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A natural barrier in random greedy hypergraph matching
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Abstract

Let r ≥ 2 be a fixed constant and let H be an r-uniform, D-regular hy-
pergraph on N vertices. Assume further that D → ∞ as N → ∞ and that
degrees of pairs of vertices in H are at most L where L = D/(logN)ω(1). We
consider the random greedy algorithm for forming a matching in H. We choose
a matching at random by iteratively choosing edges uniformly at random to
be in the matching and deleting all edges that share at least one vertex with a
chosen edge before moving on to the next choice. This process terminates when
there are no edges remaining in the graph. We show that with high probability
the proportion of vertices of H that are not saturated by the final matching is

at most (L/D)
1

2(r−1)+o(1). This point is a natural barrier in the analysis of the
random greedy hypergraph matching process.

1 Introduction

Let r ≥ 2 be a fixed constant and let H be an r-uniform, D-regular hypergraph on
vertex set V where |V | = N and D → ∞ as N → ∞. We study the evolution of the
random greedy matching algorithm on H. This process forms a matching (i.e. a
collection of pairwise disjoint edges) in H by making a series of random choices. We
begin with M(0) = ∅, H(0) = H and V (0) = V . In iteration i an edge Ei is chosen
uniformly at random from H(i − 1) and added to M(i − 1) to form the matching
M(i). We then form H(i) by setting V (i) = V (i−1)\Ei and deleting from H(i−1)
all edges that intersect Ei. The process proceeds until the step M where H(M) is
empty. We are interested in the likely value of M ; that is, we are interested in the
number of edges in the matching produced by the random greedy process.

The random greedy packing algorithm for producing a partial Steiner system
is an important special case of this process. Let 1 < ℓ < k be fixed integers. Define
Hℓ,k to be the hypergraph on vertex set

([n]
ℓ

)

with edge set consisting of all sets

of the form
(

A
ℓ

)

where A ∈
([n]
k

)

. Note that a matching in Hℓ,k corresponds to a
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collection of k-element subsets of [n] with the property that the intersect of any pair
of sets in the collection has cardinality less than ℓ; that is, a matching in Hℓ,k gives
a partial (n, k, ℓ)-Steiner system. The random greedy matching algorithm applied
to Hℓ,k is also known as random greedy packing. This process is related to the
celebrated Rödl nibble [10], which is a semi-random variation on random greedy
packing. The Rödl nibble was introduced in the solution of the Erdős and Hanani
conjecture [6], which states that for every fixed ℓ, k there is a matching in Hℓ,k that
saturates (1− o(1))

(n
ℓ

)

vertices.

In this paper we study the general random greedy matching algorithm by
establishing dynamic concentration of the number of edges and the vertex degrees
in the remaining hypergraph H(i). Let Q(i) be the number of edges in H(i) and
let dv(i) be the degree of vertex v in H(i). We aim to show that Q(i) and dv(i),
appropriately scaled, are tightly concentrated around expected trajectories that we
express as smooth functions on the reals. In order to describe the trajectories we
introduce a continuous time t which we relate to the steps of the process by setting

t = t(i) =
i

N
.

Our study is guided by the following probabilistic intuition: we suspect that H(i)
resembles a subhypergraph of H chosen uniformly at random from the collection of
all subhypergraphs induced by N−ir vertices. So we anticipate that H(i) resembles
a subhypergraph of H induced by a random subset of the vertices where each vertex
is included independently with probability

p = 1− ir/N = 1− rt.

(Note that this probability can be viewed as either a function of either i or t; we pass
between these interpretations without comment.) It follows from this assumption
that the probability an edge E ∈ H is in H(i) should be about pr, and therefore we
ought to have

Q(i) ≈ |H|pr = NDpr/r. (1)

Furthermore, if a vertex v is not saturated by M(i) then we should have

dv(i) ≈ Dpr−1. (2)

Our main result (see Theorem 2.1 below) is that estimates (1) and (2) hold for most
of the evolution of the process. This is a generalization of a result of Bohman, Frieze
and Lubetzky [3], who proved an analogous result for the special case of H2,3.

In order to discuss our main result in more detail, we define the random variable

X = X(H) := 1−Mr/N

where M is the number of steps before the random greedy matching algorithm on
H terminates. In other words, X is the proportion of vertices left unsaturated by
the matching produced by the random greedy algorithm. The following bound is a
Corollary of Theorem 2.1.
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Theorem 1.1. Let r ≥ 2 and H be an r-uniform, D-regular hypergraph on N ver-

tices. If the maximum degree L of a pair of vertices in H satisfies L = D/(logN)ω(1)

and X(H) is the proportion of vertices that are not saturated by the matching pro-

duced by the random greedy algorithm then with high probability we have

X(H) ≤
(

L

D

) 1
2(r−1)

+o(1)

.

Previous analyses of the random greedy matching algorithm due to Spencer [12]
and, independently, Rödl and Thoma [10] showed that if L = o(D) then we have
X(H) = o(1) with high probability. Note that this result applied to the hypergraph
Hℓ,k gives an alternate proof of the Erdős–Hanani conjecture. Wormald [15] applied
the differential equations method for random graph processes to show that if H is
an r-uniform, D-regular hypergraph on N vertices such that D = o(N) but D → ∞
sufficiently quickly as N → ∞ then X(H) < D

− 1
9r(r−1)+3

+o(1)
with high probability.

Theorem 1.1 takes the analysis of random greedy matching up to a natural
barrier. To describe this barrier we assume estimates (1) and (2) hold. For a fixed
vertex v let Lv be the set of vertices u such that the degree of {u, v} in H is L. Note
that |Lv| can be as large as (r − 1)D/L. Now early in the process (when p = 1/2,
say) the expected number of vertices in Lv that are not saturated by M can be as
large pD/L and thus can have variation as large as

√

D/L, roughly speaking. This
yields variations in vertex degrees that are as large as

√

D/L · L =
√
DL. If these

early variations in vertex degree persist then at the point when Dpr−1 =
√
DL these

variations will be as large as the expected degree itself. So, if these variations indeed
persist then when we reach this point vertex degrees could be zero even though the
expected vertex degree is large. Note that this is point where Theorem 2.1 no longer
holds. One would expect that in order to prove better bounds one would have to
show that the variations in vertex degree decrease as the process evolves.

But where do we expect the random greedy matching algorithm to finally ter-
minate? If we assume that estimates (1) and (2) hold all the way to termination
then when NDpr = Np the number of unsaturated vertices should be roughly the
same as the number of remaining edges. At this stage a positive proportion of the
unsaturated vertices should be in no remaining edges; these vertices would remain
unsaturated to termination. Thus, it is natural to guess that random greedy match-
ing terminates when the proportion of unsaturated vertices is roughly D−1/(r−1).

(We note in passing that this line of reasoning is suspect if L > D1− 1
r−1 . In this

case, one suspects that we will reach a point where degrees of pairs of vertices in
H(i) are larger than degrees of individual vertices before the supposed termination
point.) In the context of random greedy packing, this line of reasoning leads to the
following conjecture.

Conjecture 1.2 (folklore). Let 1 < ℓ < k be fixed. With high probability

X(Hℓ,k) = n
− k−ℓ

(kℓ)−1
+o(1)

.
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The ℓ = 2, k = 3 case of this conjecture was recently proved by Bohman, Frieze
and Lubetzky [4] who establish estimates for vertex degrees in H2,3(i) with error
bounds that decrease as the process evolves. These self-correcting estimates are
proved using the critical interval method that is featured in this paper and was
introduced in [3]. It should be noted that the sharp result given in [4] requires a
large, carefully selected ensemble of random variables.

The related problem of proving the existence of a large matching in an r-
uniform, D-regular hypergraph H has been widely studied (see [9] [1] [8]). The best
known results are due to Vu [14] who used a semi-random (i.e. Rödl nibble type)
method to show that there exists a matching in H that saturates all but at most

(

L

D

)
1

r−1
+o(1)

vertices where L is the maximum degree of pairs of vertices in H. Vu obtained
stronger results when one adds degree assumptions for larger sets of vertices.

The remainder of this paper is organized as follows. In the next Section we
give a precise statement of our dynamic concentration result. The proof follows in
Section 3. This proof uses the critical interval method introduced by Bohman, Frieze
and Lubetzky in [3], where they prove Theorem 1.1 for the special case H2,3. In
this note we show that the techniques introduced in [3] are robust enough to handle
the general case (with the introduction of some delicate calculations necessitated
by the large pairwise degrees).

2 Dynamic Concentration

Throughout this section we assume that H is an r-uniform, D-regular hypergraph
on N vertices where r is a fixed constant and D → ∞ as N → ∞. We also assume
that the maximum degree L of a pair of vertices in H satisfies L = o(D/ log5N) .

In order to make the estimates (1) and (2) precise we introduce error bounds
for Q and dv . Define

eq = 90r2NLp2−r logN (1− r log p)2

ed =
√

6rLD logN (1− r log p)

Further define the stopping time T to be the first step i such that
∣

∣

∣

∣

Q(i)− ND

r
pr
∣

∣

∣

∣

> eq, or

|dv(i)−Dpr−1| > ed for some v ∈ V (i)

Theorem 2.1. With high probability we have

N − Tr = O

(

N ·
(

L

D

) 1
2(r−1)

log
5

2(r−1) N

)

.
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3 Proof

We begin with a brief overview of the critical interval method, which is a refine-
ment of the differential equations method for proving dynamic concentration. In
a standard application of the differential equations method, we have a sequence of
random variables Z(0), Z(1), . . . that is determined by some combinatorial random
process on n points, and our dynamic concentration statement is

Z(i) = z(i/n) ± ez(i/n) for i = 0, 1, . . . ,M(n) (3)

with high probability. Note that we use the symbol “±” in two distinct ways:
sometimes we write a = b± c meaning that a is in the interval [b− c, b+ c] whereas
other times we simply use “±” as a symbol that could either be “+” or “−.”
The meaning should be clear from context. The deterministic trajectory function
z is usually determined by the one-step expected changes in Z(i) and the initial
condition z(0) = Z(0). The error function ez is a carefully chosen, slowly growing,
function. It is often convenient to introduce a continuous time variable t that we
relate to the steps of the process by setting t = t(i) = i/n. This allows us to view
the function z(t) as a scaling limit for the sequence Z(i).

In a standard application of the differential equations method we prove the
dynamic concentration statement (3) by two applications of a martingale deviation
inequality. We introduce a stopping time T , which is defined to be the minimum of
M = M(n) and the first step i at which (3) fails. We then define the two sequences
of random variables DZ+(i),DZ−(i) as follows:

DZ±(i) = Z(i ∧ T )− z(t ∧ (T/n)) ± ez(t ∧ (T/n)).

Note that violation of the upper bound in (3) is equivalent toDZ−(T ) = DZ−(M) >
0 and violation of the lower bound in (3) is equivalent to DZ+(T ) = DZ+(M) < 0.
Note further that DZ−(0) = −ez(0) and DZ+(0) = ez(0). If DZ− is a supermartin-
gale and DZ+ is a submartingale, then violation of (3) is contained in the event that
one of these martingales has a large deviation. We choose the error functon ez(t) so
that DZ− is a supermartingale and DZ+ is a submartingale and ez(0) is sufficiently
large to make the probabilities of these martingale deviations small. We emphasize
that the introduction of this stopping time T is an important detail in the proof as
it allows us to assume the bounds in (3) when we establish the martingale condition
and apply the martingale inequality.

Our proof of Theorem 2.1 requires even greater control over the random vari-
able Z when we are establishing the martingale condition. This is what the critical
interval method provides. For each variable Z treated by Theorem 2.1 and each
bound (i.e. upper and lower) we introduce a critical interval IZ(t) = [aZ , bZ ] which
has one end at the bound we are trying to establish and the other end slightly closer
to the trajectory z(t). The upper critical interval is

IZ(t) = [z(t) + ez(t)− fz(t), z(t) + ez(t)]

5



where the width fz(t) will be chosen below. Simillarly, the lower critical interval is

IZ(t) = [z(t)− ez(t), z(t) − ez(t) + fz(t)]

We can view violation of the dynamic concentration statement given by Theorem 2.1
as the event that some variable manages to cross one of its critical intervals. In order
to bound the probability of this event we consider a large collection of martingales.
We have one such martingale for each variable, each bound (upper and lower), and
each step of the process that the random variable in question might enter the critical
interval for the last time before crossing the interval.

Consider a random variable Z in the collection of random variables treated by
Theorem 2.1, some step j of the process, and the upper bound on Z. We introduce a
stopping time that is specialized to the event that variable Z enters its upper critical
interval at step j and proceeds to cross the interval without leaving it. Define TZ,j

to be the minimum of the global stopping time T (which is defined in Section 2
above) and the first step i ≥ j when Z(i) is not in its upper critical interval. We
simply have TZ,j = j if Z(j) is not in the upper critical interval. We consider the
sequence of random variables

DZ−
j (i) = Z(i ∧ TZ,j)− z(t ∧ (TZ,j/N))− ez(t ∧ (TZ,j/N)) for i = j, . . .

Now, assuming that we have a suitable bound on the one step changes in each
variable Z, the event T = i and Z(i) > z(t) + ez(t) is contained in the event that
there exists a j < i such that DZ−

j (j) ≈ −fz(j/N) and DZ−
j (i) > 0. If DZ−

j is a
supermartingale then each such event is the event that this martingale has a large
deviation. We establish bounds on these events that are small enough that a simple
application of the union bound – taking the union over all variables, bounds and
starting points j – shows that the probability that of any event in the collection
occuring is small. Theorem 2.1 follows.

We stress that the introduction of the stopping time TZ,j allows us to assume
that Z is in the critical interval when we are establishing the martingale condition
for Z. (Of course the other random variables are not so constrained.) The reason
that we focus our attention on these critical intervals is the fact that the expected
one-step changes in the variables we consider have self-correcting terms. These
terms introduce a drift back toward the expected trajectory when Z is far from the
expected trajectory. By restricting our attention to the critical intervals we make
full use of these terms. See [13] and [5] for early applications of this self-correcting
phenomenon in applications of the differential equations method for proving dy-
namic concentration. As we noted above, the critical interval method we use here
was introduced in [3].

We close this preamble with some notation conventions and a lemma that we
use below. For an arbitrary random variable Z we define

∆Z(i) = Z(i+ 1)− Z(i).

We let Fi be the filtration of the probability space given by the first i edges chosen
by the random greedy matching process.

6



Lemma 3.1. Suppose (xi)i∈I and (yi)i∈I are real numbers such that |xi − x| ≤ δ
and |yi − y| < ǫ for all i ∈ I. Then we have

∣

∣

∣

∣

∣

∑

i∈I

xiyi −
1

|I|

(

∑

i∈I

xi

)(

∑

i∈I

yi

)∣

∣

∣

∣

∣

≤ 2|I|δǫ

Proof. The triangle inequality gives

∣

∣

∣

∣

∣

∑

i∈I

(xi − x)(yi − y)

∣

∣

∣

∣

∣

≤ |I|δǫ.

Rearranging this inequality gives

∑

i∈I

xiyi = x
∑

i∈I

yi + y
∑

i∈I

xi − |I|xy ± |I|δǫ

=
1

|I|

(

∑

i∈I

xi

)(

∑

i∈I

yi

)

− |I|
(

1

|I|
∑

i∈I

xi − x

)(

1

|I|
∑

i∈I

yi − y

)

± |I|δǫ.

3.1 Vertex degrees

Let v be a fixed vertex. As usual in applications of the differential equations method
for establishing dynamic concentration, we begin with the expected one-step change
in dv (i.e. we begin with the trend hypothesis). We have

E [∆dv(i)|Fi] = − 1

Q

∑

E∈H(i):v∈E

∑

u∈E\{v}

du(i)± dv(i)

(

r

2

)

L

Q
, (4)

where Fi is the filtration defined by the random greedy matching process. We note
that (4) does not take into account the contribution to the expected change in dv
that comes from the selection of an edge that contains v itself. Of course, this
event causes a rather dramatic change in dv , which could complicate our analysis.
Furthermore, we are no longer interested in dv after v leaves V (i). This is handled
formally by setting dv(i + 1) = dv(i) if v 6∈ V (i + 1), and (4) takes this convention
into account.

We begin with the upper bound on dv. Our critical interval is

[Dpr−1 + ed − fd,Dpr−1 + ed],

where
fd =

√

6rLD logN and ed = fd (1− r log p) .

Note that fd does not change in time and that ed is increasing.
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For each step j of the process we define the sequence of random variables

Dd+v,j(i) := dv(i)−Dpr−1 − ed for i ≥ j

with the stopping time Tv,j defined to be the minimum of T and the smallest index
i ≥ j such that dv(i) is not in the critical interval or v 6∈ V (i). Note that if dv(j) is
not in the critical interval then we simply have Tv,j = j. We prove dynamic concen-
tration by considering the sequence of random variables Dd+v,j(j), . . . ,Dd+v,j(Tv,j).
We chose fd and ed (with foresight) so that this sequence is a supermartingale with
respect to the natural filtration Fi. For j ≤ i < Tv,j we have

E
[

∆Dd+v,j|Fi

]

≤ − 1

Q

∑

E∈H(i):v∈E

∑

u∈E\{v}

du(i) +
Dr(r − 1)

N
pr−2 − 1

N
e′d

+O

(

Ldv
Q

+
D

N2
pr−3 +

1

N2
e′′d

)

≤ −
(

Dpr−1 + ed − fd
)

(r − 1)
(

Dpr−1 − ed
)

NDpr/r + eq
+

Dr(r − 1)

N
pr−2

− 1

N
e′d +O

(

Ldv
Q

+
D

N2
pr−3 +

1

N2
e′′d

)

≤ r(r − 1)

Np
fd −

1

N
e′d

+O

(

(ed − fd)ed
NDpr

+
eq

N2p2
+

Ldv
Q

+
D

N2
pr−3 +

1

N2
e′′d

)

Note that we use the assumption that dv(i) lies in the critical interval. Also note
that in order to get the desired supermartingale condition it is necessary to choose
ed and fd so that

e′d >
r(r − 1)

p
fd. (5)

(Of course, this equation plays a central in our choice of the functions fd and ed.)

For the given error functions ed, eq, we have

(ed − fd)ed
NDpr

+
eq

N2p2
+

Ldv
Q

+
D

N2
pr−3 +

1

N2
e′′d

≤ ed
Np

·O
(

edp
1−r

D
+

eq
edNp

+
L

ed
+

D

Ned
pr−2 +

1

Np

)

(6)

≤ ed
Np

·O
(√

L(logN)3/2p1−r

√
D

)

+
ed
Np

· o
(√

L√
D

+

√
D

N
√
L

+
1√
N

)

.

(We note that these estimates make repeated use of the simple inequality D < NL.)
By assuming that p is a sufficiently large constant times

(

L

D

) 1
2(r−1)

log
5

2(r−1) N
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we see that the expression in (6) can be made smaller than any constant times
ed/(Np logN). As the error functions fd and ed satisfy (5), the supermartingale
condition is satisfied.

We use a supermartingale inequality to bound the probability that the random
variable Dd+v,j(Tv,j) is positive. We use the following Lemma (see [2] for a proof).

Lemma 3.2. Let X(i) be a supermartingale, such that −Θ ≤ ∆X(i) ≤ θ for all i,
where θ < Θ

10 . Then for any a < θm we have

Pr(X(m) −X(0) > a) ≤ exp

(

− a2

3θΘm

)

.

Since dv is non-increasing, Dpr−1 is decreasing and ed is increasing, the one step
change in Dd+v,j is bounded above by the one step change in Dpr−1, which is at most

θ =
D(r − 1)

N
(1 + o(1)).

For a lower bound on ∆d+v,j , note that the one step change in ed is negligible com-
pared to the maximum possible one step change in dv , which occurs when we pick
an edge containing a vertex that has pairwise-degree L with v. So we can set
Θ = rL(1 + o(1)).

Now, if dv crosses the upper boundary of its critical interval at the stopping
time T , then there is some step j (with T = Tv,j) such that

Dd+v,j(j) ≤ −fd(t(j)) +
D(r − 1)

N
(1 + o(1))

and d+v,j(Tv,j) > 0. Applying the lemma (and noting D/N = o(fd)) we see that the

probability of the supermartingale d+v,j having such a large upward deviation has
probability at most

exp

{

− f2
d

3D(r−1)
N (rL)(Np

r )
(1 + o(1))

}

.

As there are O(N2) such supermartingales, we would like the above expression to
be o(N−2). Thus, it suffices to take

fd =
√

6rLD logN.

Furthermore this choice also satisfies (5). (Note that, in fact, this condition together
with (5) essentially determines the error functions ed.)

Thus, the probability that T is less than bound stated in Theorem 2.1 due to
a violation of the upper bound on dv goes to zero as N tends to infinity.

The lower bound for dv is similar.

9



3.2 Number of edges

We again begin with the trend hypothesis. We have

E [∆Q(i)|Fi] = − 1

Q

∑

A∈H(i)

∑

v∈A

dv(A) +O(L) = − 1

Q

∑

v∈V (i)

d2v(i) +O(L)

For i < T we have
∑

v∈V (i)

d2v =
(rQ)2

Np
± 2Npe2d,

by an application of Lemma 3.1, and therefore

E [∆Q(i)|Fi] = −r2Q

Np
± 2Npe2d

Q
+O(L).

We work with the upper bound on Q(i). Our critical interval is
[

ND

r
pr + eq − fq,

ND

r
pr + eq

]

,

where
fq = 6r2NL logNp2−r and eq = 15fq (1− r log p)2 .

Note that both fq and eq are non-decreasing in time. For each step j of the process
we define the sequence of random variables

DQ+
j (i) := Q(i)− ND

r
pr − eq

with the stopping time Tj defined to be the minimum of T and the smallest index
i ≥ j such that Q(i) is not in the critical interval.

We begin by showing that DQ+
j (j), . . . ,DQ+

j (Tj) is a supermartingale. For
j ≤ i < Tj we have

E
[

∆DQ+
j (i)|Fi

]

≤ −r2Q

Np
+ rDpr−1 − 1

N
e′q +

2Npe2d
Q

+O

(

L+
D

N
pr−2 +

1

N2
e′′q

)

≤ −r2(eq − fq)

Np
− 1

N
e′q +

(2r + o(1))p1−re2d
D

+O

(

L+
D

N
pr−2 +

1

N2
e′′q

)

In order to get the supermartingale condition it suffices, up to constant factors, to
take

eq > e2dNp2−r/D.

Note that this determines the main terms in the choice of eq above. As fq =
6r2NL logNp2−r, we have

−r2(eq − fq)

Np
+

(2r + o(1))p1−re2d
D

≤ −Lp1−r(logN)(1 − r log p)2.

10



This clearly dominates the remaining error terms (note that e′q > 0) and therefore
the sequence DQ+(j), . . . ,DQ+(Tj) is a supermartingale.

Now we apply the Hoeffding-Azuma inequality to bound the probability that
the random variable DQ+(Tj) is positive. The lemma we use is as follows:

Lemma 3.3. Let Xj be a supermartingale, with |∆Xi| ≤ ci for all i. Then

P (Xm −X0 ≥ a) ≤ exp









− a2

2
∑

i≤m

c2i









.

Since i < T implies bounds on degrees, we have

|∆DQ+| ≤ (1 + o(1))red ≤
√

7r3LD logN(1− r log p).

Thus, if Q crosses its upper boundary at the stopping time T , then there is some
step j (with T = Tj) such that

DQ+(j) ≤ −fq(t(j)) +O(
√
LD log3/2 N)

and DQ+(Tj) > 0. Applying the Hoeffding-Azuma we see that the probability of
the supermartingale DQ+ having such a large upward deviation has probability at
most

exp

{

− [(1 + o(1))6r2NL logNp2−r]2

2(Np)[7r3LD logN(1− r log p)2]

}

≤ exp

{

−(1 + o(1))
18r

7
· NL

D
· p3−2r

(1− r log p)2
· logN

}

= o(N−1)

where p = p(j). Note that we have used D < NL again and that the constants
have been chosen to deal with p constant. As there are at most O(N) such super-
martingales, the probability that T is less than the bound stated in Theorem 2.1
due to Q(i) breaching the upper bound tends to zero as N tends to infinity.

The lower bound for Q is similar.
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