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On the length of a random minimum spanning tree.

Colin Cooper∗ Alan Frieze† Nate Ince‡ Svante Janson§ Joel Spencer¶

March 9, 2013

Abstract

We study the expected value of the length Ln of the minimum spanning tree of the complete

graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the

result of Frieze [6] that limn→∞ E(Ln) = ζ(3) and show that E(Ln) = ζ(3) + c1

n
+ c2+o(1)

n
4/3 where

c1, c2 are explicitly defined constants.

1 Introduction

We study the expected value of the length Ln of the minimum spanning tree of the complete graph

Kn when each edge e is given an independent uniform [0, 1] edge weight Xe. It was shown in Frieze

[6] that

lim
n→∞

E(Ln) = ζ(3) =

∞
∑

k=1

1

k3
= 1.202 . . . (1.1)

Since then there have been several generalisations and improvements. Steele [26] extended the

applicability of (1.1) distribution-wise. Janson [11] proved a central limit theorem for Ln. Penrose

[22], Frieze and McDiarmid [7], Beveridge, Frieze and McDiarmid [2], Frieze, Ruszinkó and Thoma

[8] analysed Ln for graphs other than the complete graph. Fill and Steele [4] used the Tutte poly-

nomial to compute E(Ln) exactly for small values and Gamarnik [9] computed Eexp(Ln) exactly up

to n ≤ 45 using a more efficient algorithm, where Eexp(Ln) is the expectation when the distribution

of the Xe is exponential with mean one. Li and Zhang [18] consider more general distributions and

prove in particular that

Eexp(Ln) − E(Ln) =
ζ(3)

n
+O

(

log2 n

n2

)

. (1.2)

Flaxman [5] gives an upper bound on the lower tail of Ln.
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Equation (1.1) says that E(Ln) = ζ(3) + o(1) as n → ∞. Ideally, one would like to have an exact

expansion for E(Ln) as there is for the assignment problem, see Wästlund [27] and the references

therein. Such an expansion has proven elusive. In this work we improve the asymptotics of E[Ln]

by giving the secondary and tertiary terms.

Theorem 1.

E(Ln) = ζ(3) +
c1
n

+
c2 + o(1)

n4/3

where

c1 = −1 − ζ(3) − 1

2

∫ ∞

x=0
log
(

1 − (1 + x)e−x
)

dx

and

c2 =

∫ ∞

x=0

(

x−3ψ(x3/2)e−x3/24 − x−3 −
√

π

8
x−3/2 − 1

2

)

dx

=
2

3

∫ ∞

y=0

(

y−2ψ(y)e−y2/24 − y−2 −
√

π

8
y−1 − 1

2

)

y−1/3 dy

with ψ defined in (1.3) below.

The two integral expressions defining c2 are equal by the change of variable x = y2/3.

A numerical integration (with Maple) yields c1 = 0.0384956 . . . . This shows that the rate of

convergence to ζ(3) is order 1/n and is from above. Further numerical computations show that

c2 ≈ −1.7295, and these are explained in an appendix.

To define ψ, we let the random variable Bex =
∫ 1
s=0Bex(s) ds be the area under a normalized

Brownian excursion; we then let

ψ(t) = E etBex , (1.3)

the moment generating function ψ of Bex. The Brownian excursion area Bex and its moments EBℓ
ex

and moment generating function ψ have been studied by several authors, see e.g. Louchard [19, 20]

and the survey by Janson [12], where further references are given. From these results, we derive

an expression, see (1.7), that will show c2 is well-defined. Note that ψ(t) is finite for all t > 0 (and

thus (1.3) holds for all complex t); indeed, see [12, (53)] and the references there, it is well-known

that

EBℓ
ex ∼

√
18 ℓ (12e)−ℓ/2ℓℓ/2 as ℓ→ ∞, (1.4)

and thus [13, Lemma 4.1(ii)] implies, cf. [13, Remarks 3.1 and 4.9] (where ξ = 2Bex),

ψ(t) ∼ 1
2 t

2et
2/24 as t→ +∞. (1.5)

More precisely, Janson and Louchard [15] show that the density fex of Bex satisfies

fex(x) =
72
√

6√
π
x2e−6x2(

1 +O(x−2)
)

, x > 0, (1.6)

from which routine calculations show that

ψ(t) =

∫ ∞

x=0
etxfex(x) dx =

t2

2
et

2/24
(

1 +O(t−2)
)

, t > 0. (1.7)
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Hence the integrand in the second integral defining c2 in Theorem 1 is O(y−4/3) as y → ∞.

Moreover, ψ(0) = 1 and ψ′(0) = EBex =
√

π/8, and thus a Taylor expansion shows that the

integrand is O(y−1/3) as y → 0. (Similarly, the integrand in the first integral is O(x−3/2) and

O(1).) Consequently, the integrals defining c2 converge absolutely.

2 Proof of Theorem 1

We prove the theorem by using the expression (see Janson [11]),

E(Ln) =

∫ 1

p=0
E(κ(Gn,p))dp − 1. (2.1)

Here κ(Gn,p) is the (random) number of components in the random graph Gn,p.

To evaluate (2.1) we let κ(k, j, p) = κn(k, j, p) denote the number of components of Gn,p with k

vertices and k+ j edges in Gn,p. The components neatly split into three categories: trees (j = −1),

unicyclic (j = 0) and complex (j ≥ 1) components. These are evaluated separately.

Lemma 2.1.

(a)

∫ 1

p=0

∑

k≥1

E(κ(k,−1, p))dp = ζ(3) +
3(ζ(2) − ζ(3))

2n
− 1

n4/3

∫ ∞

x=0
x−3(1 − e−x3/24) dx+ o(n−4/3).

(b)

∫ 1

p=0

∑

k≥3

E(κ(k, 0, p))dp =
1

2n

(

ζ(3) − 3ζ(2) −
∫ ∞

x=0
log
(

1 − (1 + x)e−x
)

dx.

)

−
√

π/8

n4/3

∫ ∞

x=0
x−3/2(1 − e−x3/24) dx+ o(n−4/3).

(c) With ψ2(x) = ψ(x) − 1 −
√

π/2x,

∫ 1

p=0

∑

k≥1

∑

j≥1

E(κ(k, j, p))dp = 1 − 1

n
+

1

n4/3

∫ ∞

x=0

(

x−3ψ2(x
3/2)e−x3/24 − 1

2

)

dx+ o(n−4/3).

Remark 1. Tree components contribute the main ζ(3) addend. Unicyclic components contribute

a secondary O( 1
n) addend. Roughly speaking there are no complex components for p ≤ 1

n and

precisely one complex component (the famous “giant component”) for p ≥ 1
n . Were this to be

precisely the case the contribution of complex components would be 1− 1
n . The additional Θ(n−4/3)

term in Lemma 2.1 (c) comes from the behavior of complex components in the critical window

p = 1
n + λn−4/3.

Remark 2. The coefficients of n−4/3 in Lemma 2.1(a) and (b) are easily evaluated as −1
83−2/3Γ(1/3)

and −1
23−1/6√π Γ(5/6), respectively, see the appendix. The coefficient in (c) is expressed as an

infinite sum and evaluated numerically in the appendix.
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Proof We assume in the proof tacitly that n is large enough when necessary. We let C1, . . .

denote some unimportant universal constants.

Let C(k, ℓ) be the number of connected graphs on vertex set [k] with ℓ edges. We begin by noting

the standard formula

Eκ(k, j, p) =

(

n

k

)

C(k, k + j)pk+j(1 − p)k(n−k)+(k2)−k−j. (2.2)

By Cayley’s formula, C(k, k−1) = kk−2. Moreover, Wright [28] proved that for every fixed j ≥ −1,

C(k, k + j) ∼ wj+1k
k+3j/2−1/2 as k → ∞, (2.3)

for some constants wℓ > 0. (See also [14, §8] and the references there. In the notation of [28],

wj+1 = ρj .) We have w0 = 1 and w1 =
√

π/8. It was shown in Spencer [25] that

wℓ =
EBℓ

ex

ℓ!
, ℓ ≥ 0, (2.4)

where Bex is the Brownian excursion area defined above. See further Janson [12]. Hence,

ψ(t) = E etBex =
∞
∑

ℓ=0

wℓt
ℓ. (2.5)

Let

A(k, k + j) =

∫ 1

p=0
E(κ(k, j, p)) dp

=

(

n

k

)

C(k, k + j)

∫ 1

p=0
pk+j(1 − p)k(n−k)+(k2)−k−j dp

=

(

n

k

)

C(k, k + j)
(k + j)! (k(n − k) +

(

k
2

)

− k − j)!

(k(n − k) +
(k
2

)

+ 1)!

=
C(k, k + j) (k + j)!

k!
×B(k, k + j) (2.6)

where, provided k ≤ n and k + j ≤
(

k
2

)

(as in our case),

B(k, k + j) =
n!

(n− k)!
· (k(n − k) +

(k
2

)

− k − j)!

(k(n − k) +
(k
2

)

+ 1)!

=
1

nj+1kk+j+1

∏k−1
i=0

(

1 − i
n

)

∏k+j
i=0

(

1 − k+1
2n − i−1

kn

)

=
1

nj+1kk+j+1
exp

{

∞
∑

m=1

1

mnm

(

k+j
∑

i=0

(

k + 1

2
+
i− 1

k

)m

−
k−1
∑

i=0

im

)}

=
1

nj+1kk+j+1
exp

{

∞
∑

m=1

tm(k, j)

mnm

}

. (2.7)
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Observe that as
∑a

i=1 i
m ≥

∫ a
0 x

m dx, for ℓ = k + j we have

tm(k, j) =
ℓ
∑

i=0

(

k + 1

2
+
i− 1

k

)m

−
k−1
∑

i=0

im ≤ (ℓ+ 1)

(

k + 1

2
+
ℓ− 1

k

)m

− (k − 1)m+1

m+ 1
. (2.8)

This implies that, as is easily verified,

tm(k, j) ≤ 0 if m ≥ 2 and j ∈ {0,−1} and k ≥ 100. (2.9)

Case (a): 1 ≤ k ≤ n, j = −1 (Tree components).

Now we have by (2.7)

B(k, k − 1) =
1

kk
exp

{

1

n

k−1
∑

i=0

(

k + 1

2
+
i− 1

k

)

− 1

n

k−1
∑

i=0

i

+
1

2n2

k−1
∑

i=0

(

k + 1

2
+
i− 1

k

)2

− 1

2n2

k−1
∑

i=0

i2 + ξ
}

where, using (2.9),

|ξ| ≤
∞
∑

m=3

102m+1

mnm
= O(n−3) 1 ≤ k ≤ 100, (2.10)

0 ≥ ξ ≥ −
∞
∑

m=3

km+1

m(m+ 1)nm
≥ −k

4

n3
k > 100, (2.11)

and hence for all k ≤ n,

ξ = O(k4/n3). (2.12)

This implies, after some calculation, that, for 1 ≤ k ≤ n,

B(k, k − 1) =
1

kk
exp

{

3(k − 1)

2n
− k3

24n2
+O

(

k2

n2
+
k4

n3

)}

and then, by (2.6),

n0.7
∑

k=1

A(k, k − 1) =

n0.7
∑

k=1

kk−2

k
·B(k, k − 1)

=

n0.7
∑

k=1

1

k3
exp

{

3(k − 1)

2n
− k3

24n2
+O

(

k2

n2
+
k4

n3

)}

=

n0.7
∑

k=1

e−k3/24n2

k3

(

1 +
3(k − 1)

2n
+O

(

k2

n2
+
k4

n3

))

.

Now, by simple estimates,

n0.7
∑

k=1

e−k3/24n2

k3
×O

(

k2

n2
+
k4

n3

)

= O(n−5/3) (2.13)
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and

n0.7
∑

k=1

(1 − e−k3/24n2

)

k3

(

1 +
3(k − 1)

2n

)

= o(n−4/3) +

n2/3 lnn
∑

k=n2/3/ lnn

(1 − e−k3/24n2

)

k3

= o(n−4/3) +
1

n4/3

∫ ∞

x=0
x−3(1 − e−x3/24) dx. (2.14)

Thus

n0.7
∑

k=1

A(k, k − 1)

=
n0.7
∑

k=1

1

k3
+

1

n

n0.7
∑

k=1

3(k − 1)

2k3
− 1

n4/3

∫ ∞

x=0
x−3(1 − e−x3/24) dx+ o(n−4/3)

= ζ(3) +O(n−1.4) +
3(ζ(2) − ζ(3))

2n
+O(n−1.7) − 1

n4/3

∫ ∞

x=0
x−3(1 − e−x3/24) dx+ o(n−4/3)

= ζ(3) +
3(ζ(2) − ζ(3))

2n
− 1

n4/3

∫ ∞

x=0
x−3(1 − e−x3/24) dx+ o(n−4/3). (2.15)

When k ≥ n0.7 we have from (2.7) and (2.9) that

B(k, k − 1) ≤ 1

kk
exp

(

1

n

k−1
∑

i=0

(

k + 1

2
+
i− 1

k

)

− 1

n

k−1
∑

i=0

i

)

=
1

kk
exp

{

3(k − 1)

2n

}

≤ e3/2

kk
.

This implies that A(k, k − 1) ≤ k−3e3/2. This gives

∑

k>n0.7

A(k, k − 1) ≤
∑

k>n0.7

e3/2

k3
= O(n−1.4) = o(n−4/3).

Together with (2.15), this verifies (a).

Case (b): 1 ≤ k ≤ n, j = 0 (Unicyclic components).

Rényi [24] proved (see e.g. Bollobás [3, Theorem 5.18]) that, cf. the more general (2.3) above,

C(k, k) =
(k − 1)!

2

k−3
∑

l=0

kl

l!
∼
√

π

8
kk−1/2. (2.16)

Now for 1 ≤ k ≤ n we have by (2.7)

B(k, k) =
1

nkk+1
exp

{

1

n

k
∑

i=0

(

k + 1

2
+
i− 1

k

)

− 1

n

k−1
∑

i=0

i

+
1

2n2

k
∑

i=0

(

k + 1

2
+
i− 1

k

)2

− 1

2n2

k−1
∑

i=0

i2 + ξ

}

where ξ satisfies (2.10)–(2.12). Thus, after some calculation,

B(k, k) =
1

kk+1n
exp

{

2k

n
− 1

kn
− k3

24n2
+O

(

k2

n2
+
k4

n3

)}

6



and then

n0.7
∑

k=3

A(k, k) =
1

n

n0.7
∑

k=3

C(k, k)

kk+1
exp

{

− k3

24n2
+O

(

k

n
+
k4

n3

)}

=
1

n

n0.7
∑

k=3

C(k, k)e−k3/24n2

kk+1

{

1 +O

(

k

n
+
k4

n3

)}

. (2.17)

Now (2.16) implies

1

n

n0.7
∑

k=3

C(k, k)e−k3/24n2

kk+1
×O

(

k

n
+
k4

n3

)

= O(n−5/3) (2.18)

and

1

n

n0.7
∑

k=3

C(k, k)(1 − e−k3/24n2

)

kk+1
= o(n−4/3) +

1

n

n2/3 lnn
∑

k=n2/3/ lnn

C(k, k)(1 − e−k3/24n2

)

kk+1

= o(n−4/3) +

√

π/8

n4/3

∫ ∞

x=0
x−3/2(1 − e−x3/24) dx. (2.19)

It follows from (2.17), (2.18) and (2.19) that

n0.7
∑

k=3

A(k, k) =
1

n

∞
∑

k=3

C(k, k)

kk+1
−
√

π/8

n4/3

∫ ∞

x=0
x−3/2(1 − e−x3/24) dx+ o(n−4/3). (2.20)

For k > n0.7 we observe that t1(k, 0) ≤ 2k in (2.8) and tm(k, 0) ≤ 0 for m ≥ 2 and so

B(k, k) ≤ e2

kk+1n

and so

A(k, k) ≤ e2
C(k, k)

kk+1n
= O

(

1

k3/2n

)

.

It follows from this that
n
∑

k=n0.7

A(k, k) = O(n−1.35) = o(n−4/3). (2.21)

We are almost done, we need to simplify the sum
∑∞

k=3
C(k,k)
kk+1 .

Now, by (2.16),

∞
∑

k=3

2C(k, k)

kk+1
=

∞
∑

k=3

(k − 1)!

kk+1

k−3
∑

i=0

ki

i!
=

∞
∑

i=0

∞
∑

k=i+3

ki

kk+1

(k − 1)!

i!
. (2.22)

In the last double sum, let us also add the terms with k = i + 2, k = i + 1 and k = i ≥ 1. The

terms with k = i+ 2 add up to

∞
∑

k=2

kk−2

kk+1

(k − 1)!

(k − 2)!
=

∞
∑

k=2

k − 1

k3
=

∞
∑

k=1

k − 1

k3
= ζ(2) − ζ(3).

7



The terms with k = i+ 1 add up to

∞
∑

k=1

kk−1

kk+1

(k − 1)!

(k − 1)!
=

∞
∑

k=1

1

k2
= ζ(2).

The terms with k = i ≥ 1 add up to

∞
∑

k=1

kk

kk+1

(k − 1)!

k!
=

∞
∑

k=1

1

k2
= ζ(2).

Consequently, (2.22) yields

∞
∑

k=3

2C(k, k)

kk+1
= ζ(3) − 3ζ(2) +

∞
∑

k=1

k
∑

i=0

ki

kk+1

(k − 1)!

i!
= ζ(3) − 3ζ(2) +

∞
∑

k=1

k
∑

i=0

k!

i!
ki−k−2. (2.23)

We transform the sum further:

∞
∑

k=1

k
∑

i=0

k!

i!
ki−k−2 =

∞
∑

k=1

k
∑

i=0

(

k

i

)

(k − i)! ki−k−2

=

∞
∑

k=1

k
∑

i=0

(

k

i

)

k−1

∫ ∞

x=0
xk−ie−kx dx

=

∫ ∞

x=0

∞
∑

k=1

k
∑

i=0

k−1

(

k

i

)

xk−ie−kx dx

=

∫ ∞

x=0

∞
∑

k=1

k−1(1 + x)ke−kx dx

=

∫ ∞

x=0
− log

(

1 − (1 + x)e−x
)

dx

Consequently, (2.23) yields

2

∞
∑

k=3

C(k, k)

kk+1
= ζ(3) − 3ζ(2) −

∫ ∞

x=0
log
(

1 − (1 + x)e−x
)

dx. (2.24)

Together with (2.20) and (2.21), this verifies (b).

Case (c): 1 ≤ k ≤ n, j ≥ 1 (Complex components).

Let

κc(p) = κc,n(p) :=

∞
∑

k=1

∞
∑

j=1

κ(k, j, p), (2.25)

i.e., the number of complex components in Gn,p, and

fn(p) = Eκc(p) =
∑

k≥1

∑

j≥1

Eκ(k, j, p), (2.26)

the expected number of complex components in Gn,p. The contribution to (2.1) from the complex

components is thus
∫ 1
p=0 fn(p) dp. We make a change of variables and let

p = n−1 + λn−4/3, (2.27)
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which means that we focus on the critical window. We will assume this relation between p and

λ in the rest of the proof. We thus define f̄n(λ) = fn(p) = fn(n−1 + λn−4/3), and obtain the

contribution, letting 1{. . . } denote the indicator of an event,

∫ 1

p=0
fn(p) dp = 1 − 1

n
+

∫ 1

p=0

(

fn(p) − 1{p > 1/n}
)

dp

= 1 − 1

n
+ n−4/3

∫ n4/3−n1/3

λ=−n1/3

(

f̄n(λ) − 1{λ > 0}
)

dλ. (2.28)

We begin by showing that the integrand in the final integral converges pointwise. We define, cf.

(2.5),

ψ2(t) =

∞
∑

ℓ=2

wℓt
l = ψ(t) − 1 −

√

π/8 t, (2.29)

and

F (x, λ) =
1

6
x3 − 1

2
x2λ+

1

2
xλ2 =

x

2

(

λ− x

2

)2
+

1

24
x3. (2.30)

Sublemma 2.2. For any fixed λ ∈ (−∞,∞), as n→ ∞,

f̄n(λ) → f(λ) =
1√
2π

∫ ∞

x=0
ψ2(x3/2)e−F (x,λ)x−5/2 dx. (2.31)

Proof We note first that the integral in (2.31) is convergent; for small x we have ψ2(x) = O(x2)

and for large x we have ψ2(x) = O
(

x2ex
2/24

)

by (1.5) while e−F (x,λ) ≤ e−x3/6+λx2/2 = O(e−x3/7)

by (2.30), remember that λ is fixed in the integral.

We convert the sum over k in (2.26) to an integral by setting k = ⌈xn2/3⌉. Thus

f̄n(λ) = fn(p) =

∫ ∞

x=0

∑

j≥1

Eκ
(

⌈xn2/3⌉, j, p
)

n2/3 dx. (2.32)

For any fixed λ and fixed x > 0, j ≥ 1, and p = n−1 + λn−4/3 and k = ⌈xn2/3⌉ as above, we have

as n→ ∞ by (2.2) and (2.3) and standard calculations, see e.g. [17, Section 4] or [1, Section 11.10]

for further details,

Eκ(k, j, p) ∼ nk

k!
exp
(

− k2

2n
− k3

6n2

)

C(k, k + j)n−k−j
(

1 + λn−1/3
)k

exp
(

−p(nk − k2/2)
)

∼ n−jC(k, k + j)

k!
exp
(

−k − F (kn−2/3, λ)
)

∼ (2π)−1/2wj+1k
−1
(k3/2

n

)j
e−F (kn−2/3,λ)

∼ n−2/3(2π)−1/2wj+1x
3j/2−1e−F (x,λ).

Thus, as n→ ∞,

n2/3 Eκ(⌈xn2/3⌉, j, p) → (2π)−1/2wj+1x
3j/2−1e−F (x,λ). (2.33)

Moreover, Bollobás [3, Theorem 5.20] has shown the uniform bound

C(k, k + j) ≤
(

C1

j

)j/2

kk+(3j−1)/2 (2.34)
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for some constant C1 and all k, j ≥ 1. Let A ≥ 1 be a constant, and consider first only components

of size k ≤ An2/3. For such k, all j ≥ 1 and p = n−1+λn−4/3, (2.2) and (2.34) yield by calculations

similar to those above,

Eκ(k, j, p) ≤ C2
nk

k!
exp
(

− k2

2n

)

C(k, k + j)n−k−j
(

1 + λn−1/3
)k+j

exp
(

−p(nk − k2/2 − j)
)

≤ C3n
−jC(k, k + j)

k!
e−k+j×o(1)

≤ C3n
−j
(2C1

j

)j/2
k3j/2−1

(with C3 possibly depending on A) and thus

n2/3 Eκ(k, j, p) ≤ C3

(

C4A
3/2

j

)j/2

.

The sum over j of the right-hand side converges, and thus (2.33) and dominated convergence yield,

recalling (2.29),

∫ A

x=0

∑

j≥1

Eκ
(

⌈xn2/3⌉, j, p
)

n2/3 dx→ 1√
2π

∫ A

x=0
ψ2(x3/2)e−F (x,λ)x−5/2 dx. (2.35)

For k > An2/3 we use the fact shown in [17, (6.6)] that the expected number of vertices in tree

components of size at most n2/3 is n − O(n2/3); consequently, the expected number of vertices in

all components (complex or not) of size larger than n2/3 is O(n2/3), and the expected number of

components larger than An2/3 is ≤ C5/A. The left-hand side of (2.35) thus converges uniformly to

the right-hand side of (2.32) as n→ ∞, and the result (2.31) follows from (2.35) by letting A→ ∞.

�

The next step is to use dominated convergence in (2.28). For this we use the following estimates.

For convenience, we let κc(n
−1 + λn−4/3) and its expectation f̄n(λ) be defined for all real λ, by

trivially defining κc(p) = κc(0) = 0 for p < 0 and κc(p) = κc(1) = 1 for p > 1.

Sublemma 2.3. There exist integrable functions g1(λ), g2(λ), g3(λ), not depending on n, such that

(i)

f̄n(λ) = Eκc(n
−1 + λn−4/3) ≤ g1(λ), λ ≤ 0,

(ii)

P
(

κc(n
−1 + λn−4/3) = 0

)

≤ g2(λ), λ ≥ 0,

(iii)

f̄n(λ) − 1 = Eκc(n
−1 + λn−4/3) − 1 ≤ g3(λ), λ ≥ 0.

Proof We use the method in Janson [10]. We consider G(n, p), p ∈ [0, 1], as a random graph

process in the usual way: we regard p as time, edges are added as p grows from 0 to 1, and an edge

e is added at a time Te with a uniform distribution on [0, 1], with all Te independent.

10



As G(n, p) evolves, there are at first only tree components, but later unicyclic components and

complex components appear as edges are added to the graph. If we consider the complex compo-

nents only, a new complex component is created if a new edge is added to a unicyclic component,

or if it joins two unicyclic components. (Note that these are the only possibilities; we do not re-

gard the growth of an already existing complex component as creating a new complex component.

Creation of a new complex component may happen one or several times. It is shown in [14] that it

happens only once with probability converging to 5π/18, but we will not need this.) As evolution

continues, the complex components may grow by merging with trees or unicyclic components, and

they may merge with each other, until at the end only one complex component remains, containing

all vertices.

Let ϕn(k, p) be the intensity of creation on new complex components of size k, i.e., the probability

of creating a new complex component of size k in the interval [p, p+ dp] is ϕn(k, p) dp. (For p < 0,

p > 1 or k > n, we set ϕn(k, p) = 0.) Further, let Φn(p) =
∑

k≥1 ϕn(k, p), the intensity of creation

of complex components regardless of size. We change variables as above and define also

ψn(x, λ) = n−2/3ϕn(⌈xn2/3⌉, n−1 + λn−4/3),

Ψn(λ) = n−4/3Φn(n−1 + λn−4/3) =

∫ ∞

x=0
ψn(x, λ) dx.

(The notation is not exactly as in [10], where the two ways of creating a complex component are

treated separately, but the estimates are the same.)

We have

ϕn(k, p) =

(

n

k

)

Ĉ(k)pk(1 − p)(n−k)k+(k2)−k−1

where Ĉ(k) is the number of ways to create a multicyclic component by either adding an edge to a

unicyclic component on [k] or adding an edge joining two unicyclic components whose vertex sets

are complementary subsets of [k]. The first case contributes

C(k, k)

((

k

2

)

− k

)

= O(kk+3/2)

to Ĉ(k) and the second

1

2

k−3
∑

i=3

(

k

i

)

C(i, i)C(k − i, k − i)i(k − i) ≤ C6

k−3
∑

i=3

(

k

i

)

eii! ek−i(k − i)! ≤ C6ke
kk! = O(kk+3/2);

hence

Ĉ(k) = O(kk+3/2) = O
(

kekk!
)

.

(Cf. the more precise [10, (2.30)].) The intensity ψn(x, λ) is bounded in [10, (2.12)–(2.19)] by

calculations similar to those in the proof of Sublemma 2.2. (In these bounds, and our versions

below, δ, δ1, . . . are some positive constants.)

We use the results of [10] with some small modifications: Equation (2.12) of [10] shows (together

with the comments after it) that

ψn(x, λ) ≤ C7xe
−δx3−δxλ2

for k ≤ δ1n and − n1/3 ≤ λ ≤ δ2n
1/3.

11



Then one line before (2.15) of [10] proves that

ψn(x, λ) ≤ C8xe
−δx3−δ3xλn1/3/3 for k ≤ δ3n and λ ≥ δ2n

1/3.

Because λ ≤ n4/3 always, it is legitimate to replace −δ3xλn1/3/3 by −δ3xλ5/4 to give

ψn(x, λ) ≤ C8xe
−δx3−δ3xλ5/4/3 for k ≤ δ3n and λ ≥ δ2n

1/3.

Then (2.17) of [10] proves that

ψn(x, λ) ≤ C9ne
−2δ5n for min {δ1, δ3}n ≤ k ≤ n.

We replace this by, using min {δ1, δ3}n1/3 ≤ x ≤ n1/3 and λ ≤ n4/3,

ψn(x, λ) ≤ C10xe
−δ5x3

(1 + λ4)−1.

We therefore have, for all x and λ (recalling that ψn(x, λ) = 0 if x > n1/3, λ < −n1/3 or λ > n4/3),

0 ≤ ψn(x, λ) ≤ g(x, λ) = C7xe
−δx3−δxλ2

+ C8xe
−δx3−δ3x|λ|5/4/3 + C10xe

−δ5x3

(1 + λ4)−1. (2.36)

Integrating we find

Ψ(λ) ≤
∫ ∞

x=0
g(x, λ) dx ≤ C11

1 + |λ|5/2 . (2.37)

The number of complex components at any time is at most the number of complex components

that have been created so far. Taking expectations we thus obtain, using (2.37),

f̄n(λ) = Eκc(n
−1 + λn−4/3) ≤

∫ λ

µ=−∞
Ψ(µ) dµ ≤

∫ λ

µ=−∞

C11

1 + |µ|5/2 dµ. (2.38)

This verifies (i), with g1(λ) = C12(1 + |λ|3/2)−1 for λ ≤ 0.

Similarly, if there is no complex component at some time, at least one complex component has to

be created later. Thus,

P
(

κc(n
−1 + λn−4/3) = 0

)

≤
∫ ∞

µ=λ
Ψ(µ) dµ ≤

∫ ∞

µ=λ

C11

1 + |µ|5/2 dµ, (2.39)

which verifies (ii) with g2(λ) = C13(1 + λ3/2)−1 for λ ≥ 0.

For (iii), let Y (p) =
(κc(p)

2

)

be the number of pairs of complex components in Gn,p. Since κc(p)−1 ≤
Y (p), it suffices to estimate EY (p).

If there is a pair of complex components in Gn,p, then these components have been created at some

times p1 and p2 with p1 ≤ p2 ≤ p. The intensity of this happening, with sizes k1 = ⌈x1n2/3⌉ and

k2 = ⌈x2n2/3⌉ of the components at the moments of their creations, is bounded in [10, (2.24)–(2.26)]

by (using modifications as above, and g is defined in (2.36)),

C14g(x1, λ1)g(x2, λ2) dλ1 dλ2 dx1 dx2.
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Moreover, if the two components still are distinct components in Gn,p, then, at least (ignoring

further conditions from the growth of the components), the original vertex sets of sizes k1 and k2
are not connected by any edge in the time interval [p2, p]; the (conditional) probability of this is

(

1 − p− p2
1 − p2

)k1k2
≤ (1 − (p− p2))k1k2 ≤ e−k1k2(p−p2) ≤ e−x1x2(λ−λ2).

Consequently,

f̄n(λ) − 1 ≤ EY (n−1 + λn−4/3)

≤ g3(λ) =

∫ λ

λ1=−∞

∫ λ

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0
C14g(x1, λ1)g(x2, λ2)e−x1x2(λ−λ2) dλ1 dλ2 dx1 dx2.

This yields (iii), but it remains to verify that
∫∞
λ=0 g3(λ) dλ <∞. Indeed, by Fubini and (2.36),

∫ ∞

λ=−∞
g3(λ) dλ

=

∫ ∞

λ1=−∞

∫ ∞

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0
C14g(x1, λ1)g(x2, λ2)

∫ ∞

λ=λ2

e−x1x2(λ−λ2) dλ dλ1 dλ2 dx1 dx2

=

∫ ∞

λ1=−∞

∫ ∞

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0
C14

g(x1, λ1)g(x2, λ2)

x1x2
dλ1 dλ2 dx1 dx2

≤ C14

(
∫ ∞

λ=−∞

∫ ∞

x=0

g(x, λ)

x
dλ dx

)2

<∞.

�

Sublemma 2.3(ii) implies that 1 − f̄n(λ) ≤ g2(λ) for λ ≥ 0, and thus Sublemma 2.3 yields

∣

∣f̄n(λ) − 1{λ > 0}
∣

∣ ≤
{

g1(λ), λ ≤ 0,

g2(λ) + g3(λ), λ > 0.

This justifies using dominated convergence in the integral in (2.28), and Sublemma 2.2 implies

∫ n4/3−n1/3

λ=−n1/3

(

f̄n(λ) − 1{λ > 0}
)

dλ→ c2c =

∫ ∞

λ=−∞

(

f(λ) − 1{λ > 0}
)

dλ. (2.40)

Hence (2.28) yields

∫ 1

p=0
fn(p) dp = 1 − 1

n
+ c2cn

−4/3 + o(n−4/3), (2.41)

which is the sought result except for the expression for c2c.

We transform the expression for c2c in (2.40) by first writing it as

c2c = lim
A→∞

(

−A+

∫ A

λ=−∞
f(λ) dλ

)

= lim
A→∞

(

−A+
1√
2π

∫ A

λ=−∞

∫ ∞

x=0
ψ2(x3/2)e−F (x,λ)x−5/2 dx dλ

)

. (2.42)
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By (2.29) we have ψ2(t) = O(t2) for small t, which together with (1.7) shows that

ψ2(t) = O
(

t2et
2/24

)

, t ≥ 0

and thus by (2.30), for all x > 0 and λ ∈ (−∞,∞),

ψ2(x3/2)e−F (x,λ) ≤ C15x
3e−x(λ−x/2)2/2.

Hence, for A > 0, with the substitutions x = 2A+ s and λ = A− t,
∫

x>2A

∫

λ<A
ψ2(x3/2)e−F (x,λ)x−5/2 dx dλ ≤ C15

∫

x>2A

∫

λ<A
e−x(λ−x/2)2/2x1/2 dx dλ

= C15

∫

s>0

∫

t>0
e−(2A+s)(t+s/2)2/2(2A+ s)1/2 dt ds

≤ C15

∫

s>0

∫

t>0
e−(2A+s)(t2/2+s2/8)(2A + s)1/2 dt ds

= C16

∫

s>0
e−(2A+s)s2/8 ds ≤ C17A

−1/2.

Similar estimates show also
∫

x<2A

∫

λ>A
ψ2(x3/2)e−F (x,λ)x−5/2 dx dλ ≤ C18

∫ 2A

s=0
e−(2A−s)s2/8 ds ≤ C19A

−1/2.

Consequently, we can subtract and add these integrals to (2.42), yielding

c2c = lim
A→∞

(

−A+
1√
2π

∫ ∞

λ=−∞

∫ 2A

x=0
ψ2(x3/2)e−F (x,λ)x−5/2 dx dλ

)

. (2.43)

It follows from (2.30) that
∫ ∞

λ=−∞
e−F (x,λ) dλ = e−x3/24

∫ ∞

λ=−∞
e−x(λ−x/2)2/2 dλ = e−x3/24

√

2π/x. (2.44)

Hence (2.43) yields by Fubini

c2c = lim
A→∞

(

−A+

∫ 2A

x=0
ψ2(x3/2)e−x3/24x−3 dx

)

=

∫ ∞

x=0

(

x−3ψ2(x
3/2)e−x3/24 − 1

2

)

dx. (2.45)

This completes the proof of Lemma 2.1 and the proof of Theorem 1. �

3 Final remarks

Remark 3. We have shown that when the Xe are uniform [0, 1] then E(Ln) converges to ζ(3) with

an error term of order 1/n. The constant c1 is positive and so for large n we have E(Ln) > ζ(3).

Fill and Steele [4] computed E(Ln) for n ≤ 8. E(Ln) increased monotonically and it was natural to

conjecture from this that E(Ln) increases monotonically for all n. However, since E(Ln) converges

to ζ(3) from above, we now see that this turns out not to be true. Note, however, that c2 < 0, and

that |c2| is much larger than c1. Thus we expect that ELn > ζ(3) only for very large n.

We have, if our numerical estimates are correct, |c2|/c1 ≈ 45, so a naive guess, ignoring higher

order terms, would be that ELn > ζ(3) for n > 453 ≈ 105. We don’t want to conjecture this, as

we have no idea about the next term.
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Remark 4. By (1.2), we obtain for Eexp(Ln) the same result as in Theorem 1 except that c1 is

increased by ζ(3) (while c2 remains the same). This gives a somewhat simpler c1, which suggests

that this version might be slightly simpler to analyze. Note that the formula (2.1) holds for Eexp(Ln)

if we replace Gn,p by the multigraph where each pair of vertices is connected by a Po(t) number

of edges, and integrate for t ∈ (0,∞). This suggests that it might be profitable to make a version

of the argument below using these multigraphs, but we have not pursued this. (Cf. the use of

multigraphs in [14].)

Acknowledgement: In an earlier version of this paper, we showed that E(Ln) = ζ(3) + c1+o(1)
n .

Nick Read pointed us to his article [23] which suggested that the o(1/n) term could be replaced by

(c + o(1))/n4/3. This encouraged us to go the extra mile and find the next term and prove Nick’s

conjecture.
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A Appendix: Estimation of c2

The constant c2 in Theorem 1 is the sum of the three coefficients for n−4/3 in Lemma 2.1(a)–(c),

which we denote by c2a, c2b and c2c. By the change of variable t = x3/24, and integration by parts

(cf. [21, §5.9.5]), we obtain, as said in Remark 2,

c2a =
24−2/3

3

∫ ∞

t=0
t−5/3(e−t − 1) dt = −1

8
3−2/3Γ

(1

3

)

= −0.16098 . . . , (A.1)

c2b =

√

π

8

24−1/6

3

∫ ∞

t=0
t−7/6(e−t − 1) dt = −1

2
3−1/6√π Γ

(5

6

)

= −0.83298 . . . . (A.2)

The coefficient c2c is given by an integral in Lemma 2.1, see also (2.45). To evaluate c2c, we change

variables by x = y1/3 and use the definition (2.29) of ψ2 to obtain

c2c =
1

3

∫ ∞

y=0

(

y−1ψ2(y1/2) − 1

2
ey/24

)

e−y/24y−2/3 dy

=
1

3

∫ ∞

y=0

∞
∑

k=1

(

w2ky
k−1 + w2k+1y

k−1/2 − yk−1

2 · 24k−1(k − 1)!

)

e−y/24y−2/3 dy. (A.3)

We interchange the order of integration and summation, which is justified below, and obtain

c2c =
1

3

∞
∑

k=1

∫ ∞

y=0

(

w2ky
k−1 + w2k+1y

k−1/2 − yk−1

2 · 24k−1(k − 1)!

)

e−y/24y−2/3 dy

=
241/3

3

∞
∑

k=1

(

w2k24k−1Γ(k − 2/3) + w2k+124k−1/2Γ(k − 1/6) − Γ(k − 2/3)

2 Γ(k)

)

. (A.4)

We note that (2.4) and (1.4) yield, together with Stirling’s formula, wℓ ∼ 6 · 24−ℓ/2/Γ(ℓ/2), which

implies that

w2k24k−1Γ(k − 2/3) ∼ w2k+124k−1/2Γ(k − 1/6) ∼ 1
4k

−2/3 as k → ∞

so the three terms in the sum in (A.4) are all of order k−2/3, showing that we cannot sum them

separately. However, their leading terms cancel. A more precise calculation using (1.6) yields

EBr
ex =

√
18 r

( r

12e

)r/2
(

1 +O(r−1)
)

, r > 0, (A.5)

and thus by (2.4) and Stirling’s formula,

wℓ =
3
√
ℓ√
π

( e

12ℓ

)ℓ/2
(

1 +O(ℓ−1)
)

=
6 · 24−ℓ/2

Γ(ℓ/2)

(

1 +O(ℓ−1)
)

, ℓ ≥ 1. (A.6)

Hence,

w2k24k−1Γ(k − 2/3) = 1
4k

−2/3
(

1 +O(k−1)
)

, as k → ∞, (A.7)

and the same estimate holds for w2k+124k−1/2Γ(k−1/6), while Γ(k−2/3)/Γ(k) = k−2/3
(

1+O(k−1)
)

.

Consequently, the summand in (A.4) is O(k−5/3).
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The constants wk can be computed by a recursion formula, see [28] and [12], and a numerical

summation of the first 1000 terms in (A.4) yields −0.7331. It can be shown, using (1.6) with the

further second order term given in [15] (which replaces O(x−2) by −1
9x

−2+O(x−4)), that the terms

in the sum in (A.4) are ∼ −1
6k

−5/3, and using this to estimate the sum of the terms with k > 1000

yields the estimate c2c ≈ −0.7355 which together with (A.1)–(A.2) yields

c2 ≈ −1.7295. (A.8)

The tail estimate is not rigorous. Replacing O(x−4) by ≤ Cx−4 for some estimate C is what is

needed to make the tail estimate rigorous. Nevertheless, it seems unlikely that the estimate in (A.8)

is very far off.

To justify the interchange of summation and integration above, it is by Fubini’s theorem sufficient

to verify that

∞
∑

k=1

∫ ∞

y=0

∣

∣

∣

∣

w2ky
k−1 + w2k+1y

k−1/2 − yk−1

2 · 24k−1(k − 1)!

∣

∣

∣

∣

e−y/24y−2/3 dy <∞. (A.9)

Indeed, we claim that the integral in (A.9) is O(k−7/6). Using (A.7), its analogue for 2k + 1, and

Γ(k − 2/3)/Γ(k) = k−2/3(1 +O(k−1)), it follows easily that the integral is, after another change of

variable t = y/24,

241/3

4
k−2/3

∫ ∞

t=0

∣

∣

∣

∣

∣

tk−7/6

Γ(k − 1/6)
− tk−5/3

Γ(k − 2/3)

∣

∣

∣

∣

∣

e−t dt +O
(

k−5/3
)

. (A.10)

Let Ik denote the integral in (A.10). By the Cauchy–Schwarz inequality,

I2k ≤
∫ ∞

t=0
tk−1e−t dt ·

∫ ∞

t=0

(

tk−7/6

Γ(k − 1/6)
− tk−5/3

Γ(k − 2/3)

)2

t1−ke−t dt

= Γ(k)

(

Γ(k − 2/6)

Γ(k − 1/6)2
− 2

Γ(k − 5/6)

Γ(k − 1/6)Γ(k − 4/6)
+

Γ(k − 8/6)

Γ(k − 4/6)2

)

= O
(

k−1
)

.

Consequently, Ik = O(k−1/2), which shows that (A.10) is O(k−7/6), and thus (A.9) holds as claimed

above.
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