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A set of graphs are called cospectral if their adjacency matrices have the same char-
acteristic polynomial. In this paper we introduce a simple method for constructing
infinite families of cospectral regular graphs. The construction is valid for special
cases of a property introduced by Schwenk. For the case of cubic (3-regular) graphs,
computational results are given which show that the construction generates a large
proportion of the cubic graphs, which are cospectral with another cubic graph.

1. Introduction

The characteristic polynomial of a matrix A is the polynomial in x, det(xI − A). A

set of simple graphs {G1, G2..., Gk} are called cospectral if their adjacency matrices have

identical characteristic polynomials. A graph is not uniquely determined by its spectrum if

there is at least one non-isomorphic graph with which it is cospectral. The investigation

of the prevalence and properties of such graphs is one of the classical open problems

in spectral graph theory, and hence, methods for constructing cospectral graphs are of

interest. To date, such construction methods have mainly fallen into two categories. The

first involves performing various operations on the edges or vertices of graphs to produce

new graphs which are cospectral with the initial graphs. Perhaps the most well-known

example of this is the switching method of Godsil and McKay which was introduced

in [9] and then later generalised in [1]. The second category involves ‘pasting’ graphs

together in intelligent ways to achieve the cospectrality. Recently, there has been some

interest in the construction of cospectral graphs which provide control over certain graph

properties. In particular, cospectral graphs which are regular, among other properties,

are investigated in [3], [7] and [4]. A common feature of the existing constructions which
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ensure regularity is the use of operations which are similar to a product of graphs.

However, the nature of these operations means that both the degree of regularity and

the order of the resulting graphs can become very large, which may be undesirable. In

the present work, we introduce a construction for regular cospectral graphs which avoids

these problems; indeed, arbitrarily large cospectral regular graphs of any desired degree

can be constructed. The construction is valid for special cases of the notion of removal

cospectral vertices which was introduced by Schwenk [11] and studied further in [10]. We

paraphrase Schwenk’s definition as follows:

Definition 1.1. For two graphs G1 and G2, the subsets of vertices S ⊂ V (G1) and

T ⊂ V (G2) are called removal cospectral if there exists a bijection f : S → T such that

for every subset X ⊆ S, the graphs G1 \X and G2 \ f(X) are cospectral.

Note that, since ∅ ⊆ S, it is implicit in Definition 1.1 that G1 and G2 are cospectral.

It was subsequently shown by Godsil [8] that the requirement that G1 \X and G2 \f(X)

be cospectral for every subset X ⊆ S can be replaced with the same requirement for

only those subsets X ⊆ S which have cardinality at most two, and the converse is also

true. That is, S and T are removal cospectral if and only if, for all choices of i, j ∈ S,

the graphs G1 \ {i, j} and G2 \ {f(i), f(j)} are cospectral.

Our present construction takes a set of cospectral (possibly isomorphic), k-regular

graphs and uses them to construct a new set of cospectral graphs, in which the resulting

graphs are still k-regular. This involves selecting any choice of a k-regular graph to be

combined with each graph in the former set. The order of the newly constructed graphs

depends on this selection, and the growth in order can be made very small if desired.

We then demonstrate that, for some small choices of order N , a large proportion of the

cubic graphs which are not uniquely determined by their spectrum can be produced by

this construction. Interestingly, this proportion appears to be increasing with N .

2. Preliminaries

Throughout this manuscript we use standard graph theory notation such as can be found

in [6]. All graphs used here are simple, connected and undirected. The neighborhood of

a vertex v is the set of vertices adjacent to v and is denoted by N(v). The adjacency

matrix of a graph G is denoted by A(G). A subgraph of G arising by deleting a set of

vertices U ⊂ V (G) and all edges incident to those vertices is denoted by G \ U . Edge

deletions are denoted by G− e where e ∈ E(G). We denote the characteristic polynomial

of a graph G by φ(G, x) := det(xI − A(G)). The walk generating matrix of a graph is

W (G, x) =
∑

r≥0A(G)rxr whose (i, j)-th entry, denoted by Wij(G, x), is the generating

function for the set of all walks in G from vertex i to vertex j. A walk starting at vertex

i and ending at vertex j is an i-j walk.

We next define a special case of Definition 1.1 and call vertices which satisfy this special

case replaceable.
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Definition 2.1. For two graphs G1 and G2, the vertices u ∈ V (G1) and v ∈ V (G2) are

called replaceable if their respective neighborhoods N(u) and N(v) are removal cospectral.

If the bijection defining the removal cospectral set is g : N(u) → N(v), then we denote

the replaceable vertices by the tuple (u, v, g).

Lemma 2.2. Let G1 and G2 be graphs with replaceable vertices
(

u, v, g
)

, where u ∈

V (G1) and v ∈ V (G2) and g : N(u) → N(v). Then the set N(u) ∪ {u} is removal

cospectral with N(v) ∪ {v}, with the new removal cospectral bijection f : N(u) ∪ {u} →

N(v) ∪ {v} being equal to g on N(u) and f(u) = v.

Proof. Godsil proved in [8] that S ⊂ V (G1) and T ⊂ V (G2) are removal cospectral if

and only if for all i, j ∈ S, the following equation holds for some bijection h.

Wij(G1, x) = Wh(i)h(j)(G2, x). (2.1)

In particular, if we set S = N(u) and T = N(v), then we have h = g. Then, (2.1)

holds if and only if, for every r, there is a bijection between i-j walks of length r in

G1 and g(i)-g(j) walks of length r in G2. To complete the proof, we show that this

correspondence implies that there are analagous bijections when S = N(u) ∪ {u}.

For each i, j ∈ N(u), let w be any i-j walk. Then w can be uniquely extended to

a walk from u to j by appending the edge (u, i). Also, w can be uniquely extended

to a u-u walk by appending the edges (u, i) and (j, u). These observations, along with

the already existing correspondence between i-j walks and g(i)-g(j) walks, provide one

bijection between u-j walks and v-f(j) walks for each j ∈ N(u), and another bijection

between u-u walks and v-v walks. Hence, there is a bijection between walks in G1 starting

and ending in N(u) ∪ {u}, and walks in G2 starting and ending in N(v) ∪ {v}.

In Definition 2.3 we describe a type of graph composition which we call the vertex

composition.

Definition 2.3. Let G and H be graphs with the vertices u ∈ V (G) and v ∈ V (H) and

their neighborhoods N(u) = {u1, u2, ..., uk}, N(v) = {v1, v2, ..., vk}. Define any bijection

f : N(u) → N(v), then the graph (G ◦ H) is the graph with the vertex set (G \ {u}) ∪

(H \ {v}) and the additional edges (ui, f(ui)); i = 1, 2, ..., k. Note that |N(u)| = |N(v)|.

This vertex composition will be denoted by the tuple
(

(G ◦H), u, v, f
)

.

Note that if G and H are both k-regular, then the graph (G ◦H) will be as well. An

example of such a composition is displayed in Figure 1.
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G Hu
v

G H

Figure 1.Vertex composition
(

(G ◦H), u, v, f
)

.

We will be applying the vertex composition in Definition 2.3 upon sets of graphs, to

produce new sets of graphs. The new edges formed in each composition must be done so in

a consistent manner. To this end, consider a set of graphs {G1, ..., Gm} with replaceable

vertices u1 ∈ V (G1), u2 ∈ V (G2), ..., um ∈ V (Gm) such that |N(ui)| = k ∀i. Let gij
be the bijections defining the removal cospectral neighborhoods, hence we denote the

replaceable vertices as the tuples
(

ui, uj , gij
)

. Consider a fixed graph H with a fixed

vertex h ∈ V (H), |N(h)| = k and an arbirtrary bijection f : N(u1) → N(h) which is to

determine the new edges formed in the first composition
(

(G1◦H), u1, h, f
)

. Then the new

edges formed in the rest of the compositions are determined by
(

(Gi ◦H), ui, h, f(gi1)
)

for i = 2, . . . ,m.

Theorem 2.4. Let G1 and G2 be graphs with replaceable vertices
(

u, v, g
)

where u ∈

V (G1), v ∈ V (G2) and g : N(u) → N(v). For a third graph H with a fixed vertex

h ∈ V (H), the compositions
(

(G1◦H), u, h, f
)

and
(

(G2◦H), v, h, f(g−1)
)

are cospectral.

Proof. The method of proof follows from results of Godsil in [8] which are outlined

below. Consider two induced subgraphs within the graph (G1 ◦ H), the first being the

subgraph induced by the remaining vertices of G1, and the second being the subgraph

induced by (H ∪N(u)) := F . Then plainly G1 ∩ F = N(u). The submatrix of the walk

generating matrix W (G1, x) corresponding to the row and column indicies from N(u) is

denoted as WN (G1, x). Then Theorem 4.1 of Godsil in [8] asserts that

WN ((G1 ◦H), x)−1 = WN (G1 \ u, x)
−1 +WN (F, x)−1 + xA(N(u)) − I.

Taking the determinant of both sides, and then employing Theorem 3.1 from [8] on the

left hand side, we see that

x|N(u)|φ((G1 ◦H), x−1)

φ(G1 \N(u), x−1)φ(H \ h, x−1)
= det

(

WN (G1 \u, x)
−1+WN (F, x)−1+xA(N(u))−I

)

.

As is described in [8], the above shows that φ((G1 ◦ H), x−1) is determined by the

polynomials φ(G1 \N(u), x−1), φ(H \ h, x−1) and det
(

WN (G1 \ u, x)−1+WN(F, x)−1 +

xA(N(u)) − I
)

. The terms inside the determinant expression are determined by φ(G1 \

(K ∪{u}), x−1) and φ(F \K,x−1) where K ranges over all subsets of N(u) of cardinality

at most two.
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By considering the same representation for the composition
(

(G2 ◦ H), v, h, f(g−1)
)

,

it is easily seen that the polynomials which determine φ((G2 ◦ H), x−1) are, by the

cospectrality of G1 and G2 and by Lemma 2.2, the same as the polynomials which

determine φ((G1 ◦H), x−1). Hence, the result follows.

Next, similarly to the definitions above, another special case of Definition 1.1 is in

regards to replaceable edges.

Definition 2.5. For two graphs G1 and G2, the edges e1 ∈ E(G1) and e2 ∈ E(G2) are

called replaceable if their sets of incident vertices are removal cospectral. If the bijection

defining the removal cospectral set is g, then we denote the replaceable edges by the tuple

(e1, e2, g).

The following is a simple consequence of Definitions 1.1 and 2.5.

Lemma 2.6. Let G1 and G2 be graphs with replaceable edges
(

e1, e2, g
)

where e1 ∈

E(G1) and e2 ∈ E(G2). Then the vertices incident to e1 remain removal cospectral to

the vertices incident to e2 in the graphs G1 − e1 and G2 − e2.

Proof. Without loss of generality, let e1 = (u1, u2), e2 = (v1, v2) and g(u1) = v1,

g(u2) = v2. Note that deleting any one or two of the vertices u1 and u2 in G1 − e1

gives the same graph as the deletion in the original G1. So the only case which needs to

be considered is when none of the vertices are deleted. A well known representation of

φ(G1, x), e.g. see [8], is

φ(G1, x) = φ(G1 − e1, x)− φ(G1 \ {u1, u2}, x)

− 2
√

φ(G1 \ u1, x)φ(G1 \ u2, x) − φ(G1, x)φ(G1 \ {u1, u2}, x).

The analogous representation of φ(G2, x) is

φ(G2, x) = φ(G2 − e2, x)− φ(G2 \ {v1, v2}, x)

− 2
√

φ(G2 \ v1, x)φ(G2 \ v2, x)− φ(G2, x)φ(G2 \ {v1, v2}, x).

Comparing these two equations and considering cospectrality of the various vertex deleted

graphs, reveals that φ(G1 − e1, x) = φ(G2 − e2, x), and hence the result follows.

In Definition 2.7, we describe another type of graph composition which we call the

edge composition.

Definition 2.7. Let G and H be graphs with the edges e1 ∈ E(G) and e2 ∈ E(H)

and their respective incident vertices u1, u2 ∈ V (G) and v1, v2 ∈ V (H). Define any

bijection f : {u1, u2} → {v1, v2}, then the graph (G ⋄H) is the graph with the vertex set

V (G)∪V (H), and edge set E(G)∪E(H)\{e1, e2} plus the additional edges (ui, f(ui)) i =
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1, 2. This edge composition will be denoted by the tuple
(

(G ⋄ H), e1, e2, f
)

. Figure 2 is

an illustration of (G ⋄H).

G H

G H

e1 e2

Figure 2.Edge composition
(

(G ⋄H), e1, e2, f
)

where f(u1) = v1 and f(u2) = v2.

By using Lemma 2.6 and the analagous observations as in Theorem 2.4, the following

can be shown.

Theorem 2.8. Let G1 and G2 be graphs with replaceable edges
(

e1, e2, g
)

where e1 ∈

E(G1), e2 ∈ E(G2), and e1 = (u1, u2). For a third graph H containing an edge h ∈ E(H),

where h = (v1, v2), and an arbitrary bijection f : {u1, u2} → {v1, v2}, the compositions
(

(G1 ⋄H), e1, h, f
)

and
(

(G2 ⋄H), e2, h, f(g
−1)

)

are cospectral.

Remark 2.9. In the proceeding section we will discuss what happens when these con-

structions are applied to regular graphs. In the special case when all graphs involved are

3-regular, the vertex composition and edge composition mimic, respectively, the types 3

and 2 breeding operations discussed in [2]. From [2] we then know various properties of

the resulting cospectral graphs. For example, (G ◦H) is planar or bipartite if and only if

G and H both are, similarly for (G⋄H). Also, G and H being Hamiltonian is a necessary

condition for (G ◦H) or (G ⋄H) to be Hamiltonian. The study of cospectral 3-regular

graphs with differing Hamiltonicity is itself a topic of research, e.g. see [5, 7].

3. Constructing cospectral regular graphs

In the following, we only consider replaceable vertices, however an analogous method

can be easily obtained for replaceable edges. We begin with a set of cospectral k-regular

graphs {G1, ..., Gm}, each of order N , with the vertices u1 ∈ V (G1), u2 ∈ V (G2), ..., um ∈

V (Gm), such that (ui, uj , gij) are replaceable vertices for any choice of graphs Gi and

Gj , and where gij : N(ui) → N(uj). We now illustrate how to use this set for the

construction of new cospectral k-regular graphs. Consider a second set of cospectral

k-regular graphs {H1, ..., Hn}, of order M , defined similarly to above with replaceable

vertices vi ∈ V (Hi), and let the bijections defining these removal cospectral sets be

hij : N(vi) → N(vj). Choose an arbitrary bijection f : N(u1) → N(v1) for the first
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composition
(

(G1 ◦H1), u1, v1, f
)

. Then, by applying Theorem 2.4 multiple times, all of

the compositions
(

(Gi◦Hj), ui, vj , h1j(f(gi1))
)

for i = 1, ...,m and j = 1, ..., n are cospec-

tral. This produces a set of cardinality nm cospectral k-regular graphs on N + M − 2

vertices. Note that choosing a different bijection f could potentially produce an alternate

set of cardinality nm cospectral graphs. The tedious notation here should be cleared up

upon viewing the example below. Essentially we are just ensuring that the new edges are

connected to the appropriate vertices.

Example 3.1. The cubic graphs {G1, G2} in Figure 3 are cospectral with replaceable

vertices
(

t1, u1, g
)

and the cubic graphs {H1, H2} in Figure 3 are also cospectral with

replaceable vertices
(

v1, w1, h
)

. The removal cospectral bijections are such that g(ti) = ui

and h(vi) = wi for i = 2, 3, 4. First, consider the graph H1 and an arbitrary bijection

f : N(t1) → N(v1). For this example we chose f(ti) = vi for i = 2, 3, 4. Then the

graph obtained from the composition
(

(G1 ◦ H1), t1, v1, f
)

is the first graph displayed

in Figure 4. The second graph displayed in Figure 4 is obtained from the composition
(

(G2 ◦ H1), u1, v1, f(g
−1)

)

. By Theorem 2.4, these two graphs are cospectral. Next, we

consider the graph H2 and construct two more cospectral graphs with the compositions
(

(G1 ◦ H2), t1, w1, h(f)
)

and
(

(G2 ◦ H2), u1, w1, h(f(g
−1))

)

, displayed as the final two

graphs in Figure 4. Then, by Theorem 2.4, we can conclude that all four graphs dis-

played in Figure 4 are cospectral.

 

 

t1

t2
t3
t4

 

u1

�2
��

��

v1
�2 ��

�	

w1


2
��
�

G1 �2

H1 �2

Figure 3.The top left graph G1 is cospectral with the top right graph G2 with the

replaceable vertices
(

t1, u1, g
)

. The bottom left graph H1 is cospectral with the bottom

right graph H2 with the replaceable vertices
(

v1, w1, h
)

.
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Figure 4.The four non-isomorphic, cospectral, graphs arising from the compositions
(

(G1 ◦ H1), t1, v1, f
)

,
(

(G2 ◦ H1), u1, v1, f(g
−1)

)

,
(

(G1 ◦ H2), t1, w1, h(f)
)

and
(

(G2 ◦

H2), u1, w1, h(f(g
−1))

)

.

We now make a couple of remarks about this method. First, it should be noted that

cospectral k-regular graphs produced by this method have cyclic edge connectivity of

at most k. Hence, any cospectral graphs with larger cyclic edge connectivity can not be

produced in this manner. Second, the set of graphs {H1, . . . , Hm} could be chosen to

have cardinality one. In such a case, any vertex in the one graph may be chosen as its

“replaceable” vertex.

4. Computational results

Cubic graphs provide a nice platform for conducting experiments because it is computa-

tionally tractable to perform exhaustive searches over the set of all cubic graphs of small

order, say N ≤ 20. We provide various computational results in relation to replaceable

vertices/edges and cubic graphs. In Table 1 we display the number of cubic graphs that

possess replaceable vertices or edges within themselves, such that those vertices or edges

lie in different orbits.

Let NUS3 (non-unique spectrum) denote a cubic graph which is cospectral with at least

one other cubic graph, then in Table 2 we demonstrate the commonness of replaceable

vertices/edges among the cubic graphs which are NUS3.
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Table 1.Total number of connected, non-isomorphic, cubic graphs of order N and the

numbers of those which contain replaceable vertices/edges within themselves, which are

from different orbits.

Order Total graphs Contain rep. edge % Contain rep. vertex %

12 85 3 3.6 2 2.4

14 509 16 3.1 8 1.6

16 4060 115 2.8 49 1.2

18 41301 670 1.6 354 0.9

20 510489 4516 0.9 1993 0.4

Table 2.Number of cubic graphs of order N which are cospectral with at least one

other cubic graph (NUS3), and the numbers of those which also contain replaceable

vertices/edges (with another NUS3 cubic graph).

Order NUS3 graphs Contain rep. edge % Contain rep. vertex %

14 6 6 100 4 66.7

16 83 77 92.8 65 78.3

18 956 868 90.8 800 83.7

20 9779 9529 97.4 9271 94.8

22 114635 114304 99.7 111325 97.1

One possible explanation for the dramatic increase in commonness from Table 1 to

Table 2 is that replaceable edges and vertices are often, in some sense, “retained” when

cospectral graphs are created. This implies that we should be able to construct an in-

creasing proportion of such graphs as the order increases. This appears to be the case,

as can be seen in Table 3 which displays the number of cubic graphs which are NUS3

and the number of those which can be obtained as a result of the construction in Section

3. Recall that NUS3 graphs obtained by the construction in Section 3 have cyclic edge

connectivity no larger than three; since these are the only graphs that can be obtained

by our method, we also include the number of these in Table 3, and use NUS3C to denote

such graphs.
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Table 3.Number of cubic graphs of order N which are cospectral with at least one other

cubic graph (NUS3), the number of such graphs with cyclic edge connectivity at most 3

(NUS3C), and the number of those which can be seen as the result of our construction.

The proportion of NUS3 and NUS3C graphs that we generate is also given.

Order NUS3 graphs NUS3C graphs Number constructed % (NUS3) % (NUS3C)

14 6 6 4 66.7 66.7

16 83 65 40 48.2 61.5

18 956 841 492 51.5 58.5

20 9779 7604 6163 63.0 81.0

22 114635 89858 78775 68.7 87.7

As a final remark, denote the set of all cubic graphs of order N which are NUS3 as

CN , and then the subset of CN which consists of graphs which are produced by one of

the constructions, denote as C∗
N . Then Table 3 suggests the following conjecture, which

we leave untouched for future investigations.

Conjecture 4.1.

lim
N→∞

|C∗
N |

|CN |
= 1.
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