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Abstract
We prove an essentially sharp �̃(n/k) lower bound on the k-round distributional complexity of the k-step
pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement
over Nisan and Wigderson’s �̃(n/k2) lower bound, and essentially matches the randomized lower bound
proved by Klauck. The proof is information-theoretic, and a key part of it is using asymmetric triangular
discrimination instead of total variation distance; this idea may be useful elsewhere.

2020 MSC Codes: Primary 68Q17; Secondary 94A05

1. Introduction
Pointer chasing is a natural and well-known problem that captures the importance of interac-
tion. In its two-player bit version, Alice gets as input a map fA : A→ B and Bob gets as input
fB : B→A, where A= {1, 2, . . . , n} and B= {n+ 1, n+ 2, . . . , 2n}. The pointers z0, z1, . . . are
defined inductively as

z0 = 1, z1 = fA(z0), z2 = fB(z1), z3 = fA(z2), z4 = fB(z3), . . . . (1.1)

The k-step pointer chasing function PCn,k is defined as1

PCn,k(fA, fB)= zk mod 2.

Equivalently, Alice sees the rightward edges and Bob sees the leftward edges in a directed balanced
bipartite graph where the out-degree of each vertex is one. Their goal is to output the parity of the
endpoint of a directed path of length k in the graph.

This problem was suggested by Papadimitriou and Sipser to study the number of rounds
and the order in which the players talk in communication protocols [19]. Its communication
complexity was subsequently studied in many works (e.g. [6, 7, 11, 17, 20]).

The pointer chasing problem is also known to be related to other models and questions. Nisan
and Wigderson showed that it is a ‘complete’ problem for monotone constant-depth Boolean cir-
cuits [17], and that it can be used to prove themonotone constant-depth hierarchy that was proved
by Klawe, Paul, Pippenger and Yannakakis [13]. It was further used for proving lower bounds on
the time complexity of distributed computation [16], and for proving lower bounds on the space

†Research supported by ISF.
1Parity is just a balanced Boolean function.
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complexity of streaming algorithms [9]. It is also related to the round elimination lemma, and to
the complexity of predecessor search in the cell probe model [15, 23].

This work continues the study of the communication complexity of the pointer chasing prob-
lem. As discussed above, the results here may be helpful in other models as well. We start with
a survey of known related results, and then state our main result and discuss its proof. We use
standard communication complexity terminology. For formal definitions, see for example the
textbook [14].

Background
Upper bounds. There is an obvious k-round deterministic protocol for computing PCn,k with
communication O(k log n) in which Alice speaks first. Nisan and Wigderson [17] described a
randomized (k− 1)-round protocol for PCn,k with communication O((k+ (n/k)) log n). Damm,
Jukna and Sgall [6] described a k-round deterministic protocol with communication at most
O(n log(k−1) n) for PCn,k in which Bob speaks first (see [20]).

Lower bounds. Papadimitriou and Sipser [19] conjectured that (k− 1)-round protocols for PCn,k
must use �(n) bits of communication for constant k, and proved it for k= 2. Duris, Galil and
Schnitger [7] showed that this conjecture is true; they proved that the (k− 1)-round determin-
istic communication complexity of PCn,k is at least �(n/k2). Later on, Nisan and Wigderson
[17] improved this deterministic lower bound to �(n− k log n), and also proved an �((n/k2)−
k log n) lower bound on its (k− 1)-round randomized communication complexity. Ponzio,
Radhakrishnan and Venkatesh [20] proved that the protocol from [6] is tight; they proved an
�(n log(k−1) n) on the (k− 1)-round randomized communication complexity of PCn,k for con-
stant k. Klauck [11] observed that the proof of the deterministic lower bound from [17] actually
implies an essentially sharp �(k+ (n/k)) lower bound on the (k− 1)-round randomized com-
munication complexity of PCn,k. Finally, Klauck, Nayak, Ta-Shma and Zuckerman [12] proved an
�(n/exp(k)− k log n) lower bound on the (k− 1)-round quantum communication complexity of
PCn,k.

This work. Here we focus on the distributional communication complexity of the pointer chasing
problem.We consider the uniform distribution on inputs (e.g. fA, fB are chosen independently and
uniformly at random) which seems like the most natural choice. Previously, the only known lower
bound on the k-round distributional complexity of PCn,k under the uniform distribution when
Bob speaks first was Nisan and Wigderson’s �((n/k2)− k log n) lower bound. Klauck’s observa-
tion in [11] together with von Neumann’s minimax theorem (Yao’s principle) shows that there is
some distribution for which an �(k+ (n/k)) lower bound holds. However, this distribution is not
explicit2 and, for example, prior to this work the best lower bound that was known for any prod-
uct distribution was Nisan and Wigderson’s. Finding simple and explicit distributions for central
problems proved to be useful, for example, for the disjointness function [22].

Main result. The main result of this work is a tight (up to polylog(n) factors) lower bound on the
distributional communication complexity of pointer chasing under the uniform distribution.

Theorem 1.1. The length of every k-round protocol in which Bob speaks first that computes PCn,k
with average-case error at most 1/3 under the uniform distribution is at least n/(1000k)− k log n.

Theorem 1.1 is proved in Section 4. In a nutshell, the idea is to keep track, round by round,
of the amount of information the protocol reveals on the inputs (the proof in [17] can be stated
in such a way as well). The goal is to prove that if the protocol is short, then after the protocol

2We are not aware of any method that is based on the minimax theorem for making it explicit.
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terminates the inputs are still fairly random, which is impossible when the protocol achieves its
goal.

The proof uses ameasure of distance between distributions that is new in this context: the trian-
gular discrimination. Roughly speaking, triangular discrimination replaces total variation distance
in a way that allows us to avoid the square-root loss that Pinsker’s inequality yields.

This square-root loss appears in many works, and is directly related to several fundamental
questions. For example, it appears in the parallel repetition theorem, and is connected to the
‘strong parallel repetition’ conjecture, which is motivated by Khot’s unique games conjecture [10].
The ‘strong parallel repetition’ conjecture was falsified by Raz [21]; showing this square-root loss
is necessary for parallel repetition. This loss also appears in direct sums and products in commu-
nication complexity [1, 3], where it is related to the question of optimal compression of protocols.
It is still unclear if the square-root loss is necessary for the direct sum question.

Coming back to pointer chasing, the square-root loss also appears in Nisan and Wigderson’s
lower bound [17]. This work shows that we can circumvent this loss by using triangular discrimi-
nation instead of Kullback–Leibler divergence.We are not aware of any othermetric or divergence
that can replace triangular discrimination in this respect.We believe that using triangular discrim-
ination can yield better quantitative bounds in other cases as well. For this reason, in Section 2.1,
we provide a clean example that demonstrates the main new technical idea.

2. Triangular discrimination
Measures of distance between probability distributions are extremely useful tools in many areas
of research. A specific family of such measures is f -divergences (also known as Csiszár–Morimoto
or Ali–Silvey divergences). These are measures of the form

Df (p||q)=
∑
ω∈�

q(ω)f
(
p(ω)
q(ω)

)

for a real convex function f so that f (1)= 0 (where some conventions such as 0f (0/0)= 0 are
used). For more background, see [5] and the references within.

Some well-known examples of f -divergences are the �1 distance |p− q|1 =Df1 (p||q) where
f1(ξ )= |1− ξ |, the Kullback–Leibler divergence D(p||q)=DfKL(p||q) where fKL(ξ )= ξ log ξ , and
the Jensen–Shannon divergence JS(p||q)=D(p||(p+ q)/2)+D(q||(p+ q)/2).

Each of these measures has unique properties, which make it useful in different contexts. For
example, �1 is useful due to its statistical meaning, and the Kullback–Leibler divergence is useful
due to its tight relation to information theory (and properties such as the chain rule).

Here we use the triangular discrimination [24] defined as �(p, q)=Df�(p||q) with

f�(ξ )= (ξ − 1)2

ξ + 1
.

Stated differently,

�(p, q)=
∑
ω∈�

(p(ω)− q(ω))2

p(ω)+ q(ω)
,

where by convention 0/0= 0.
Since � is not so well known in this context, we briefly discuss its properties (for more details

see [24, 5]). Like all f -divergences, it is non-negative, it is convex in (p, q), it satisfies a data pro-
cessing inequality (also known as a lumping property), and more. It is also equivalent to the
Jensen–Shannon divergence:�/2� JS� 2�. It is, however, sometimes easier to workwith� than
JS since its formula is ‘simpler’. It satisfies the following ‘improvement’ over Pinsker’s inequality
(which states that |p− q|21 � 2D(p||q)).
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Lemma 2.1 ([24]). |p− q|21/2��(p, q)� 2D(p||q).

Another interesting (‘operational’ or ‘dual’) interpretation of � is that ‘� is to �2 what �1 is to
�∞’ in the following sense. It is well known that

|p− q|1 =max
{ |p.g − q.g|

‖g‖∞
: g ∈R

�

}
,

where p.g = ∑
ω∈� p(ω)g(ω). This property of �1 is related to the fact that �1 is equivalent to total

variation distance. For � we have the following.

Lemma 2.2.

�(p, q)=max
{
(p.g − q.g)2

p.g2 + q.g2
: g ∈R

�

}
.

Proof. If

g(ω)= p(ω)− q(ω)
p(ω)+ q(ω)

,

then �(p, q)= p.g − q.g = p.g2 + q.g2 and so

�(p, q)�max
{
(p.g − q.g)2

p.g2 + q.g2
: g ∈R

�

}
.

On the other hand, for every g, by Cauchy–Schwarz,

p.g − q.g =
∑
ω

p(ω)− q(ω)√
p(ω)+ q(ω)

√
p(ω)+ q(ω)g(ω)�

√
�(p, q)

√
p.g2 + q.g2.

As a final remark, we mention that recently � was implicitly used in information-theoretic
proofs in group theory; it was used to construct group homomorphisms [8], it was used to study
harmonic functions on groups [2], and it was used in a functional analytic proof of Gromov’s
theorem on groups of polynomial growth [18]. It is therefore reasonable that � will find more
applications in computer science as well.

2.1 An example
Before proving the lower bound for pointer chasing, we describe a clean example that demon-
strates how can one use � instead of �1 to get quantitatively better bounds. Let X be a random
vector in {0, 1}n. Assume that it has high entropy:

D(pX||un)� k,
where un is the uniform distribution on {0, 1}n. Also assume that I is chosen uniformly in [n] and
independently of X. Lemma 3.1 implies that

E
I
D(pXi ||u1)�

1
n
D(pX||un)� k

n
. (2.1)

That is, on average over I, the marginal distribution of XI is close to uniform in Kullback–Leibler
divergence, when k� n. Pinsker’s inequality allows us to deduce that the distribution ofXI is close
to uniform in �1 distance as well.

It is natural to ask what happens when I is not uniform but only close to uniform. Let J be a
random element of [n], chosen independently of X, I, with very high entropy:

D(pJ ||pI)� ε.
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Pinsker’s inequality implies that |pJ − pI|1 �
√
2ε, which in turn allows us to prove that

E
J

|pXj − u1|1 � |pJ − pI|1 +E
I

|pXi − u1|1 �
√
2ε + √

2k/n.

This square-root dependence is often too expensive, especially when we apply such an argument
several times, as discussed after the statement of Theorem 1.1. Triangular discrimination allows
us to remove this square-root dependence.

Theorem 2.3. EJ �(pXj , u1)� 4ε + 10k/n.

For the rest of this subsection we prove Theorem 2.3. We start with the following simple claim.

Claim 1. If |ξ |�√
a(b+ ξ ) with a, b� 0, then ξ � a+ 2b.

Proof. Assume without loss of generality that a> 0. If ξ 2 − aξ − ab� 0 then

ξ � a+ √
a2 + 4ab
2

= a
2
(1+ √

1+ 4b/a)� a
2
(1+ 1+ 4b/a).

For s ∈ [n], let g(s)= �(pXs , u1). Write

E
J

�(pXj , u1)= pJ .g = pI .g + (pJ .g − pI .g).

Lemma 2.1 and (2.1) allow us to bound the left term:

pI .g � 2E
I
D(pXi ||u1)�

2k
n
. (2.2)

It thus remains to upper-bound
ξ = pJ .g − pI .g.

This is done as follows:

|ξ |�
√√√√∑

s

(pJ(s)− pI(s))2

pJ(s)+ pI(s)
g(s)

√∑
s

(pJ(s)+ pI(s))g(s) (Cauchy–Schwarz)

�

√√√√2
∑
s

(pJ(s)− pI(s))2

pJ(s)+ pI(s)

√∑
s

(pJ(s)+ pI(s))g(s) (�� 2)

= √
2�(pJ , pI)

√
ξ + 2pI .g.

Use Claim 1, together with (2.2) and
�(pJ , pI)� 2D(pJ ||pI)� 2ε,

to deduce that
ξ � 4ε + 8k/n.

Together with (2.2), Theorem 2.3 is proved.

2.2 Asymmetric triangular discrimination
To prove the lower bound for pointer chasing, we shall actually use the following variant of �:

�(p, q)=
∑

ω : p(ω)�q(ω)

(p(ω)− q(ω))2

p(ω)+ q(ω)
.
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Note that ��� and that � is symmetric in p, q while � is not.
The following lemma states important properties of �; it relates � to �1, and shows that � is

at most one (� may take the value two).

Lemma 2.4.
1
8
|p− q|21 ��(p, q)� 1

2
|p− q|1 � 1.

This difference between �� 1 and �� 2 is useful when we iteratively bound the ‘distance’
between two distributions, as in the proof of Theorem 1.1, since 1k = 1 but 2k grows quickly with k.

Proof. The left inequality holds by Cauchy–Schwarz:
1
2
|p− q|1 =

∑
ω : p(ω)�q(ω)

p(ω)− q(ω)√
p(ω)+ q(ω)

√
p(ω)+ q(ω)�

√
2�(p, q).

The middle inequality holds by the first equality in the equation above, because

(p(ω)− q(ω))2/(p(ω)+ q(ω))� |p(ω)− q(ω)| for all ω.
The right inequality holds since |p− q|1 � |p|1 + |q|1 = 2.

To explain the reason for using� instead of�, let us go back to Theorem 2.3. Although the the-
orem avoids the square-root loss, the coefficient of ε on the right-hand side is 4. When repeatedly
applying this theorem, we get an exponential blowup, which is too costly to carry. The follow-
ing theorem shows that � allows us to avoid this blowup; the coefficient on the right-hand side
can be 1.

Theorem 2.5. With the same notation as in Theorem 2.3,

E
J

�(pXj , u1)��(pJ , pI)+ 10k/n.

Proof. For s ∈ [n], let g(s)= �(pXs , u1). Write

E
J

�(pXj , u1)= pJ .g

= pI .g + (pJ .g − pI .g)

� pI .g +
∑
s∈S

(pJ(s)− pI(s))g(s), (�� 0)

where S= {s : pJ(s)� pI(s)}. Bound
ξ =

∑
s∈S

(pJ(s)− pI(s))g(s)

by writing

|ξ |�
√√√√∑

s∈S

(pJ(s)− pI(s))2

pJ(s)+ pI(s)
g(s)

√∑
s∈S

(pJ(s)+ pI(s))g(s) (Cauchy–Schwarz)

�
√

�(pJ , pI)
√∑

s∈S
(pJ(s)+ pI(s))g(s) (�� 1)

= √
�(pJ , pI)

√
ξ + 2pI .g, (�� 0)
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Claim 1 implies that
ξ ��(pJ , pI)+ 4pI .g.

Because ��� and using (2.2), we get pI .g � 2k/n. Overall,
E
J

�(pXj , u1)��(pJ , pI)+ 5pI .g ��(pJ , pI)+ 10k/n.

3. Preliminaries
Probability. We consider only random variables with finite support. We denote random variables
by capital letters (X, Y , . . .) and the values they attain by small letters (x, y, . . .). We let pX|y denote
the probability distribution of X conditioned on Y = y. We let EX f (x) denote the expectation of
f (X), and let EX|y f (x) denote the expectation of f (X) conditioned on Y = y.

Kullback–Leibler divergence. We state two lemmas that will be useful later on3 (see e.g. the
textbook [4]).

Lemma 3.1 (superadditivity). If X, Y are random variables taking values in Sn for some finite set
S, and the n coordinates of Y are independent, then

D(pX||pY )�
∑
i∈[n]

D(pXi ||pYi).

Lemma 3.2 (information is at most bit length). If X, Y are jointly distributed, and Y takes values
in a set of size at most 2h, then

E
Y
D(pX|y||pX)� h.

4. The lower bound
Proof of Theorem 1.1. Let � denote the length of the protocol (which we assume to be determin-
istic). Let M1, . . . ,Mt denote the messages sent in the first t rounds of the protocol. Recall that
Z0, Z1, . . . are defined in (1.1).

We shall show that if � is small then Zk is close to being uniform, even conditioned on the
transcript of the protocol. This implies that � must be large, if the protocol achieves its goal.

We prove, by induction on t = 0, 1, . . . , k, that the following holds. Let Rt denote the random
variable

Rt = (M1, . . . ,Mt , Z1, . . . , Zt−1)
(where R0 is empty and R1 =M1). We shall prove that

E
Rt

�(pZt |rt , pZt )� 6tδ, (4.1)

where

δ = 2
� + k log n

n
.

Roughly speaking, the expression ERt �(pZt |rt , pZt ) measures how much we learned on the value
of Zt from observing rt ; if this expression is small then we did not learn much on Zt from the first
t rounds of the protocol.

3The lemmas can be stated in terms of mutual information, but since it seems more natural to use Kullback–Leibler
divergence in this text, we state them in this form.
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Before proving (4.1), we explain why it completes the proof. Since the fraction of even numbers
in [n] is at least 1/2− 1/n, the error of the protocol conditioned on Rk = rk is at least

errrk �
1
2

− 1
n

− |pZk|rk−1 − pZk |1
2

.

Hence, since the protocol has error 1/3,(
1
9

− 2
3n

)2
�

(
E
Rk

|pZk|rk − pZk |1
3

)2

� E
Rk

|pZk|rk − pZk |21
8

(by convexity)

� E
Rk

�(pZk|rk , pZk) (�21 � 8�)

� 12k
� + k log n

n
.

The lower bound on � thus follows (we may assume n� 1000).
It thus remains to prove (4.1). When t = 0 it indeed holds (R0 is empty). Suppose t� 1. There

are two cases to consider, depending on the parity of t. We consider the case when t is odd, and
Bob sends the messageMt . When t is even, the argument is similar due to the symmetry between
Alice and Bob.

By induction, we have

E
Rt−1

�(pZt−1|rt−1 , pZt−1 )� 6(t − 1)δ. (4.2)

We want to bound ERt �(pZt |rt , pZt ) from above. We start by simplifying it.
The following two independence properties are crucial: let X denote the vector that represents

Alice’s input (Xs = fA(s) for each s), and let Y denote the vector that represents Bob’s input (Ys =
fB(n+ s) for each s).

(A) Conditioned on (Rt−1, Zt−1)= (rt−1, zt−1), we know that Zt = Xzt−1 is independent of Y ,
and therefore also ofMt which is a function of (Y ,m1, . . . ,mt−1).

(B) Conditioned on Rt−1 = rt−1, we know that X and Zt−1 are independent (when t = 1 we
have Zt−1 = 1 and when t > 1 we have Zt−1 = Yzt−2 ). This means that conditioned on
(Rt−1, Zt−1)= (rt−1, zt−1), the distribution pXzt−1 |rt−1,zt−1 is equal to pXzt−1 |rt−1 .

These properties hold since (i) the distribution of (X, Y) conditioned on the values of
Z0, Z1, . . . , Zt′ is a product distribution, (ii) conditioning on the value ofM1, . . . ,Mt means focus-
ing on some rectangle (e.g. a product set) in the input space, and (iii) the conditional distribution
of a product distribution on a rectangle is again a product distribution.

We are therefore interested in
E
Rt

�(pZt |rt , pZt )= E
Rt−1,Zt−1,Mt

�(pZt |rt−1,zt−1 , pZt ) (A)

= E
Rt−1,Zt−1

�(pXzt−1 |rt−1,zt−1 , pZt )

= E
Rt−1,Zt−1

�(pXzt−1 |rt−1 , pZt ) (B)

= E
Rt−1

E
Zt−1|rt−1

�zt−1 ,

(4.3)

where �s = �s(rt−1) is
�s = �(pXs|rt−1 , pZt ).
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Intuitively, by induction we know that pZt−1|rt−1 is close to uniform, so we start by checking
what happens if we replace Zt−1|rt−1 with a truly uniform variable. Let I be chosen uniformly at
random in [n], and independently of all other choices. Since the coordinates in X are uniform and
independent,

E
Rt−1

E
I

�i � E
Rt−1

E
I

�(pXi|rt−1 , pXi) (���)

� 2 E
Rt−1

E
I
D(pXi|rt−1 ||pXi) (Lemma 2.1)

� 2
n E

Rt−1
D(pX|rt−1 ||pX) (Lemma 3.1)

� δ. (Lemma 3.2)

(4.4)

Now, consider the difference

E
Rt−1

[
E

Zt−1|rt−1
�zt−1

]
− E

Rt−1

[
E
I

�i

]
= E

Rt−1

[
E

Zt−1|rt−1
[�zt−1 ]−E

I
[�i]

]
.

Start by fixing rt−1. Let q= pZt−1|rt−1 . The difference inside the expectation on the right-hand side
above equals

ξ = ξ (rt−1)=
∑
s

(q(s)− pI(s))�s.

Bound it from above as follows:

|ξ | =
∣∣∣∣∑

s

q(s)− pI(s)√
q(s)+ pI(s)

√
�s ·

√
(q(s)+ pI(s))�s

∣∣∣∣
�

√√√√∑
s

(q(s)− pI(s))2

q(s)+ pI(s)
�s

√∑
s

(q(s)+ pI(s))�s (Cauchy–Schwarz)

�

√√√√�(q, pI)+
∑

s : q(s)<pI(s)

(q(s)− pI(s))2

q(s)+ pI(s)
�s

√
ξ + 2E

I
�i. (�� 1)

Since ∑
s : q(s)<pI(s)

(q(s)− pI(s))2

q(s)+ pI(s)
�s �

∑
s

(pI(s))2

pI(s)
�s =E

I
�i,

by Claim 1 we have

ξ ��(q, pI)+ 5E
I

�i.

Now, taking expectation over Rt−1, by (4.2) and (4.4), since pI = pZt−1 ,

E
Rt−1

[
E

Zt−1|rt−1
[�zt−1 ]−E

I
[�i]

]
� E

Rt−1

[
�(pZt−1|rt−1 , pI)+ 5E

I
�i

]
� 6(t − 1)δ + 5δ.

Finally, by (4.3) and (4.4), the inductive claim is proved.
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