`, B)), we have
f(ak) = bk (respectively, f−1(bk) = ak). This establishes condition (2) for all balls containing ai+1.
For the other balls, the result holds trivially by induction hypothesis.

At the end of the game, i.e., after r rounds, for any −2 ≤ j, ` ≤ r, we show that aj ∼ a` in A∗
if and only if bj ∼ b` in B∗. Note that by conditions (1) and (2), we have aj = a` if and only if
bj = b`. In this case, we have aj � a` and bj � b`. Assume now that aj 6= a` and bj 6= b`. If aj = x∗

(respectively, a` = x∗, bj = y∗, b` = y∗), then by condition (1), we have bj = y∗ (respectively,
b` = y∗, aj = x∗, a` = x∗) and in this case we have aj ∼ a` and bj ∼ b` since x∗ and y∗ are
respectively adjacent to all vertices of A and B. Suppose now that aj , a` ∈ A, bj , b` ∈ B, and
aj ∼ a` (respectively, bj ∼ b`). By Condition (2), there is an isomorphism f from B1(aj , A) to
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B1(bj , B) such that f(a`) = b` (respectively, f−1(b`) = a`). Consequently, b` = f(a`) ∼ bj = f(aj)
(respectively, a` = f−1(b`) ∼ aj = f−1(bj) ) since a` ∼ aj (respectively, b` ∼ bj).

Consequently, the map f : aj 7→ bj defines an isomorphism between the graphs induced by
X = {a−2, a−1, . . . , ar} in A∗ and Y = {b−2, b−1, . . . , br} in B∗. By Claim 1, we get that the
Duplicator wins the r-moves EF-game on the interval structure A∗ = (V ∗1 , B1) and B∗ = (V ∗2 , B2).
By Theorem 3, Chordal is not FOLB-definable.

To the query Dismantlable. We consider the same graphs A = (V1, E1) and B = (V2, E2) as
in query Chordal. Let A∗ be the graph obtained by adding two non-adjacent vertices x∗1 and x∗2
and making them adjacent to all vertices in A and let B∗ be the graph obtained by adding two
non-adjacent vertices y∗1 and y∗2 and making them adjacent to all vertices of B; see Fig. 3. Then
x1, x2, . . . , x4d−1, x

∗
1, x
∗
2, x4d is a dismantling order of A∗ because each vertex xi, i < 4d is dominated

in the subgraph induced by the remaining vertices by the vertex xi+1 while the subgraph induced
by the last three vertices x∗1, x∗2, x4d is a 2-path with x4d as the middle vertex. On the other hand,
the graph B∗ is not dismantlable because the unique way to partially dismantle B∗ is to remove
the vertices of the path of Br either in order y1, y2, . . . , y2d or in the reverse order y2d, y2d−1 . . . , y1.
The resulting subgraph of B∗ is a double wheel induced by the cycle (y2d+1, . . . , y4d) and two
non-adjacent vertices y∗1 and y∗2 and this subgraph does not contain any dominated vertex.

Figure 3. The graphs A∗ and B∗ for the query Dismantlable

Let B1 and B2 be the betweenness predicates of the graphs A∗ and B∗. Let A∗ = (V ∗1 , B1) and
B∗ = (V ∗2 , B2), where V ∗1 = V1 ∪ {x∗1, x∗2} and V ∗2 = V2 ∪ {y∗1, y∗2}. Note that both graphs A∗ and
B∗ have diameter 2 and that x∗1, x∗2 (respectively, y∗1, y∗2) are contained in all intervals between non-
adjacent vertices u, v of A (respectively, of B). Consequently, for any vertices u, v ∈ A (respectively,
u, v ∈ B), we have I(u, v) = {u, v} when dA(u, v) = 1 (respectively, dB(u, v) = 1), I(u, v) =
{u, x∗1, x∗2, v} (respectively, I(u, v) = {u, y∗1, y∗2, v}) if dA(u, v) ≥ 3 (respectively, dB(u, v) ≥ 3),
and I(u, v) = {u, x∗1, x∗2, z, v} (respectively, I(u, v) = {u, y∗1, y∗2, z, v}) if dA(u, v) = 2 (respectively,
dB(u, v) = 2) and z is the unique common neighbor of u and v in A (respectively, in B). Observe
also that I(x∗1, x

∗
2) = V (A∗) and I(y∗1, y

∗
2) = V (B∗).

Using this structure of intervals and a proof similar to the proof of Claim 1, one can establish
that for any map f from X ⊆ V ∗1 to Y ⊆ V ∗2 such that f(x∗1) = y∗1 if x∗1 ∈ X or y∗1 ∈ Y , f(x∗2) = y∗2
if x∗2 ∈ X or y∗2 ∈ Y , if f is an isomorphism between the subgraphs induced by X and Y in the
graphs A∗ and B∗, then f is a partial isomorphism between the interval structures A∗ and B∗.
Then, using a proof similar as in the case of chordal graphs, we can establish that Duplicator wins
the EF-games on A∗ and B∗. By Theorem 3, this implies that Dismantlable is not FOLB-definable.
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Figure 4. The graphs A∗ and B∗ for the query Partial Johnson

To the query Planar. We consider the same graphs A = (V1, E1) and B = (V2, E2) as in queries
Chordal and Dismantlable and the same graphs A∗ and B∗ in the query Dismantlable. The graph A∗
is planar: a planar drawing of A∗ is given in Fig. 3. On the other hand, B∗ is not planar because
it contains K5 as a minor. This K5-minor is defined by any three distinct vertices yi, yj , yk of the
cycle C of B and the vertices y∗1, y∗2. The vertices yi, yj , yk are connected by three disjoint subpaths
of the cycle C, y∗1 and y∗2 are connected to yi, yj , yk by edges, and y∗1 and y∗2 are connected by a path
of length 2 passing via the path of B. The result then follows from the fact that the Duplicator
wins the EF-game on A∗ and B∗.

To the query Partial Johnson. Consider the graphs A = (V1, E1) and B = (V2, E2), where A is a cy-
cle (x1, x2, . . . , x2d−1, x2d, x1) with 2d vertices and B consists of two odd cycles (y1, y2, . . . , yd−1, yd)
and (yd+1, . . . , y2d, yd+1). Let A∗ be the graph obtained by adding a vertex x∗ and making it ad-
jacent to all vertices of A and let B∗ be the graph obtained by adding a vertex y∗ and making it
adjacent to all vertices in B. One can directly check (or use the result of [72]) that A∗ is a partial
Johnson graph and B∗ is not a partial Johnson graph because B∗ contains odd wheels. Since the
structure of intervals in this pairs of graphs is similar to the graphs considered in the case of the
query Chordal, an analogous of Claim 1 for this pair of graphs also holds. Then, using the same
proof as in the case of chordal graphs (where the vertices a−2, a−1, b−2, b−1 are not defined), we
can establish that Duplicator wins the EF-games on A∗ and B∗. By Theorem 3, this implies that
Dismantlable is not FOLB-definable.

To the query Eulerian. For any r ≥ 1, consider the graphs A = (V1, E1) and B = (V2, E2), where
A = K2r is a stable set of size 2r and B = K2r+1 is a stable set of size 2r+ 1. Let A∗ be the graph
obtained by adding two non-adjacent vertices x∗1 and x∗2 and making them adjacent to all vertices
in Ar and let B∗ be the graph obtained by adding two non-adjacent vertices y∗1 and y∗2 and making
them adjacent to all vertices of Br. Clearly, A∗ and B∗ are the complete bipartite graphs K2,2r and
K2,2r+1. Let V1 = {x1, . . . , x2r}, V2 = {y1, . . . , y2r, y2r+1} and V ∗1 = V1∪{x∗1, x∗2}, V ∗2 = V2∪{y∗1, y∗2}.
Obviously, A∗ is an Eulerian graph and B∗ is not Eulerian. Let B1 and B2 be the betweenness
predicates of the graphs A∗ and B∗ and consider the interval structures A∗ = (V ∗1 , B1) and B∗ =
(V ∗2 , B2). Both graphs A∗ and B∗ have diameter 2 and one easily see that for any two vertices
u, v of A (respectively, B), we have I(u, v) = {u, x∗1, x∗2, v} (respectively, I(u, v) = {u, y∗1, y∗2, v}).
Observe also that I(x∗1, x

∗
2) = V ∗1 and I(y∗1, y

∗
2) = V ∗2 .
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Using this structure of intervals and a proof similar (but simpler) to the proof of Claim 1, one can
establish that for any map f from X ⊆ V ∗1 to Y ⊆ V ∗2 such that f(x∗1) = y∗1 if x∗1 ∈ X or y∗1 ∈ Y ,
f(x∗2) = y∗2 if x∗2 ∈ X or y∗2 ∈ Y , if f is an isomorphism between the subgraphs induced by X and Y
in the graphs A∗ and B∗, then f is a partial isomorphism between the interval structures A∗ and B∗.
Then, using a proof similar as in the case of chordal graphs, we can establish that Duplicator wins
the EF-games on A∗ and B∗. By Theorem 3, this implies that Eulerian is not FOLB-definable. �

Since FOLB-queries can be tested in polynomial time on any graph G (see Section 8), any
property that is NP-hard to recognize is unlikely to be expressible as a FOLB-query. It is known
that it is NP-complete to decide whether a given graph admits a distance preserving order [76].
Therefore if P 6=NP, DPO cannot be expressed as a FOLB-query. In fact, one can show that DPO
is not expressible as a FOLB-query. To establish this result, one can proceed as in the proof of
Proposition 1 in order to prove that Duplicator wins the games on the two graphs A∗ and B∗ from
Figure 5 (A∗ has a distance preserving order while B∗ does not). Since these graphs have diameter
4, in order to give a formal proof, we need to adapt Claim 1 and the inductive condictions (1) and
(2) used in the proof of Proposition 1. Notice that in these graphs, we have nine different types of
intervals. We do not give a proof of this result, because this would need a lengthy proof leading to
an expected conclusion.

Figure 5. The graphs A∗ and B∗ for the query DPO

8. Running time of FOLB queries

Let φ be an FO sentence in vocabulary σ, and let A be a σ-structure. Encoding of a formula
φ, enc(φ), could be its syntactic tree represented as a string. The length of this string, enc(φ), is
denoted by ||φ||. We define the encoding enc(A) of a structure A as the concatenation of 0n1 and
all the enc(Ri), where n is the cardinality of the domain of A and Ri, for each i = 1, 2, . . . , l is
the relation symbol in the signature of A. That is, enc(A) = 0n1.enc(R1) · · · enc(Rl). The length
of this string is ||A|| = (n + 1) +

∑p
i=1 n

arity(Ri). The width of an FO formula φ is the maximum
number of free variables in a subformula of φ. The running time of FO queries in terms of the size
of encodings of a FO query and a structure is given in [118] as follows:

Proposition 2 ([118]). Let φ be an FO sentence in vocabulary σ and let A be a σ-structure. If the
width of φ is k, then checking whether A is a model of φ can be done in time O(||φ|| × ||A||k).

This gives a polynomial time algorithm for evaluating FO queries on finite structures, for a fixed
sentence φ.

The interval structure G = (V,B) with |V | = n and B, being a ternary relation, can be encoded
by a string of length ||G|| = (n + 1 + n3). Furthermore, for the fixed formula φ, the ||φ|| is a
constant, say c. The total number of variables used in φ will be the upper bound for k. Note that
every FOLB sentence defined in this paper uses a fixed number of variables and, in some cases, the
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subformulas given by the query Subgraph or Isometric in sentence φ maximum contributes to the
width of φ. Thus for a fixed sentence φ in FOLB, checking whether A is a model of φ can be done in
time O(||φ||× ||A||k) = O(c× (n+1+n3)k) = O(c×n3k). Note that a particular FOLB-query for a
graph class C actually characterizes C. The recognition of a graph class C is defined as the decision
problem “does a given graph G belong the graph class C?". The input is an arbitrary graph G and
the output is True if and only if G belongs to C and False otherwise. If there is a corresponding
FOLB-query characterising the graph class C, then for a given graph G, we can ensure that there
exists an algorithm to check whether G is in the graph class C using that FOLB query. From all
these observations we obtain the following remark:

Proposition 3. All FOLB-definable graph classes given in Theorem 10 can be recognized in poly-
nomial time.

Notice that most of the classes of graphs from Theorem 10 can be recognized by more efficient
algorithms than those using Propositions 2 and 3.

9. Conclusion

In this paper, we showed that most of graph classes investigated in Metric Graph Theory are
definable in FOLB. On the other hand, we showed that several sub- or super-classes of them are not
definable in FOLB. Tarski’s theory uses the predicates “betweenness” and “congruence”. For graphs,
the congruence is the quaternary relation ≡ meaning that uv ≡ u′v′ if d(u, v) = d(u′, v′) and we can
call the resulting logic the Fist Order Logic with Betweenness and Congruency, abbreviated FOLBC.
However, for graphs it seems that FOLBC is not more expressible than FOLB. At least the graph
classes not expressible in FOLB remains not expressible in FOLBC and for all classes for which
FOLB-definability is open the FOLBC-definability is open as well. On the other hand, if instead
of the congruency axiom one can compute distances between vertices of a graph, then the property
“the hyperbolicity of a graph is at most δ” becomes easily expressible. Distance computation and
angle measurement (Scale and Protractor) is at the basis of classical metric approach to plane
geometry due to Birkhoff [31] (see the book [123]). Note that FOLB can be extended to disconnected
graphs [55]. Another perspective is to consider the Monadic Second Order Logic with Betweenness
for graphs. Finally, an important long term research perspective is the algorithmic status of FOLB
model checking on FOLB-definable classes of graphs: : for a FOLB-definable class C, can we find an
algorithm that given a FOLB formula φ and a graph G ∈ C on n vertices check whether G satisfies
φ in time f(φ) · poly(n) where the polynomial in n is independent of φ.
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