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BOREL FUNCTORS AND INFINITARY

INTERPRETATIONS

MATTHEW HARRISON-TRAINOR, RUSSELL MILLER,

AND ANTONIO MONTALBÁN

Abstract. We introduce the notion of infinitary interpretation of struc-
tures. In general, an interpretation between structures induces a con-
tinuous homomorphism between their automorphism groups, and fur-
thermore, it induces a functor between the categories of copies of each
structure. We show that for the case of infinitary interpretation the re-
versals are also true: Every Baire-measurable homomorphism between
the automorphism groups of two countable structures is induced by an
infinitary interpretation, and every Baire-measurable functor between
the set of copies of two countable structures is induced by an infinitary
interpretation. Furthermore, we show the complexities are maintained
in the sense that if the functor is ∆

0
α, then the interpretation that in-

duces it is ∆in

α up to ∆
0
α equivalence.

1. Introduction

Constructions that build new structures out of old ones are common
throughout mathematics. For instance, given an integral domain B, we
might consider its fraction field or its polynomial ring. In model theory,
a common way of performing such constructions is using interpretations,
where one structure is defined using tuples from the other, and the oper-
ations and relations of the new structure are defined using the operations
and relations of the old one. For instance, the fraction field of an integral
domain B can be defined as a set of pairs of elements in B quotiented out by
some definable equivalence relation, with the operations on the pairs defined
using the operations in B. Interpretations are useful because they preserve
some model theoretic properties of the structures or of their theories. For
instance, if a structure A can be interpreted within a structure B, then
there is a homomorphism from the automorphism group of B to the auto-
morphism group of A ([Hod93, Theorem 5.3.5]). Furthermore, if we assume
these structures are countable, we get a function that maps copies of B with
domain ω to copies of A with domain ω, and one that maps isomorphisms
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between copies of B to isomorphisms between the respective copies of A,
preserving compositions. We naturally view such a pair of functions as a
functor from B to A (Definition 7). Functors induced by interpretations are
always Borel. In turn, a Borel functor (even a Baire-measurable one) from
B to A induces a continuous homomorphism from the automorphism group
of B to that of A. However, there are many such functors that do not come
from elementary first-order interpretations.1 In the case of the polynomial
ring, we can easily build a functor that maps copies of a ring B to copies of its
polynomial ring B[X] in such a way that isomorphisms between copies of B
translate to isomorphisms between the respective copies of B[X]. However,
B[X] cannot be interpreted in B, as we need tuples of arbitrary large size
from B to code the polynomials in B[X]. In this paper we consider a more
general notion of interpretation that we call infinitary interpretation, where
the sets used in the interpretation need only be Lω1ω-definable and where,
instead of using tuples of a fixed size for the interpretation, we allow tuples
of different sizes (see Definition 1 below). We only consider countable struc-
tures, and so, whenever we refer to a structure, we assume it is countable
and with domain ω. These new interpretations still generate Borel functors
from the interpreting structure to the interpreted structure exactly as above,
and also continuous homomorphisms between their automorphism groups.
Our main theorem is the reversal: Each Borel (even Baire measurable) func-
tor from the copies of B to the copies of A is naturally isomorphic to one
induced by an infinitary interpretation (Theorem 9), and each continuous
homomorphism Aut(B) → Aut(A) is induced by an infinitary interpretation
(Theorem 3). Furthermore, the quantifier complexity of the interpretation
is the same as the Borel complexity of the functor. In a sense, this shows
that infinitary interpretations are the most general kind of interpretations,
at least if we restrict ourselves to countable structures. One can view our
result as saying that if one has a way of building A from B, then a copy of
A must already exist inside of B.

Continuing this line of investigation, we obtain results towards the fol-
lowing question: What can we tell about a structure by looking at its au-
tomorphism group? The first question along this lines that we consider is
whether there is a syntactical condition on structures that is equivalent to
them having the same automorphism group. The answer is infinitary bi-
interpretability: Two structures A and B are infinitarily bi-interpretable if
each can be infinitarily interpreted in the other and the isomorphism taking
A to the copy of A inside the copy of B insideA, and the similar isomorphism
with A and B reversed, are infinitarily definable in the respective structures
(Definition 5). This is equivalent to the existence of a continuous isomor-
phism between the automorphism groups of the structures (Theorem 6).
(For the particular case of ℵ0-categorical structures, this was already known

1For example, there is the functor which maps every copy of the trivial structure B,
with a countable domain and no relations, to the single structure A = (ω, 0, 1,+, ·), and
maps all isomorphisms between copies of B to the identity map on A.
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from a paper of Ahlbrandt and Ziegler [AZ86].) To show this, we prove
that infinitary bi-interpretations correspond naturally (and bijectively) to
Borel adjoint equivalences (Definition 10) of the categories of copies of the
structures (Theorems 11 and 12). The second question is whether, and how,
the existence of a set of indiscernibles within a structure is reflected in the
automorphism group of the structure. We will show that a structure has
an infinitarily definable set of indiscernible equivalence classes on its tuples
if and only if there is a continuous homomorphism from its automorphism
group onto S∞ (Theorem 4).

This work grew out of a previous paper [HTMMM] by the three authors
and Alexander Melnikov, which gives a one-to-one correspondence between
effective interpretations and effective functors. Effective interpretation is
the right notion of interpretability needed for computability theory, and is
exactly like infinitary interpretation as we define it in Definition 1, but using
only computable infinitary Σ1-formulas. This particular definition was in-
troduced in [Mon13, Mon], but it is equivalent to the notion of Σ-definability
without parameters, widely studied in Russia. On the other hand, the pre-
cise definition of computable functor was introduced in [MPSS], where it was
shown to show all structures can be effectively coded by fields. Both effective
bi-interpretations and computable functors were introduced to formalize a
longstanding idea from [HKSS02] that certain classes of structures are uni-
versal for computability-theoretic properties. Some time later, we realized
that with some more work, and via the use of forcing, we could extend our
results from [HTMMM] through the Borel hierarchy. We then noticed we
could apply our results to homomorphisms between automorphism groups
and infinitary indiscernibles.

1.1. Infinitary interpretations. Let us now formally define the notion of
infinitary interpretation. Throughout this article, all signatures are rela-
tional and computable: there is a computable function giving the arity of
each of the countably many predicates P0, P1, . . .. (It seems fairly clear that
one could extend our arguments to noncomputable countable signatures by
relativizing everything to the Turing degrees of the signatures.)

Definition 1. A structure A = (A;PA
0 , P

A
1 , ...) (where PA

i ⊆ Aa(i)) is
infinitarily interpretable in B if there are relations DomA

B , ∼, R0, R1, .., each
Lω1,ω-definable without parameters in the language of B, such that

(1) DomB
A ⊆ B<ω,

(2) ∼ is an equivalence relation on DomB
A,

(3) Ri ⊆ (DomB
A)

a(i) is closed under ∼,

and there exists a function fBA : DomB
A → A which induces an isomorphism:

fBA : (DomB
A/ ∼;R0/ ∼, R1/ ∼, ...) ∼= (A;PA

0 , P
A
1 , ...),

where Ri/∼ stands for the ∼-collapse of Ri.
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In the definition above, when we refer to an Lω1,ω-definable subset S ⊆
B<ω we mean a countable sequence {S1, S2, . . .} of Lω1,ω-definable subsets
Si ⊆ Bi. We refer the reader to [AK00, Chapters 6 and 7] for background on
the infinitary language and its effective version. Our notation Σc

α refers to
computable infinitary Σα formulas (necessarily with α < ωCK

1 ), and likewise
for ∆c

α. We also sometimes use Σin

α , simply to emphasize that infinitary (not
necessarily computable) formulas are included.

We only deal with countable structures in this paper, and for a relation on
a countable structure, being Lω1ω definable is equivalent to being invariant
under automorphisms ([Kue68, Mak69]). One might then say that this is
not really a syntactical definition. However, we will also be interested in the
complexity of the interpretations defined in terms of the syntactic complexity
of the formulas. We say that an interpretation is ∆in

α , or ∆c

α, if all the
relations DomA

B ,∼, R0, R1, .. are. (In the lightface case, when we refer to a
∆c

α-definable subset S ⊆ B<ω we mean a computable sequence (of indices)
{s1, s2, ...} of ∆c

α-definable subsets Si ⊆ Bi. Similarly, when we refer to a
∆c

α-definable sequence {Sk : k ∈ ω} of subsets of B<ω, we mean that the
sequence of indices for the Sk’s is computable.)

Notice that given a presentation of a structure A with domain ω, we get
a presentation of Aut(A) as a subgroup of S∞. The automorphism group
of a different presentation would be a different subgroup of S∞, although
these two subgroups would be conjugated by the isomorphism between the
presentations. Given fixed copies of A and B with domain ω, an infini-
tary interpretation induces a map between their automorphism groups in
an obvious way.

Definition 2. To each interpretation I of A in B as in Definition 1, we
associate a homomorphism GI : Aut(B) → Aut(A) as follows:

GI(f) = fBA ◦ f̃ ◦ (fBA)
−1.

Here f̃ permutes DomB
A as defined by the given f , and hence preserves ∼.

Throughout this paper, we use f̃ (where f is a map with domain B) to
denote the induced map on tuples from DomB

A.
It is not hard to see that GI is a continuous homomorphism. (Let us

remark that every Baire-measurable homomorphism between Polish groups
is continuous (see [Gao09, Theorem 2.3.3]) and all automorphism groups are
Polish (see [Gao09, Exercise 2.4.7]).) One of the main results of this paper
is that all continuous homomorphisms between automorphism groups are
induced by infinitary interpretations.

Theorem 3. Let A and B be countable structures. Every continuous homo-
morphism from Aut(B) into Aut(A) is of the form GI for some infinitary
interpretation I of A in B.

Note that there do exist structures whose automorphism groups are iso-
morphic as groups, but not as topological groups [EH90]. So we cannot
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drop the hypothesis of continuity. On the other hand, there are models of
ZF+DC such that every homomorphism between polish groups is continuous
[Sol70, She84] and so we might expect such examples to be the exception.

As a corollary of this theorem we give a characterization, in terms of
the automorphism group of a structure A, for A to have an absolutely
indiscernible set of Lω1ω-imaginary elements (i.e., an absolutely indiscernible
set of equivalence classes under some Lω1ω-definable equivalence relation).

Theorem 4. Let A be a countable structure. The following are equivalent:

(1) There is a continuous homomorphism from Aut(A) onto S∞.
(2) There is an n, an Lω1ω-definable D ⊂ An, and an Lω1ω-definable

equivalence relation E ⊂ D2 with infinitely many equivalence classes
and such that the E-equivalence classes are absolutely indiscernible,
in the sense that every permutation of the E-equivalence classes ex-
tends to an automorphism of A.

The theorem above shows the connections behind the new proof by Bald-
win, Friedman, Koerwein, and Laskowski [BFKL16] and the original proof
of a result of Hjorth [Hjo07] that states that if there is a counterexample to
Vaught’s conjecture, there is one with no copies of size ℵ2. For this, Hjorth’s
proof started by considering a structure whose automorphism group divides
S∞ (i.e., there is an onto continuous homomorphism from a closed subgroup
of the automorphism group onto S∞) and then used descriptive set theo-
retic tools. This proof is hard to visualize for those outside of descriptive set
theory, and so Baldwin, Friedman, Koerwein, and Laskowski found another
proof starting from a structure that has a set of absolute indiscernibles.
It is suggested in [BFKL16] that the use of absolute indiscernibles is in a
sense the model theoretic version of the use of the divisibility of S∞ by the
automorphism group. The theorem above makes this sense precise.

In general it is necessary that we look at equivalence classes to find
the indiscernibles, as it was shown in [HTIK] that every structure is bi-
interpretable with one that has no triple of indiscernibles.

We also show (Theorem 37) that a structure has absolute order indis-
cernibles if and only if there is a continuous homomorphism from Aut(A)
onto Aut(Q).

We will also consider bi-interpretations. Two structures are bi-interpretable
if they are each interpretable in the other, and the compositions are defin-
able:

Definition 5. Two structures A and B are infinitarily bi-interpretable if
there are interpretations of each structure in the other as in Definition 1
such that the compositions

fAB ◦ f̃BA : Dom
(DomB

A
)

B
→ B and fBA ◦ f̃AB : Dom

(DomA
B
)

A
→ A
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are Lω1ω-definable in B andA respectively. (Here Dom
(DomB

A
)

B
⊆ (DomB

A)
<ω,

and f̃BA : (DomB
A)

<ω → A<ω is the obvious extension of fBA : DomB
A → A

mapping Dom
(DomB

A
)

B
to DomA

B .)

Two structures which are bi-interpretable behave in the same way. In par-
ticular, we get a continuous isomorphism of the automorphism groups of the
two structures. For this, the fact that the two Lω1ω-definable isomorphisms

are of the form fAB ◦ f̃BA and fBA ◦ f̃AB for some fBA and fAB is vital.

Theorem 6. Two countable structures A and B are infinitarily bi-interpret-
able if and only if their automorphism groups are Baire-measurably isomor-
phic. Furthermore, every continuous isomorphism from Aut(B) onto Aut(A)
is of the form GI for some infinitary bi-interpretation I of A in B.

1.2. Functors. Throughout the paper, we write Iso(A) for the isomorphism
class of a countably infinite structure A:

Iso(A) = {Â : Â ∼= A & dom(Â) = ω}.

We will regard Iso(A) as a category, with the copies of the structure as its
objects and the isomorphisms among them as its morphisms.

Definition 7. By a functor from A to B we mean a functor from Iso(A)

to Iso(B), that is, a map F that assigns to each copy Â in Iso(A) a struc-

ture F (Â) in Iso(B), and assigns to each morphism f : Â → Ã in Iso(A) a

morphism F (f) : F (Â) → F (Ã) in Iso(B) so that the two properties below
hold:

(N1) F (id
Â
) = id

F (Â) for every Â ∈ Iso(A), and

(N2) F (f ◦ g) = F (f) ◦ F (g) for all morphisms f, g in Iso(A).

F is ∆0
α (or ∆0

α) if it is given by a pair of ∆0
α (resp. ∆0

α) operators 2
ω → 2ω.

It is Borel if it is given by Borel operators, and Baire-measurable if it is given
by Baire-measurable operators.

Every interpretation I of a structure A in a structure B induces an func-
tor, FI , from B to A. There is only one small technicality in the definition

of FI , which has to do with making the domain of FI(B̂) equal to ω. Using

the interpretation we can associate, to each copy B̂ of B, a copy of A whose

domain consists of the ∼-equivalence classes of DomB̂
A ⊆ ω<ω; Using a bi-

jection τ B̂ between ω and DomB̂
A/ ∼ (defined in some canonical way using

an effective bijection between ω and ω<ω, so that we can compute τ B̂ from

DomB̂
A and ∼), we then define FI(B̂) to be the pull-back of this structure

through τ B̂. If h is an isomorphism B̂ → B̃, we define FI(h) : FI(B̂) → FI(B̃)

by FI(h) = (τ B̃)−1 ◦ h̃ ◦ τ B̂.
Our main theorem states that every functor from B to A is of the form

FI up to natural isomorphism.
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Definition 8. A functor F : Iso(B) → Iso(A) is naturally isomorphic (or

just isomorphic) to a functor G : Iso(B) → Iso(A) if for every B̃ ∈ Iso(B),

there is an isomorphism η
B̃
: F (B̃) → G(B̃), such that the following diagram

commutes for every B̃, B̂ ∈ Iso(B) and every morphism h : B̃ → B̂:

F (B̃)

F (h)
��

η
B̃ // G(B̃)

G(h)
��

F (B̂)
η
B̂

// G(B̂)

An isomorphism is Borel (or ∆0
α, or ∆

0
α) if η is given by a Borel (resp. ∆0

α

or ∆0
α) operator.

The following is the key result of the paper and Section 3 is dedicated to
proving it.

Theorem 9. Let B and A be countable structures, possibly in different
countable languages. For each Baire-measurable functor F : Iso(B) → Iso(A)
there is an infinitary interpretation I of A within B, such that F is naturally
isomorphic to the functor FI associated to I. Furthermore, if F is ∆0

α in
the lightface Borel hierarchy, then the interpretation can be taken to be ∆c

α

and the isomorphism between F and FI can be taken to be ∆0
α.

We also get a similar way of moving between bi-interpretations and a
category-theoretic equivalent. For bi-interpretations, we must consider ad-
joint equivalences of categories.

Definition 10. An adjoint equivalence of categories consists of two functors,
from one category to the other and back, such that their compositions are
both naturally isomorphic to the identity functors, and furthermore, these
two natural isomorphisms are mapped to each other via these two func-
tors. More formally, functors F : Iso(B) → Iso(A) and G : Iso(A) → Iso(B),

together with families of isomorphisms ǫ
Ã
: Ã → F (G(Ã)) and η

B̃
: B̃ →

G(F (B̃)) for Ã ∈ Iso(A) and B̃ ∈ Iso(B), form an adjoint equivalence of
categories if

F (η
B̂
) = ǫ

F (B̂) and G(ǫÂ) = η
G(Â).

An adjoint equivalence of categories is Borel if F , G, η, and ǫ are Borel
operators.

For bi-interpretations, both directions—producing an equivalence of cat-
egories from a bi-interpretation, and vice versa—are non-trivial.

Theorem 11. Let B and A be countable structures. For every infinitary
bi-interpretation (I,J ) of A and B, FI and FJ form a Borel adjoint equiv-
alence of categories of Iso(B) and Iso(A). Furthermore, complexities are
maintained.
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Theorem 12. Let B and A be countable structures. For every Borel ad-
joint equivalence of categories (F,G) between Iso(B) and Iso(A) there is
an infinitary bi-interpretation (I,J ) between A and B, such that F and G
are naturally isomorphic to the functors FI and FJ associated to I and J
respectively. Furthermore, complexities are maintained.

2. Homomorphisms of automorphism groups

Our main result, Theorem 9, shows the connection between functors and
interpretations. In this section, we discuss the connection between homo-
morphisms of automorphism groups and functors, which we will then be
able to connect to interpretations once we prove Theorem 9.

Theorem 13. For every continuous homomorphism H : Aut(B) → Aut(A),
there is a Borel functor G : Iso(B) → Iso(A) with G(B) = A and whose
restriction to Aut(B) is H.

Proof. Let Γ be a map that assigns, to each copy B̂ of B, an isomorphism

ΓB̂ : B̂ → B with ΓB = idB. Let us first show how will use Γ, and then show
how we can choose it to be Borel.

Using Γ and H we define G as follows. First, the action of the functor

on the copies of B is trivial: For every copy B̂ of B, we let G(B̂) = A. The

action of G on the isomorphisms is a bit more interesting: If f : B̂ → B̃ is

an isomorphism, then ΓB̃ ◦ f ◦ ΓB̂
−1

is an automorphism of B, and we can

define G(f) = H(ΓB̃ ◦ f ◦ ΓB̂
−1

) ∈ Aut(A). It is not hard to check that G
is a functor. If f ∈ Aut(B), then since ΓB = idB, G(f) = H(f). Moreover,
the continuity of H and the fact that Γ is Borel ensure that G is Borel.

Let us now build Γ in a Borel way. Let α be the Scott rank of B̂ in
the sense of [Mon15]. So, by [Mon15, Theorem 1.1], B is uniformly ∆0

α-
relatively categorical on a cone, say the cone above X . Let Γ be the operator
witnessing this uniformity. Note that we can choose ΓB = idB. ✷

Corollary 14. Every Baire-measurable functor F : Iso(B) → Iso(A) is nat-
urally isomorphic to a Borel one.

Proof. Fix the presentations of A and B, with A = F (B). When restricted
to the automorphisms of B, F is a Baire-measurable homomorphism from
Aut(B) to Aut(A). As we mentioned earlier, such a homomorphism must
be continuous (see [Gao09, Theorem 2.3.3]). We can then apply the pre-
vious theorem to get a Borel functor G : Iso(B) → Iso(A) which coincides
with F on Aut(B). Write H = F ↾Aut(B) as above. Then F and G are

isomorphic: Let Γ be a map that assigns, to each copy B̂ of B, an isomor-

phism ΓB̂ : B̂ → B, as in the previous theorem. Given a copy B̂ of B, let

η
B̂

= F (ΓB̂) : F (B̂) → G(B̂) (recall that G(B̂) = A = F (B)). We claim
that η is a natural isomorphism between F and G. Given an isomorphism
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f : B̂ → B̃, and using the fact that G ↾Aut(B) = F ↾Aut(B) = H, we have

G(f) ◦ η
B̂
= H(ΓB̃ ◦ f ◦ ΓB̂

−1
) ◦ F (ΓB̂)

= F (ΓB̃ ◦ f ◦ ΓB̂
−1

) ◦ F (ΓB̂)

= F (ΓB̃) ◦ F (f)

= η
B̃
◦ F (f). ✷

Theorem 13 together with our main Theorem 9 provides a proof of Theo-
rem 3, that each homomorphism between automorphism groups is induced
by an infinitary interpretation. We can then use this to define a measure of
complexity for homomorphisms between automorphism groups.

Definition 15. Given a continuous homomorphism H : Aut(B) → Aut(A),
we define the rank ofH to be the least α such that there is a∆0

α-functor from
B to A coinciding with H on Aut(B), or equivalently, a ∆in

α interpretation I
of A within B with H = GI as in Definition 2. From the proof of Theorem
13 we get that the rank of H is at most the Scott rank of B.

Note that the rank of a homomorphism depends on the underlying struc-
tures A and B, and not just on their automorphism groups. We will not
develop this notion of rank any further in this paper, but it seems so natural
that we think it deserves further study.

We now turn to the connection between isomorphisms of automorphism
groups and adjoint equivalences of categories.

Theorem 16. Let F : Iso(B) → Iso(A), G : Iso(A) → Iso(B), η, and ǫ form
a Borel adjoint equivalence of categories between Iso(A) and Iso(B) with
F (B) = A. Then F , restricted to Aut(B), gives an isomorphism between
Aut(B) and Aut(A).

Proof. Let H1 : Aut(B) → Aut(A) be defined by H1(h) = F (h), and let
H2 : Aut(A) → Aut(B) be defined by H2(g) = η−1

B
◦G(g) ◦ ηB. Then

H1 ◦H2(h) = F (η−1
B

) ◦ F (G(h)) ◦ F (ηB) = ǫ−1
A

◦ F (G(h)) ◦ ǫA = h

and
H2 ◦H1(g) = η−1

B
◦G(F (g)) ◦ ηB = g. ✷

Theorem 17. For every continuous isomorphism H : Aut(B) → Aut(A),
there is a Borel adjoint equivalence of categories F : Iso(B) → Iso(A) with
F (B) = A and whose restriction to Aut(B) is H.

Note that the inverse of H is also continuous [Gao09, Exercise 2.3.5].

Proof. Define F as before: Let Γ be a map that assigns, to each copy B̂ of

B, an isomorphism ΓB̂ : B̂ → B with ΓB = idB, and (overloading notation

a bit) assigns to each copy Â of A, an isomorphism ΓÂ : Â → A with

ΓA = idA. For every copy B̂ of B, we let F (B̂) = A, and if h : B̂ → B̃ is an
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isomorphism, then F (h) = H(ΓB̃ ◦h◦ΓB̂
−1

). Define G in a similar way: For

every copy Â of B, we let G(Â) = B, and if h : Â → Ã is an isomorphism,

then G(h) = H−1(ΓÃ ◦ h ◦ ΓÂ
−1

).
First, we want to show that F and G are inverse equivalences, via the

natural isomorphisms η and ǫ defined by

η
B̂
= ΓB̂ : B̂ → B = G(F (B̂)) and ǫ

Â
= ΓÂ : Â → A = F (G(Â)).

We have, by definition, G(F (B̂)) = B and F (G(Â)) = A. Now let h : B̂ → B̃
be an isomorphism. Then

G ◦ F (h) = G(H(ΓB̃ ◦ h ◦ ΓB̂
−1

))

= H−1(ΓA ◦H(ΓB̃ ◦ h ◦ ΓB̂
−1

) ◦ ΓA−1
)

= ΓB̃ ◦ h ◦ ΓB̂
−1
.

(Above, recall that ΓA = idA.) So

G(F (h)) ◦ η
B̂
= η

B̃
◦ h.

Similarly, for an isomorphism h : Â → Ã

F (G(h)) ◦ ǫ
Â
= ǫ

Ã
◦ h.

Thus F ◦G and G ◦ F are naturally isomorphic to the identity.
Note that

F (η
B̂
) = H(ΓB ◦ ΓB̂ ◦ ΓB̂

−1
) = H(idB) = idA = ΓA = η

F (B̂).

Similarly, G(ǫ
Â
) = ǫ

F (Â). Thus F , G, η, and ǫ form an adjoint equivalence

of categories. ✷

3. The construction

In this section, we prove Theorem 9. Let A and B be countable structures,
and F : Iso(B) → Iso(A) a Baire-measurable functor. By Corollary 14, up
to natural isomorphism we may assume that F is Borel.

The proof will involve a forcing: we will build multiple mutually generic
structures and consider how the functor acts on the maps between these
structures. The definability, in B, of our forcing notion will give the formulas
of our interpretation.

3.1. The forcing notion. Let B∗ be the set of finite one-to-one tuples
from B. Since the domain of B is ω, this is the same as finite tuples from
ω. We view B∗ as a forcing notion, extension of tuples being extension of
conditions. Thus, generics for these forcing notions are one-to-one functions
ω → B respectively. A small amount of genericity guarantees these functions
are onto and hence bijections.

Often in computable structure theory, forcing is used to build a single
generic copy Bg of B. Given a generic function g : ω → B, Bg is the pullback
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of B along g. Here, we will want to build several generic copies and thus
we will work with product forcing. Thus, given ℓ ∈ ω, we will define the
product forcing (B∗)ℓ. We write p for a forcing condition in (B∗)ℓ; p is of
the form (b̄1, . . . , b̄ℓ).

We will want the forcing relation to be definable in B. Often in com-
putability theory, this is accomplished by taking as the forcing language
Lω1ω formulas about B. Here, we will want to force statements of the form
F (Bg1 , g

−1
1 ◦ g2,Bg2)(i) = j. Thus we will be required to force statements

of the form g−1
1 ◦ g2(i) = j. This leads us to the definition of our forcing

language.

Definition 18 (Forcing language). The finitary formulas in the forcing lan-
guage for (B∗)ℓ are built up as follows:

• ġ−1
i ◦ ġj(m) = n and ġ−1

i ◦ ġj(m) 6= n where m,n ∈ ω,

• RBġi (a1, . . . , an) and ¬RBġi (a1, . . . , an) where a1, . . . , an ∈ ω and R
is a relation symbol in the language for B,

• finite conjunctions and finite disjunctions,
• ġi(m) = n and ġi(m) 6= n where m,n ∈ ω.

The forcing language L is built up from the finitary formulas by taking
countable conjunctions and disjunctions. A formula is X-computable if the
conjunctions and disjunctions are over X-c.e. sets of indices. By neg(ϕ), we
mean the formal negation within the forcing language (flipping conjunctions
and disjunctions, and negating the basic formulas).

We will also consider the restricted language L′ ⊂ L where we do not
allow terms of the form ġi(m) = n or ġi(m) 6= n.

We use ġi as a formal symbol; the idea is that we will substitute a generic
gi for ġi. We will only get the definability of forcing within B for the re-
stricted language L′; the whether or not the other sentences are forced de-
pends on the presentation of B.

We want to be able to express certain statements about F by formulas
in our forcing language. If we consider F as a Borel functional, F (Bg)
reads from its oracle statements about relations holding or not holding in
Bg — these are all in the forcing language — and then computes its values
using infinitary conjunctions and disjunctions. Thus, for P a relation in the
language of A, we can express

F (Bg) |= P (j1, . . . , jp(i))

using infinitary formulas in the forcing language. Similarly, we can express

F (Bg1 , g
−1
2 ◦ g1,Bg2)(i) = j.

If F is ∆0
α, then we can express these as ∆c

α formulas (i.e., as Σc

α formulas
and also as Πc

α formulas). Similarly, if F is ∆0
α, then we can express these

as ∆in

α formulas. Using conjunctions and disjunctions of such statements,
we can also express more complicated statements such as

F (Bg2 , g
−1
1 ◦ g2,Bg1) = F (Bg1 , g

−1
2 ◦ g1,Bg2)

−1
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and

F (Bg2 , g
−1
3 ◦ g2,Bg3) ◦ F (Bg1 , g

−1
2 ◦ g1,Bg2) = F (Bg1 , g

−1
3 ◦ g1,Bg3)

in the forcing language. These formulas are all in the restricted language
L′. In the language L, we can express

F (B̂, g−1
1 , B̂g1)(i) = j.

If F is ∆0
α, then this is a B̂-computable ∆c

α formula.

Definition 19 (Definition of Forcing). Let p = (b̄1, . . . , b̄ℓ) be a forcing
condition for (B∗)ℓ. We define p (B∗)ℓ ϕ for ϕ a sentence of the forcing
language. We begin with the finitary formulas.

• if ϕ ≡ ġ−1
i ◦ ġj(m) = n, then p (B∗)ℓ ϕ if and only if b̄i(n) and b̄j(m)

are defined and equal.
• if ϕ ≡ ġ−1

i ◦ ġj(m) 6= n, then p (B∗)ℓ ϕ if and only if either:

– b̄i(n) and b̄j(m) are defined and distinct, or
– there is m′ 6= m such that b̄i(n) = b̄j(m

′), or
– there is n′ 6= n such that b̄i(n

′) = b̄j(m).

• if ϕ ≡ RBġi (a1, . . . , an), then p (B∗)ℓ ϕ if and only if b̄i(a1), . . . , b̄i(an)

are all defined and B |= R(b̄i(a1), . . . , b̄j(an)).

• if ϕ ≡ ¬RBġi (a1, . . . , an), then p (B∗)ℓ ϕ if and only if b̄i(a1), . . . , b̄i(an)

are all defined and B |= ¬R(b̄i(a1), . . . , b̄j(an)).
• if ϕ ≡ ġi(m) = n, then p (B∗)ℓ ϕ if and only if b̄i(m) = n.

• if ϕ ≡ ġi(m) 6= n, then p (B∗)ℓ ϕ if and only if either b̄i(m) 6= n, or

for some m′ 6= m, b̄i(m
′) = n.

• if ϕ ≡ ψ1 ∨ · · · ∨ ψn, then p (B∗)ℓ ϕ if and only if p  ψi for some i.
• if ϕ ≡ ψ1 ∧ · · · ∧ ψn, then p (B∗)ℓ ϕ if and only if p  ψi for each i.

Now for infinitary formulas:

• if ϕ ≡
∨

n ψn, then p (B∗)ℓ
∨

n ψn if and only if there is n such that
p (B∗)ℓ ψn.

• if ϕ ≡
∧

n ψn, then p (B∗)ℓ
∧

n ψn if for all n and q ⊇ p, there is
r ⊇ q such that r (B∗)ℓ ψn.

Given an injection g : ω → ω, we can define a structure Bg using the pull-
back of B along g. That is, RBg(a1, . . . , an) if and only ifRB(g(a1), . . . , g(an)).
If g is a bijection, then Bg is isomorphic to B via g : Bg → B.

Given ϕ a sentence in the forcing language for (B∗)ℓ, and g1, . . . , gℓ func-
tions ω → B, we say that ϕ[g1, . . . , gℓ] holds if ϕ becomes true under the
natural interpretation, substituting gi for ġi.

Lemma 20. If p (B∗)ℓ ϕ, and q ⊇ p, then q (B∗)ℓ ϕ.

Proof. The proof is by induction on the complexity of ϕ. The lemma is clear
for the finitary formulas. If ϕ ≡

∨
n ψn and p (B∗)ℓ ϕ, then there is n such

that p (B∗)ℓ ψn. By the induction hypothesis, q (B∗)ℓ ψn. If ϕ ≡
∧

n ψn,
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then for all n and r ⊇ q, r ⊇ p, and so there is r′ ⊇ r such that r′ (B∗)ℓ ψn.
Thus q (B∗)ℓ ϕ. ✷

Lemma 21. For every p and ϕ, there is q ⊇ p such that q decides ϕ.

Proof. The proof is by induction. It is easy to see that the lemma holds when
ϕ is a finitary formula. If ϕ ≡

∨
n ψn, then if there are n and q ⊇ p such that

q (B∗)ℓ ψn, then we are done. Otherwise, for all n and q ⊇ p, q 1(B∗)ℓ ψn.
By the induction hypothesis, there is r ⊇ q such that r decides ψn; by the
previous lemma, r (B∗)ℓ neg(ψn). Thus p (B∗)ℓ neg(ϕ) ≡

∧
n neg(ψn).

The same argument works if ϕ ≡
∧

n ψn. ✷

Lemma 22. It is not the case that p (B∗)ℓ ϕ and p (B∗)ℓ neg(ϕ).

Proof. The lemma is easy to check for finitary formulas. If ϕ ≡
∨

n ψn

or ϕ ≡
∧

n ψn, and p (B∗)ℓ ϕ and p (B∗)ℓ neg(ϕ), then there is n such

that p (B∗)ℓ ψn. Also, there is q ⊇ p such that q (B∗)ℓ neg(ψn). This
contradicts the induction hypothesis. ✷

Definition 23. Let X ⊆ ω. By an X-generic for (B∗)ℓ we mean a tuple
g = (g1, . . . , gℓ) of mutually (X ⊕ B)-hyperarithmetically generic functions
ω → B.

It is clear that for any particular X-computable sentence of the forcing
language, the forcing relation isX⊕B-hyperarithmetic. Thus, by Lemma 21,
an X-generic g for (B∗)ℓ has the property that it forces every X-computable
sentence or its negation. We also get that (g1,g2) is X-generic for (B∗)ℓ1+ℓ2

if and only if g1 is X-generic for (B∗)ℓ1 and g2 is X ⊕ g1-generic for (B∗)ℓ2 .

Lemma 24 (Restriction). If ϕ is a computable sentence of the forcing lan-
guage which does not involve gi, then (b̄1, . . . , b̄ℓ) (B∗)ℓ ϕ if and only if

(b̄1, . . . , b̄i−1, b̄i+1, . . . , b̄ℓ) (B∗)ℓ−1 ϕ.

Proof. This is a simple induction argument. ✷

Lemma 25 (Forcing Lemma). Let ϕ be an X-computable sentence of the
forcing language for (B∗)ℓ.

(1) For X-generic g, ϕ[g] holds if and only if for some p ⊂ g, p (B∗)ℓ ϕ.

(2) If ϕ starts with a
∧
, then p (B∗)ℓ ϕ if and only if for every X-

generic g ⊃ p, ϕ[g] holds.

Proof. For (1), first suppose that for some p = (b̄1, . . . , b̄ℓ) ⊆ g = (g1, . . . , gℓ),
p  ϕ. We argue by induction. For the finitary formulas, everything is
simple:

• if ϕ ≡ ġ−1
i ◦ ġj(m) = n, then b̄i(n) = b̄j(m) and so g−1

i ◦ gj(m) = n.

• if ϕ ≡ ġ−1
i ◦ ġj(m) 6= n, then either:

– b̄i(n) 6= b̄j(m) and so g−1
i ◦ gj(m) 6= n,

– there is m′ 6= m such that b̄i(n) = b̄j(m
′), and so since gj is

injective, g−1
i ◦ gj(m) 6= n, or
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– there is n′ 6= n such that b̄i(n
′) = b̄j(m), and so since gi is

injective, g−1
i ◦ gj(m) 6= n.

• if ϕ ≡ RBġi (a1, . . . , an), then B |= R(b̄i(a1), . . . , b̄i(an)) and so Bgi |=
R(a1, . . . , an).

• if ϕ ≡ ¬RBġi (a1, . . . , an), then B |= ¬R(b̄i(a1), . . . , b̄i(an)) and so
Bgi |= ¬R(a1, . . . , an).

• if ϕ ≡ ġi(m) = n, then b̄i(m) = n and so gi(m) = n.
• if ϕ ≡ ġi(m) 6= n, then either b̄i(m) 6= n, or for some m 6= m′,
b̄i(m

′) = n; thus gi(m) 6= n.
• if ϕ ≡ ψ1 ∨ · · · ∨ ψn, then p (B∗)ℓ ψi for some i and so ψi[g] holds
for some i.

• if ϕ ≡ ψ1 ∧ · · · ∧ ψn, then p (B∗)ℓ ψi for all i and hence for all i,

ψi[g] holds.

Now for infinitary formulas:

• if ϕ ≡
∨

n ψn, then p (B∗)ℓ ψi for some i and so ψi[g] holds for some
i.

• if ϕ ≡
∧

n ψn, then for all n and q ⊇ p, there exists r ⊇ q such that
r (B∗)ℓ ψn. Fix n. Since g is generic, there is q ⊂ g such that q
decides ψn. We may assume, by Lemma 20, that q ⊇ p. So there
is r ⊇ q such that r (B∗)ℓ ψn. By Lemma 22, q (B∗)ℓ ψn. By the

induction hypothesis, ψn[g] holds. Since this was true for all n, ϕ[g]
holds.

Now suppose that ϕ[g] holds. There is p ⊆ g such that p decides ϕ.
If p (B∗)ℓ neg(ϕ), then neg(ϕ)[g] holds. This is a contradiction. Hence
p (B∗)ℓ ϕ.

For (2), suppose that p (B∗)ℓ ϕ. Let g ⊇ p be X-generic. By (1), ϕ[g]
holds.

For the other direction, suppose that for all X-generic g ⊇ p, ϕ[g] holds.
Then for all q ⊇ p, q 1(B∗)ℓ neg(ϕ); if we did have q (B∗)ℓ neg(ϕ), then

for some X-generic g ⊇ q, neg(ϕ)[g] would hold, a contradiction. Now if
ϕ begins with

∧
, say ϕ ≡

∧
n ψn, then neg(ϕ) ≡

∨
n neg(ψn). So for all

n and q ⊇ p, q 1(B∗)ℓ neg(ψn). Now by Lemma 21 there is r ⊇ q such

that r decides ψn; we cannot have r (B∗)ℓ neg(ψn) (since r ⊇ p) and so
r (B∗)ℓ ψn. Thus p (B∗)ℓ ϕ. ✷

Lemma 26 (Definability of Forcing). For α ≥ 1, given a Σα formula ϕ in
the restricted language L′, the set {p ∈ (B∗)ℓ : p  ϕ} is Σc

α-definable in B,
and if ϕ is Πα, {p ∈ (B∗)ℓ : p  ϕ} is Πc

α-definable. This also relativizes.

Proof. We argue by induction. For finitary formulas ϕ, it is easy to see
from Definition 19 that the set {p ∈ (B∗)ℓ : p (B∗)ℓ ϕ} is definable in B

by a finitary formula. The key is to note that the tuples b̄ and c̄ such that
b̄(n) = c̄(m), or the tuples b̄ such that B |= R(b̄(a1), . . . , b̄(an)), are definable
in B by atomic formulas.
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Now we consider infinitary formulas. If ϕ ≡
∨

n ψn, then p (B∗)ℓ
∨

n ψn

if and only if for some n, p (B∗)ℓ ψn. Since, for each n, p (B∗)ℓ ψn is
Πc

β-definable in B for some β < α, this is Σc

α-definable in B.

If ϕ ≡
∧

n ψn, then note that by Lemmas 20, 21, and 22, p 
∧

n ψn if
and only if for all q ⊇ p, q 1(B∗)ℓ neg(ψn); q 1(B∗)ℓ neg(ψn) is Σ

c

β-definable

in B for some β < α, and so p (B∗)ℓ
∧

n ψn is Πc

α-definable in B. ✷

3.2. The definition of the interpretation. Recall that F : Iso(B) →
Iso(A) is a Borel functor. As everything will relativize, we will assume
from now on that it is a lightface Borel operator.

Definition 27. We define the domain of interpretation, DomB
A, as a subset

of B∗ × ω as follows: For (b̄, i) ∈ B∗ × ω, let

(b̄, i) ∈ DomB
A ⇐⇒ (b̄, b̄) (B∗)2 F (Bġ1 , ġ2 ◦ ġ1,Bġ2)(i) = i.

Recall that subsets of B<ω × ω can be effectively coded by subsets of B<ω.
Next, we define a relation ∼ on DomB

A which we will later prove is an

equivalence relations. For (b̄, i), (c̄, j) ∈ DomB
A, let

(b̄, i) ∼ (c̄, j) ⇐⇒ (b̄, c̄) (B∗)2 F (Bġ1 , ġ2 ◦ ġ1,Bġ2)(i) = j.

Last, we need to interpret the relation symbols. For each relation symbol
Pi of arity p(i) in the language of A, we define a relation Ri on DomB

A as

follows: For (b̄1, k1), . . . , (b̄p(i), kp(i)) ∈ DomB
A, let

((b̄1, k1), . . . , (b̄p(i), kp(i))) ∈ Ri ⇐⇒ (∃c̄ ∈ B∗)(∃j1, . . . , jp(i) ∈ ω)



p(i)∧

s=1

(b̄s, ks) ∼ (c̄, js)


 &

(
c̄ B∗ (j1, . . . , jp(i)) ∈ P

F (Bġ)
i

)
.

By Lemma 26, these are all defined by formulas of Lω1ω since they can be
expressed in L′.

3.3. Verifications. The first thing to observe before starting the verifica-
tions is that since F is a functor that works for all copies of B, all its
properties are forced by the empty conditions. For instance,

(∅, ∅, ∅) B∗3 F (Bġ2 , ġ
−1
3 ◦ġ2,Bġ3)◦F (Bġ1 , ġ

−1
2 ◦ġ1,Bġ2) = F (Bġ1 , ġ

−1
3 ◦ġ1,Bġ3).

Lemma 28. ∼ is an equivalence relation on DomB
A,

Proof. Reflexivity follows from the definition of DomB
A. Symmetry holds be-

cause (∅, ∅) B∗2 F (Bġ2 , ġ
−1
1 ◦ ġ2,Bġ1) = F (Bġ1 , ġ

−1
2 ◦ ġ1,Bġ2)

−1. Transitivity

follows from the fact that (∅, ∅, ∅) B∗3 F (Bġ2 , ġ
−1
3 ◦ ġ2,Bġ3) ◦ F (Bġ1 , ġ

−1
2 ◦

ġ1,Bġ2) = F (Bġ1 , ġ
−1
3 ◦ ġ1,Bġ3). ✷

The next objective of this subsection is to define a map F : A → DomB
A

which gives an isomorphism between A and its interpretation within B.
Remember we are fixing a copy of B, and that A = F (B).
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Let g : ω → B be generic; before defining F, we define a map Fg : F (Bg) →
DomB

A also intended to be an isomorphism (Lemma 32). Given i, we let Fg(i)

be the least tuple of the form (c̄, i) for c̄ ⊂ g, and with (c̄, i) ∈ DomB
A (we

prove such a tuple exists in Lemma 29). We will need to show that all of
this works (Lemmas 30 and 31). Then, to define F, we simply compose
Fg : F (Bg) → DomB

A with F (B, g−1,Bg) : A → F (Bg). We will also need to
show that this definition is independent of the choice of g (Lemma 33).

The first lemma shows that Fg(i) is defined for every i.

Lemma 29. For every generic g : ω → B and every i ∈ ω there exists n ∈ ω
such that (g ↾n, i) ∈ DomB

A.

Proof. Let g2 be generic with respect to g = g1 so that (g1, g2) is generic
for (B∗)2. Let j = F (Bg1 , g

−1
2 ◦ g1,Bg2)(i). For some b̄ ⊂ g1 and some

c̄ ⊂ g2, (b̄, c̄) (B∗)2 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(i) = j. Notice that we also have

(b̄, c̄) (B∗)2 F (Bġ2 , ġ
−1
1 ◦ ġ2,Bġ1)(j) = i. It then follows that

(b̄, c̄, b̄) (B∗)3 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(i) = j & F (Bġ2 , ġ

−1
3 ◦ ġ2,Bġ3)(j) = i,

and hence

(b̄, c̄, b̄) (B∗)3 F (Bġ1 , ġ
−1
3 ◦ ġ1,Bġ3)(i) = i.

Since g2 does not appear in the formula above, by Lemma 24 we get

(b̄, b̄) (B∗)2 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(i) = i,

and hence that (b̄, i) ∈ DomB
A. ✷

The second lemma shows that Fg is onto the set of ∼-equivalence classes.

Lemma 30. For every generic g : ω → B and every (c̄, j) ∈ DomB
A there

exists n ∈ ω and i ∈ ω such that (g ↾n, i) ∼ (c̄, j).

Proof. The proof is similar to that of the lemma above. Let g2 ⊇ c̄ be generic
with respect to g = g1, and let j = F (Bg1 , g

−1
2 ◦ g1,Bg2)(i). There are b̄ ⊂ g1

and c̄′ with c̄ ⊆ c̄′ ⊂ g2 such that (b̄, c̄′) (B∗)2 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(i) = j

and also (b̄, i) ∈ DomB
A. Since (c̄, j) ∈ DomB

A, we see that (c̄, c̄) (B∗)2

F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(j) = j. Then

(b̄, c̄′, c̄) (B∗)3 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(i) = j & F (Bġ2 , ġ

−1
3 ◦ ġ2,Bġ3)(j) = j

and hence

(b̄, c̄′, c̄) (B∗)3 F (Bġ1 , ġ
−1
3 ◦ ġ1,Bġ3)(i) = j.

Since g2 does not appear in the formula above, (b̄, c̄) (B∗)2 F (Bġ1 , ġ
−1
3 ◦

ġ1,Bġ3)(i) = j and so (b̄, i) ∼ (c̄, j). ✷

The third lemma shows that Fg is one-to-one on ∼-equivalence classes.

Lemma 31. For (c̄, i), (d̄, j) ∈ DomB
A with c̄ ⊆ d̄ we have that (c̄, i) ∼ (d̄, j)

if and only if i = j.
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Proof. By definition, (c̄, i) ∼ (d̄, j) if and only if (c̄, d̄) (B∗)2 F (Bġ1 , ġ
−1
2 ◦

ġ1,Bġ2)(i) = j. But since (c̄, i) ∈ DomB
A, we know (c̄, c̄) (B∗)2 F (Bġ1 , ġ

−1
2 ◦

ġ1,Bġ2)(i) = i. With (c̄, d̄) extending (c̄, c̄), we get that (c̄, i) ∼ (d̄, j) if and
only if i = j. ✷

So we have that Fg is a bijection from ω onto DomB
A/ ∼. We now show

that it is an isomorphism from F (Bg) to (DomB
A/∼; R0/∼, R1/∼, ...).

Lemma 32. For every relation symbol Pi, and (j1, ..., jp(i)) ∈ ωp(i), F (Bg) |=
Pi(j1, ..., jp(i)) ⇐⇒ (Fg(j1), ...,Fg(jp(i))) ∈ Ri.

Proof. First suppose that F (Bg) |= Pi(j1, ..., jp(i)). Then there is c̄ ⊆ g such
that c̄ B∗ F (Bġ) |= Pi(j1, ..., jp(i)); by Lemma 29 we may also assume that

(c̄, js) ∈ DomB
A for each s. Then by Lemma 31, Fg(js) ∼ (c̄, js). Hence, by

definition of Ri, (Fg(j1), ...,Fg(jp(i))) ∈ Ri.
On the other hand, suppose that (Fg(j1), ...,Fg(jp(i))) ∈ Ri. Then there

are c̄ ∈ B∗ and k1, . . . , kp(i) such that for each s, Fg(js) ∼ (c̄, ks) and c̄ B∗

F (Bġ1) |= Pi(k1, ..., kp(i)). Since Fg(js) ∼ (c̄, ks), there is d̄ ⊆ g such that

for each s, (c̄, d̄) (B∗)2 F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(ks) = js. Then (c̄, d̄) (B∗)2

F (Bġ2) |= Pi(j1, ..., jp(i)). Since ġ1 does not appear in this formula, d̄ 

F (Bġ) |= Pi(j1, ..., jp(i)). But g ⊇ d̄ is generic, so F (Bg) |= Pi(j1, ..., jp(i)).
✷

Last, we need to show that F, defined as Fg◦F (B, g
−1,Bg), is independent

of the choice of the generic g.

Lemma 33. For i ∈ ω and (c̄, j) ∈ DomB
A,

F(i) ∼ (c̄, j) ⇐⇒ c̄ B∗ F (B, ġ−1
1 ,Bġ1)(i) = j.

Proof. Let g2 ⊃ c̄ be generic relative to g = g1. Let k = F (B, g−1
1 ,Bg1)(i)

and (d̄, k) = F(i) = Fg1(k). For some d̄′ ⊇ d̄, d̄′ B∗ F (B, ġ−1
1 ,Bġ1)(i) = k.

Suppose that F(i) ∼ (c̄, j). Then (d̄, k) ∼ (c̄, j) and so (d̄, c̄) (B∗)2

F (Bġ1 , ġ
−1
2 ◦ ġ1,Bġ2)(k) = j. We see that (d̄′, c̄) (B∗)2 F (B, ġ

−1
2 ,Bġ2)(i) = j,

and since ġ1 does not appear in this formula, c̄ B∗ F (B, ġ−1
1 ,Bġ1)(i) = j as

desired.
Now suppose that c̄ B∗ F (B, ġ−1

1 ,Bġ1)(i) = j. Then since d̄′ B∗

F (B, ġ−1
1 ,Bġ1)(i) = k, (c̄, d̄′) (B∗)2 F (Bġ1 , ġ

−1
2 ◦ ġ1,Bġ2)(k) = j. Thus

(c̄, j) ∼ (d̄′, k) and (d̄′, k) ∼ (d̄, k) by Lemma 31. ✷

In fact, given any B̃ ∼= B, we can define FB̃ : F (B̃) → DomB̃
A by

FB̃(i) ∼ (c̄, j) ⇐⇒ c̄ B∗ F (B̃, ġ−1
1 , B̃ġ1)(i) = j.

This gives an isomorphism from F (B̃) to (DomB̃
A/∼; R0/∼, R1/∼, ...). If

F is ∆0
α, then FB̃ is ∆0

α(B̃) uniformly in B̃.

Lemma 34. There is a natural isomorphism between F and FI .
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Proof. Recall that given B̃ ∼= B, we build FI(B̃) out of the interpretation

of A within B̃ by pulling back through a bijection τ : ω → DomB̃
A/∼. Let

us call this bijection τ B̃; it gives a well-defined isomorphism from FI(B̃) to

DomB̃
A/∼. We define

η
B̃
= (τ B̃)−1 ◦ FB̃ : F (B̃) → FI(B̃).

We need to show that η is a natural isomorphism. It is clear that η
B̃
is an

isomorphism. We must prove that, for all B̃, B̂ ∈ Iso(B) and all isomorphisms

h : B̃ → B̂, the following diagram commutes:

F (B̃)

F (h)
��

FB̃

//

η
B̃

&&

DomB̃
A

h̃
��

FI(B̃)

FI(h)
��

τ B̃oo

F (B̂)
FB̂

//

η
B̂

99
DomB̂

A FI(B̂)
τ B̂

oo

Here, h̃ : DomB̃
A → DomB̂

A is the restriction of h : B̃<ω → B̂<ω, which is the

extension of h : B̃ → B̂.
The right-hand square commutes by definition of FI(h). To show that

the left-hand square commutes, take i ∈ F (B̃) and j = F (h)(i) ∈ F (B̂). Let

(c̄, i′) = FB̃(i) ∈ DomB̃
A. We must show that FB̂(j) = h(c̄, i′) = (h(c̄), i′).

Since (c̄, i′) = FB̃(i),

c̄ B∗ F (B̃, ġ−1, B̃ġ)(i) = i′.

We claim that

h(c̄) B∗ F (B̂, ġ−1, B̂ġ)(j) = i′

from which it follows that FB̂(j) = (h(c̄), i′). Let g ⊃ h(c̄) be B̃ ⊕ B̂ ⊕ h-

generic. Then h−1 ◦ g ⊃ c̄ is also B̃ ⊕ B̂ ⊕ h-generic. So

F (B̃, g−1 ◦ h, B̃h−1◦g)(i) = i′.

Then

F (B̃, g−1 ◦ h, B̃h−1◦g) ◦ F (B̂, h
−1, B̃) ◦ F (B̃, h, B̂)(i) = i′.

Simplifying this, and using the fact that F (B̃, h, B̂)(i) = j, we get

F (B̂, g−1, B̂g)(j) = i′.

Since g was chosen arbitrarily,

h(c̄) B∗ F (B̂, ġ−1, B̂ġ)(F (h)(i)) = i′. ✷
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Remark 35. In the proof of the previous lemma, we saw that the following
diagram commutes:

F (B̃)

F (h)
��

FB̃

// DomB̃
A

h̃
��

F (B̂)
FB̂

// DomB̂
A

We will use this fact later.

The last thing we need to verify is the complexity claim.

Proposition 36. For any ∆0
α functor F : Iso(B) → Iso(A) there is a ∆c

α

interpretation, I, of A within B, such that F is naturally isomorphic to the
functor FI associated to I. Furthermore, the isomorphism between F and
FI can be taken to be ∆0

α.

Proof. That I is a ∆c

α interpretation follows immediately from Lemma 26,
the definition of the interpretation, and our remark that if F is a ∆0

α functor,
then the formulas involved in the definition of the interpretation are all ∆c

α.
That the isomorphism between F and FI is ∆0

α follows from the fact that
determining whether

c̄ B∗ F (B̃, ġ−1, B̃ġ)(i) = j

is ∆0
α(B̃) uniformly in B̃. ✷

3.4. Bi-interpretations.

Proof of Theorem 12. Let F : Iso(B) → Iso(A) and G : Iso(A) → Iso(B) be
a Borel adjoint equivalence of categories, as in the statement of the theorem,
with η : idIso(B) → GF and ǫ

Ã
: idIso(A) → FG. Assume that A = F (B).

Let I and J be the interpretations using the method described earlier.

Recall that just before Lemma 34 we defined an operator F which, for each B̃,

gives an isomorphism FB̃ : F (B̃) → DomB̃
A. We get such an operator for each

of F and G, denoting them by FB̃ : F (B̃) → DomB̃
A and GÃ : G(Ã) → DomÃ

B .
Consider the isomorphism

F̃B̂ ◦GF (B̂) ◦ η
B̂
: B̂ → Dom

DomB̂
A

B
.

Let h : B̂ → B̃ be an isomorphism. Then we get maps

B̂

h

��

η
B̂// G(F (B̂))

G(F (h))

��

GF (B̂)
// Dom

F (B̂)
B

F̃ (h)
��

F̃B̂

// Dom
DomB̂

A

B

˜̃
h
��

B̃
η
B̃

// G(F (B̃))
GF (B̃)

// Dom
F (B̃)
B

F̃B̂

// Dom
DomB̃

A

B
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The first square commutes because η is a natural isomorphism idIso(B) →
GF , and the remaining two squares commute by Remark 35.

First, take B̃ = B̂ = B and h an automorphism of B. We see from the fact
that the diagram above commutes that F̃B ◦ GF (B) ◦ ηB is invariant under
automorphisms of B, and so it is Lω1ω-definable.

Now we claim that if F is ∆0
α (or ∆0

α), then F̃B ◦GF (B) ◦ ηB is relatively
intrinsically ∆0

α (resp. ∆0
α) and hence definable by a ∆c

α (resp. ∆in

α ) formula.

Consider the commutative diagram above, with B̃ = B and B̂ some other

copy of B, with an isomorphism h : B → B̂. We see that

F̃B̂ ◦GF (B̂) ◦ η
B̂
: B̂ → Dom

DomB̂
A

B

is defined within B̂ by the same formula which defines F̃B ◦GF (B) ◦ ηB in B.

Moreover, since F , G, and η are ∆0
α (resp. ∆0

α) operators, F̃
B̂ ◦ GF (B̂) ◦ η

B̂

is ∆0
α (resp. ∆0

α) in B̂. Thus F̃B ◦ GF (B) ◦ ηB is relatively intrinsically ∆0
α

(resp. ∆0
α). A similar argument works for G̃A ◦ FG(A) ◦ ǫA.

Define gBA = FB : A → DomB
A and gAB = GF (B) ◦ ηB : B → DomA

B . We

know that these are isomorphisms. The maps gBA and gBA go in the opposite
direction as the maps from Definition 5. Letting fBA and fBA be their inverses,
we get the maps required for a bi-interpretation. We just have to show that
the compositions of these maps are the Lω1ω-definable isomorphisms from
the previous paragraph.

We have

g̃BA ◦ gAB = F̃B ◦GF (B) ◦ ηB : B → Dom
DomB

A

B
.

Also, by Remark 35 (With h = ηB), and the fact that F (ηB) = ǫF (B),

η̃B ◦ FB = FG(F (B)) ◦ F (ηB) = FG(F (B)) ◦ ǫF (B).

Then, using the fact that A = F (B),

G̃A ◦ FG(A) ◦ ǫA = G̃A ◦ η̃B ◦ FB = g̃AB ◦ gBA.

✷

Proof of Theorem 11. Let I and J be as in the statement of the theorem: I
is an interpretation of A inside of B and J is an interpretation of B inside of
A. From these bi-interpretations we get functors F = FI : Iso(B) → Iso(A)
and G = FJ : Iso(A) → Iso(B). These functors were defined so that, for

B̃ ∈ Iso(B) and Ã ∈ Iso(A), there are isomorphisms τ B̃ : F (B̃) → DomB̃
A

and ρÃ : G(Ã) → DomÃ
B . Moreover, given an isomorphism h : B̃ → B̂,

F (h) = τ B̂
−1

◦ h̃ ◦ τ B̃ and given h : Ã → Â, G(h) = ρÂ
−1

◦ h̃ ◦ ρÃ.
Recall that fAB ◦ f̃BA is Lω1ω-definable as a subset of B<ω. In any copy

B̃ of B, let ϕB̃ : Dom
DomB̃

A

B
→ B̃ be defined by this formula. Similarly, let

ψÃ : Dom
DomÃ

B

A
→ Ã in Ã be defined by the same formula which defines

fBA ◦ f̃AB in A.
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Essentially what we want to do is to identify Dom
DomB̃

A

B
with G(F (B̃)) and

Dom
DomÃ

B

A
with F (G(Ã)) and use ϕ and ψ as our natural isomorphisms. We

make these identifications using τ and ρ.
Define

η
B̃
= ϕB̃ ◦ τ̃ B̃ ◦ ρF (B̃) : G(F (B̃)) → B̃

and
ǫ
Ã
= ψÃ ◦ ρ̃Ã ◦ τG(Ã) : F (G(Ã)) → Ã.

We begin by showing that η is a natural isomorphism between GF and
idIso(B). (Note that it is more convenient here to have η and ǫ mapping in

the opposite direction as in Definition 10.) Let h : B̃ → B̂ be an isomorphism.
Then since ϕ is Lω1ω-definable,

h ◦ η
B̃
= h ◦ ϕB̃ ◦ τ̃ B̃ ◦ ρF (B̃)

= ϕB̂ ◦ ˜̃h ◦ τ̃ B̃ ◦ ρF (B̃).

By definition of F and G,

ϕB̂ ◦ ˜̃h ◦ τ̃ B̃ ◦ ρF (B̃) = ϕB̂ ◦ τ̃ B̂ ◦ F̃ (h) ◦ ρF (B̃)

= ϕB̂ ◦ τ̃ B̂ ◦ ρF (B̂) ◦G(F (h))

= η
B̂
◦G(F (h)).

Similarly, ǫ is a natural isomorphism between FG and idIso(A). Thus we
have shown that F , G, η, and ǫ give an equivalence of categories.

Now we must show that this is equivalence is an adjoint equivalence by

showing that given B̃ and Ã, F (η
B̃
) = ǫ

F (B̃) and G(ǫÃ) = η
G(Ã). To begin,

we prove two claims which give identities of compositions of isomorphisms.

Claim 1. ϕ̃B ◦ ˜̃τB = τB ◦ ψF (B)

Proof. Let h : A → F (B) be an isomorphism. Then since h−1 ◦ ψF (B) ◦ ˜̃h =
ψA, we just need to show that

f̃AB ◦ ˜̃
fBA ◦ ˜̃τB ◦ ˜̃h = τB ◦ h ◦ fBA ◦ f̃AB .

Consider the isomorphisms fBA : DomB
A → A and τB ◦ h : A → DomA

B . Let

α = fBA ◦τB ◦h. Then α is an automorphism of A. Since fBA ◦ f̃AB is definable,
we have

f̃AB ◦ ˜̃fBA ◦ ˜̃fBA
−1

◦ ˜̃α = fBA
−1

◦ fBA ◦ f̃AB ◦ ˜̃α

f̃AB ◦ ˜̃fBA ◦ ˜̃fBA
−1

◦ ˜̃α = fBA
−1

◦ α ◦ fBA ◦ f̃AB

f̃AB ◦ ˜̃fBA ◦ ˜̃τB ◦ ˜̃h = τB ◦ h ◦ fBA ◦ f̃AB

as desired. ✷

The next claim replaces B in the claim above by an arbitrary copy B̃ of
B.
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Claim 2. ϕ̃B̃ ◦ ˜̃τ B̃ = τ B̃ ◦ ψF (B̃).

Proof. Let h : B̃ → B be an isomorphism. By definition of F , we have

h̃ ◦ τ B̃ = τB ◦ F (h).

Since ϕ and ψ are given by Lω1ω definitions,

h ◦ ϕB̃ = ϕB ◦ ˜̃h and F (h) ◦ ψF (B̃) = ψF (B) ◦
˜̃
F (h).

From the previous claim, we get

ϕ̃B ◦ ˜̃τB = τB ◦ ψF (B).

Composing both sides with
˜̃

F (h) on the right, we get

ϕ̃B ◦ ˜̃τB ◦
˜̃

F (h) = τB ◦ ψF (B) ◦
˜̃
F (h)

ϕ̃B ◦
˜̃̃
h ◦ ˜̃τ B̃ = τB ◦ F (h) ◦ ψF (B̃)

h̃ ◦ ϕ̃B̃ ◦ ˜̃τ B̃ = h̃ ◦ τ B̃ ◦ ψF (B̃)

Applying h̃−1 to both sides, we complete the claim. ✷

To see that F (η
B̃
) = ǫ

F (B̃)
, note that

F (η
B̃
) = τ B̃

−1
◦ ϕ̃B̃ ◦ ˜̃τ B̃ ◦ ρ̃F (B̃) ◦ τG(F (B̃)) : F (G(F (B̃))) → F (B̃)

and

ǫ
F (B̃)

= ψF (B̃) ◦ ρ̃F (B̃) ◦ τG(F (B̃)) : F (G(F (B̃))) → F (B̃).

Then it follows from the previous claim that these are equal. Similarly,
G(ǫ

Ã
) = η

G(Ã). ✷

4. Indiscernibles

In this section we prove Theorem 4, which says that, for a structure A,
there is a continuous homomorphism from Aut(A) onto S∞ if and only if A
has an infinite definable set of absolutely indiscernible definable equivalence
classes.

Proof of Theorem 4. The direction (2)⇒(1) is easy to see. For the other
direction, suppose that there is a continuous homomorphismH from Aut(A)
onto S∞. Let B be the trivial structure with a countable domain and no
relations; then Aut(B) = S∞. By Theorem 3, there is an interpretation I
of B in A such that H = GI ↾Aut(A).

Let D = DomA
B ⊆ A<ω, and let E be the relation ∼. Let h be a per-

mutation of the E-equivalence classes. Then h induces an automorphism

fAB ◦h ◦ fAB
−1

of B. Then, since H is onto, there is an automorphism g of A

with H(g) = fAB ◦ h ◦ fAB
−1

. But then GI(g) = H(g) = fAB ◦ h ◦ fAB
−1

, and
so, by definition of GI , g extends h.
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Above, we chose D ⊆ A<ω; we need to choose D ⊆ An for some n. It
suffices to show that for some n, D′ = D ∩ An and E′ = E ∩ (D′ × D′)
have infinitely many equivalence classes. Let n be such that D ∩ An is
non-empty: say it contains some element ā. Let x ∈ B be fAB (ā). Let
y1, y2, . . . be infinitely many elements of B distinct from x, and let h1, h2, . . .
be automorphisms of B such that hi(x) = yi. Then since H is onto, there are

automorphisms gi of A with H(gi) = hi. Then hi = GI(gi) = fAB ◦gi ◦f
A
B

−1
.

Since hi(x) = yi and f
A
B (ā) = x, fAB ◦ gi(ā) = yi. Thus gi(ā) must be in a

different E-equivalence class from ā, and also from gj(ā) for i 6= j; but since
ā ∈ An, gi(ā) ∈ An. Thus there are infinitely many E-equivalence classes in
D ∩An. ✷

A similar argument proves the following theorem.

Theorem 37. Let A be a countable structure. The following are equivalent:

(1) There is a continuous homomorphism from Aut(A) onto Aut(Q, <).
(2) There is an n, an Lω1ω-definable D ⊂ An, an Lω1ω-definable equiv-

alence relation E ⊂ D2 with infinitely many equivalence classes,
and an Lω1ω-definable order, such that the E-equivalence classes are
order indiscernible, in the sense that each order-preserving permu-
tation of the E-equivalence classes extends to an automorphism of
A.

By considering isomorphisms, we also get:

Theorem 38. Let A be a countable structure. The following are equivalent:

(1) There is a continuous isomorphism between Aut(A) and S∞.
(2) There is an n, an Lω1ω-definable D ⊂ An, and an Lω1ω-definable

equivalence relation E ⊂ D2 with infinitely many equivalence classes
and such that the E-equivalence classes are absolutely indiscernible,
and every other element is definable from this set. In other words,
if we add relations naming each of these equivalence classes, then
every element of the structure is Lω1ω-definable.

Theorem 39. Let A be a countable structure. The following are equivalent:

(1) There is a continuous isomorphism between Aut(A) and Aut(Q, <).
(2) There is an n, an Lω1ω-definable D ⊂ An, an Lω1ω-definable equiva-

lence relation E ⊂ D2 with infinitely many equivalence classes, and
an Lω1ω-definable order, such that the E-equivalence classes are or-
der indiscernible, and every other element is definable from this set.
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