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Abstract. Notions of k-asimulation and asimulation are introduced as
asymmetric counterparts to k-bisimulation and bisimulation, respectively.
It is proved that a first-order formula is equivalent to a standard translation
of an intuitionistic propositional formula iff it is invariant with respect to
k-asimulations for some k, and then that a first-order formula is equivalent
to a standard translation of an intuitionistic propositional formula iff it is
invariant with respect to asimulations. Finally, it is proved that a first-
order formula is intuitionistically equivalent to a standard translation of
an intuitionistic propositional formula iff it is invariant with respect to
asimulations between intuitionistic models.

Keywords. model theory, intuitionistic logic, propositional logic, bisimu-
lation, Van Benthem’s theorem.

Van Benthem’s well-known modal characterization theorem (Theorem 3 below)
states that a first-order formula is equivalent to a standard translation of a modal
propositional formula iff it is invariant with respect to bisimulations. There is also a
weaker ‘parametrized’ version of this result stating that a first-order formula is equiv-
alent to a standard translation of a modal propositional formula iff this formula is
invariant with respect to k-bisimulations for some k. Although both results yield a
convenient model-theoretical technique distinguishing ‘modal’ first-order formulas from
‘non-modal’ ones, Van Benthem’s characterization theorem, unlike its parametrized
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version, also isolates a single property defining expressive powers of modal proposi-
tional logic and thus gives us an important insight into its nature when this logic is
viewed as a fragment of first-order logic.

It is somewhat surprising that results analogous to Van Benthem’s modal char-
acterization theorem and its parametrized version were not obtained thus far for the
intuitionistic propositional logic, although the view of the latter as a fragment of modal
propositional logic has a long and established tradition dating back to Tarski-Gödel
translation of this logic into S4. The present paper fills this gap.

The layout of the paper is as follows. Starting from some notational conventions and
preliminary remarks in section 1, we then move on to the proof of a ‘parametrized’ ver-
sion of model-theoretic characterization of intuitionistic propositional logic in section 2
and finally prove the full unparametrized counterpart to Van Benthem’s characteriza-
tion theorem for intuitionistic propositional logic in section 3. From this latter result
we derive a characterization of equivalence of a first-order formula to a standard trans-
lation of intuitionistic formula on the class of intuitionistic models. This latter result
is of special interest, given that, unlike in the case of modal propositional logic, not
every first-order model can be treated as a model of intuitionistic propositional logic.
Finally, in section 4 we sum up and state some directions for further research.

1 Preliminaries

A formula is a formula of classical predicate logic with identity whose predicate letters
are in vocabulary Σ = {R2, P 1

1 , . . . P
1
n , . . . }. A model is a model of this logic. We refer

to formulas with lower-case Greek letters distinct from α and β, and to sets of formulas
with upper-case Greek letters distinct from Σ. If ϕ is a formula, then we associate with
it the following finite vocabulary Σϕ ⊆ Σ such that Σϕ = {R2 }∪{Pi | Pi occurs in ϕ }.
If ψ is a formula, Σ′ ⊆ Σ and every predicate letter occurring in ψ is in Σ′, then we
call ψ a Σ′-formula.

We refer to sequence x1, . . . , xn of any objects as x̄n. If all free variables of a
formula ϕ coincide with a variable x, we write ϕ(x). If all free variables of formulas
in Γ coincide with x, we write Γ(x). We refer to the domain of a model M by D(M).
A pointed model is a pair (M,a), where M is a first-order model and a ∈ D(M). If
(M,a) is a pointed model, we write M,a |= ϕ(x) and say that ϕ(x) is true at (M,a)
iff for any variable assignment f in M such that f(x) = a, we have M, f |= ϕ(x). It
follows from this convention that truth of a formula ϕ(x) at a pointed model is to some
extent independent from the choice of its only free variable.

An intuitionistic formula is a formula of intuitionistic propositional logic. We refer
to intuitionistic formulas with letters i, j, k, possibly with primes or subscripts. We
assume a standard Kripke semantics for intuitionistic propositional logic.

If x is an individual variable in a first-order language, then by standard x-translation
of intuitionistic formulas into formulas we mean the following map ST defined by
induction on the complexity of the corresponding intuitionistic formula. The induction
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goes as follows:

ST (pn, x) = Pn(x);

ST (⊥, x) = (x 6= x);

ST (i ∧ j, x) = ST (i, x) ∧ ST (j, x);

ST (i ∨ j, x) = ST (i, x) ∨ ST (j, x);

ST (i→ j, x) = ∀y(R(x, y) → (ST (i, y) → ST (j, y))).

Standard conditions are imposed on the variables x, y.
By degree of a formula we mean the greatest number of nested quantifiers occurring

in it. Degree of a formula ϕ is denoted by r(ϕ). Its formal definition by induction on
the complexity of ϕ goes as follows:

r(ϕ) = 0 for atomic ϕ

r(¬ϕ) = r(ϕ)

r(ϕ ◦ ψ) = max(r(ϕ), r(ψ)) for ◦ ∈ {∧,∨,→}

r(Qxϕ) = r(ϕ) + 1 for Q ∈ { ∀, ∃ }

If Σ′ ⊆ Σ, k ∈ N and ϕ(x) is a Σ′-formula such that r(ϕ) ≤ k, then ϕ is a (Σ′, x, k)-
formula.

2 A parametrized version of the main result

We start with the definition of an ‘intuitionistic’ counterpart of k-bisimulation.

Definition 1. Let Σ′ ⊆ Σ, R2 ∈ Σ′, (M,a), (N, b) be two pointed Σ′-models. A binary
relation

A ⊆
⋃

n>0

((D(M)n ×D(N)n) ∪ (D(N)n ×D(M)n)),

is called 〈(M,a), (N, b)〉k-asimulation iff (a)A(b) and for any α, β ∈ {M,N }, any
sequence (ā′m, a

′) ∈ D(α)m+1 and any sequence (b̄′m, b
′) ∈ D(β)m+1, whenever we

have (ā′m, a
′)A(b̄′m, b

′), the following conditions hold:

∀P ∈ Σ′(α, a′ |= P (x) ⇒ β, b′ |= P (x)) (1)

b′′ ∈ D(β) ∧ b′Rβb′′ ∧m < k ⇒

⇒ ∃a′′ ∈ D(α)(a′Rαa′′ ∧ (b̄′m, b
′, b′′)A(ā′m, a

′, a′′) ∧ (ā′m, a
′, a′′)A(b̄′m, b

′, b′′)) (2)

Example 1. Consider two {R2, P 1 }-models M and N such that D(M) = { a, b, c },
RM = { (a, b), (a, c) }, PM = { c }, and D(N) = { d, e }, RN = { (d, e) }, PN = { d }.
Then binary relation A such that (a)A(d), (d, e)A(a, b) and (a, b)A(d, e) is an 〈(M,a), (N, d)〉k-
asimulation for every k ∈ N.

Lemma 1. Let ϕ(x) = ST (i, x) for some intuitionistic formula i, and let r(ϕ) = k.
Let Σϕ ⊆ Σ′ ⊆ Σ, (M,a), (N, b) be two pointed Σ′-models, let A be an 〈(M,a), (N, b)〉l-
asimulation. Then

∀α, β ∈ {M,N }∀(ā′m, a
′) ∈ D(α)m+1∀(b̄′m, b

′) ∈ D(β)m+1

((ā′m, a
′)A(b̄′m, b

′) ∧m+ k ≤ l ∧ α, a′ |= ϕ(x) ⇒ β, b′ |= ϕ(x)).
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Proof. We proceed by induction on the complexity of i. In what follows we will abbre-
viate the induction hypothesis by IH.

Basis. Let i = pn. Then ϕ(x) = Pn(x) and we reason as follows:

(ā′m, a
′)A(b̄′m, b

′) (premise) (3)

α, a′ |= Pn(x) (premise) (4)

Pn ∈ Σ′ (by Σϕ ⊆ Σ′) (5)

∀P ∈ Σ′(α, a′ |= P (x) ⇒ β, b′ |= P (x)) (from (3) by (1)) (6)

α, a′ |= Pn(x) ⇒ β, b′ |= Pn(x) (from (5) and (6)) (7)

β, b′ |= Pn(x) (from (4) and (7)) (8)

The case i = ⊥ is obvious.
Induction step.
Case 1. Let i = j ∧ k. Then ϕ(x) = ST (j, x) ∧ ST (k, x) and we reason as follows:

(ā′m, a
′)A(b̄′m, b

′) (premise) (9)

α, a′ |= ST (j, x) ∧ ST (k, x) (premise) (10)

m+ r(ST (j, x) ∧ ST (k, x)) ≤ l (premise) (11)

r(ST (j, x)) ≤ r(ST (j, x) ∧ ST (k, x)) (by df of r) (12)

r(ST (k, x)) ≤ r(ST (j, x) ∧ ST (k, x)) (by df of r) (13)

α, a′ |= ST (j, x) (from (10)) (14)

α, a′ |= ST (k, x) (from (10)) (15)

m+ r(ST (j, x)) ≤ l (from (11) and (12)) (16)

m+ r(ST (k, x)) ≤ l (from (11) and (13)) (17)

β, b′ |= ST (j, x) (from (9), (14) and (16) by IH) (18)

β, b′ |= ST (k, x) (from (9), (15) and (17) by IH) (19)

β, b′ |= ST (j, x) ∧ ST (k, x) (from (18) and (19)) (20)

Case 2. Let i = j ∨ k. Then ϕ(x) = ST (j, x) ∨ ST (k, x) and we have then
α, a′ |= ST (j, x)∨ST (k, x). Assume, without a loss of generality, that α, a′ |= ST (j, x).
Then we reason as follows:

α, a′ |= ST (j, x) (premise) (21)

(ā′m, a
′)A(b̄′m, b

′) (premise) (22)

m+ r(ST (j, x) ∨ ST (k, x)) ≤ l (premise) (23)

r(ST (j, x)) ≤ r(ST (j, x) ∨ ST (k, x)) (by df of r) (24)

m+ r(ST (j, x)) ≤ l (from (23) and (24)) (25)

β, b′ |= ST (j, x) (from (21), (22) and (25) by IH) (26)

β, b′ |= ST (j, x) ∨ ST (k, x) (from (26)) (27)

Case 3. Let i = j → k. Then

ϕ(x) = ∀y(R(x, y) → (ST (j, y) → ST (k, y))).
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Let
α, a′ |= ∀y(R(x, y) → (ST (j, y) → (ST (k, y))),

and let
β, b′ |= ∃y(R(x, y) ∧ (ST (j, y) ∧ ¬ST (k, y))).

This means that we can choose a b′′ ∈ D(β) such that b′Rβb′′ and β, b′′ |= ST (j, y)∧¬ST (k, y).
We now reason as follows:

β, b′′ |= ST (j, y) ∧ ¬ST (k, y) (by choice of b′′) (28)

b′′ ∈ D(β) ∧ b′Rβb′′ (by choice of b′′) (29)

(ā′m, a
′)A(b̄′m, b

′) (premise) (30)

m+ r(ϕ(x)) ≤ l (premise) (31)

r(ϕ(x)) ≥ 1 (by df of r) (32)

m < l (from (31) and (32)) (33)

∃a′′ ∈ D(α)(a′Rαa′′ ∧ (b̄′m, b
′, b′′)A(ā′m, a

′, a′′) ∧ (ā′m, a
′, a′′)A(b̄′m, b

′, b′′)) (34)

(from (29), (30) and (33) by(2))

Now choose an a′′ for which (34) is satisfied; we add the premises following from our
choice of a′′ and continue our reasoning as follows:

a′′ ∈ D(α) ∧ a′Rαa′′ (by choice of a′′) (35)

(b̄′m, b
′, b′′)A(ā′m, a

′, a′′) (by choice of a′′) (36)

(ā′m, a
′, a′′)A(b̄′m, b

′, b′′) (by choice of a′′) (37)

r(ST (j, y)) ≤ r(ϕ(x)) − 1 (by df of r) (38)

r(ST (k, y)) ≤ r(ϕ(x)) − 1 (by df of r) (39)

m+ 1 + r(ST (j, y)) ≤ l (from (31) and (38)) (40)

m+ 1 + r(ST (k, y)) ≤ l (from (31) and (39)) (41)

α, a′′ |= ST (j, x) (from (28), (36), (40) by IH) (42)

α, a′′ |= ¬ST (k, x) (from (28), (37), (41) by IH) (43)

α, a′′ |= ST (j, y) ∧ ¬ST (k, y) (from (42), (43)) (44)

α, a′ |= ∃y(R(x, y) ∧ (ST (j, y) ∧ ¬ST (k, y))) (from (35) and (44)) (45)

The last line contradicts our initial assumption that

α, a′ |= ∀y(R(x, y) → (ST (j, y) → (ST (k, y))).

Definition 2. A formula ϕ(x) is invariant with respect to k-asimulations iff for any
Σ′ such that Σϕ ⊆ Σ′ ⊆ Σ, any pointed Σ′-models (M,a) and (N, b), if there exists an
〈(M,a), (N, b)〉k-asimulation A and M,a |= ϕ(x), then N, b |= ϕ(x).

Example 2. Consider again models M and N and binary relation A from Example
1. Formula ∃y(R(x, y) ∧ P (y)) is true at (M,a), but not at (N, d). So, since for every
k ∈ N A is an 〈(M,a), (N, d)〉k-asimulation, we get that there is no k such that this
formula is invariant with respect to k-asimulations.
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Corollary 1. If ϕ(x) is a standard x-translation of an intuitionistic formula and
r(ϕ) = k, then ϕ(x) is invariant with respect to k-asimulations.

Corollary 1 immediately follows from Lemma 1 setting α = M , β = N , m = 0,
l = k, a′ = a and b′ = b.

Before we state and prove the parametrized version of our main result, we need to
mention a fact from the classical model theory of first-order logic.

Lemma 2. For any finite predicate vocabulary Σ′, any variable x and any natural k
there are, up to logical equivalence, only finitely many (Σ′, x, k)-formulas.

This fact is proved as Lemma 3.4 in [Ebbinghaus et al. 1984, pp. 189–190].

Definition 3. Let ϕ(x) be a formula. A conjunction of (Σϕ, x, k)-formulas Ψ(x) is
called a complete (ϕ, x, k)-conjunction iff (1) every conjunct in Ψ(x) is a standard x-
translation of an intuitionistic formula; and (2) there is a pointed model (M,a) such
that M,a |= Ψ(x) ∧ ϕ(x) and for any (Σϕ, x, k)-formula ψ(x), if ψ(x) is a standard
x-translation of an intuitionistic formula and M,a |= ψ(x), then Ψ(x) |= ψ(x).

Lemma 3. For any formula ϕ(x), any natural k, any Σ′ such that Σϕ ⊆ Σ′ ⊆ Σ
and any pointed Σ′-model (M,a) such that M,a |= ϕ(x) there is a complete (ϕ, x, k)-
conjunction Ψ(x) such that M,a |= Ψ(x) ∧ ϕ(x).

Proof. Let {ψ1(x) . . . , ψn(x), . . . } be the set of all (Σϕ, x, k)-formulas that are standard
x-translations of intuitionistic formulas true at (M,a). This set is non-empty since
ST (⊥ → ⊥, x) will be true at (M,a). Due to Lemma 2, we can choose in this set a
non-empty finite subset {ψi1(x) . . . , ψin(x) } such that any formula from the bigger set
is logically equivalent to (and hence follows from) a formula in this subset. Therefore,
every formula in the bigger set follows from ψi1(x) ∧ . . . ∧ ψin(x) and we also have
M,a |= ψi1(x) ∧ . . . ∧ ψin(x), therefore, ψi1(x) ∧ . . . ∧ ψin(x) is a complete (ϕ, x, k)-
conjunction.

Lemma 4. For any formula ϕ(x) and any natural k there are, up to logical equivalence,
only finitely many complete (ϕ, x, k)-conjunctions.

Proof. It suffices to observe that for any formula ϕ(x) and any natural k, a complete
(ϕ, x, k)-conjunction is a (Σϕ, x, k)-formula. Our lemma then follows from Lemma
2.

In what follows we adopt the following notation for the fact that for any variable x
all (Σϕ, x, k)-formulas that are standard x-translations of intuitionistic formulas true
at (M,a), are also true at (N, b):

(M,a) ≤ϕ,k (N, b).

Theorem 1. Let r(ϕ(x)) = k and let ϕ(x) be invariant with respect to k-asimulations.
Then ϕ(x) is equivalent to a standard x-translation of an intuitionistic formula.

Proof. We may assume that both ϕ(x) and ¬ϕ(x) are satisfiable, since both ⊥ and ⊤
are obviously invariant with respect to k-asimulations and we have, for example, the
following valid formulas:
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⊥ ↔ ST (⊥, x),⊤ ↔ ST (⊥ → ⊥, x).

Wemay also assume that there are two complete (ϕ, x, k+2)-conjunctions Ψ(x),Ψ′(x)
such that Ψ′(x) |= Ψ(x), and both formulas Ψ(x) ∧ ϕ(x) and Ψ′(x) ∧ ¬ϕ(x) are satis-
fiable.

For suppose otherwise. Then take the set of all complete (ϕ, x, k + 2)-conjunctions
Ψ(x) such that the formula Ψ(x) ∧ ϕ(x) is satisfiable. This set is non-empty, be-
cause ϕ(x) is satisfiable, and by Lemma 3, it can be satisfied only together with some
complete (ϕ, x, k + 2)-conjunction. Now, using Lemma 4, choose in it a finite non-
empty subset {Ψi1(x) . . . ,Ψin(x) } such that any complete (ϕ, x, k + 2)-conjunction
is equivalent to an element of this subset. We can show that ϕ(x) is logically equiv-
alent to Ψi1(x) ∨ . . . ∨ Ψin(x). In fact, if M,a |= ϕ(x) then, by Lemma 3, at least
one complete (ϕ, x, k+2)-conjunction is true at (M,a) and therefore, its equivalent in
{Ψi1(x) . . . ,Ψin(x) } is also true at (M,a), and so, finally we haveM,a |= Ψi1(x)∨. . .∨Ψin(x).
In the other direction, if M,a |= Ψi1(x) ∨ . . . ∨ Ψin(x), then for some 1 ≤ j ≤ n we
have M,a |= Ψij (x). Then, since Ψij (x) |= Ψij (x) and by the choice of Ψij (x) the
formula Ψij (x)∧ϕ(x) is satisfiable, so, by our assumption, the formula Ψij (x)∧¬ϕ(x)
must be unsatisfiable, and hence ϕ(x) must follow from Ψij (x). But in this case we
will have M,a |= ϕ(x) as well. So ϕ(x) is logically equivalent to Ψi1(x) ∨ . . . ,∨Ψin(x)
but the latter formula, being a disjunction of conjunctions of standard x-translations
of intuitionistic formulas, is itself a standard x-translation of an intuitionistic formula,
and so we are done.

If, on the other hand, one can take two complete (ϕ, x, k+2)-conjunctions Ψ(x),Ψ′(x)
such that Ψ′(x) |= Ψ(x), and formulas Ψ(x) ∧ ϕ(x) and Ψ′(x) ∧ ¬ϕ(x) are satisfiable,
we reason as follows. Take a pointed Σϕ-model (M,a) such that M,a |= Ψ(x) ∧ ϕ(x)
and for any (Σϕ, x, k + 2)-formula ψ(x), if ψ(x) is a standard x-translation of an intu-
itionistic formula true at (M,a), then ψ(x) follows from Ψ(x), and take any pointed
model (N, b) such that N, b |= Ψ′(x) ∧ ¬ϕ(x).

We can construct an 〈(M,a), (N, b)〉k-asimulation and thus obtain a contradiction
in the following way.

Let α, β ∈ {M,N } and let (ā′m, a
′) and (b̄′m, b

′) be in D(α)m+1 and D(β)m+1,
respectively. Then

(ā′m, a
′)A(b̄′m, b

′) ⇔ (m ≤ k ∧ (α, a′) ≤ϕ,k−m+2 (β, b′)).

By choice of Ψ(x),Ψ′(x) and the independence of truth at a pointed model from
the choice of a single free variable in a formula we obviously have (a)A(b).

Further, since the degree of any atomic formula is 0, and the above condition implies
that k−m+2 ≥ 2, it is evident that for any (ā′m, a

′)A(b̄′m, b
′) and any predicate letter

P ∈ Σϕ we have α, a′ |= P (x) ⇒ β, b′ |= P (x).
To verify condition (2), take any (ā′m, a

′)A(b̄′m, b
′) such that m < k and any

b′′ ∈ D(β) such that b′Rβb′′. In this case we will also have m+ 1 ≤ k.
Then consider the following two sets:

Γ = {ST (i, x) | ST (i, x) is a (Σϕ, x, k + 1−m)-formula, and β, b′′ |= ST (i, x) };

∆ = {ST (i, x) | ST (i, x) is a (Σϕ, x, k + 1−m)-formula, and β, b′′ |= ¬ST (i, x) }.
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These sets are non-empty, since by our assumption we have k+1−m ≥ 1. Therefore,
as we have r(ST (⊥, x)) = 0 and r(ST (⊥ → ⊥, x)) = 1, we will also have ST (⊥, x) ∈ ∆
and ST (⊥ → ⊥, x) ∈ Γ. Then, according to our Lemma 2, there are finite non-empty
sets of logical equivalents for both Γ and ∆. Choosing these finite sets, we in fact
choose some finite {ST (i1, x) . . . ST (it, x) } ⊆ Γ, {ST (j1, x) . . . ST (ju, x) } ⊆ ∆ such
that

∀ψ(x) ∈ Γ(ST (i1, x) ∧ . . . ∧ ST (it, x) |= ψ(x));

∀χ(x) ∈ ∆(χ(x) |= ST (j1, x) ∨ . . . ∨ ST (ju, x)).

But then we obtain that the formula

ST ((i1 ∧ . . . ∧ it) → (j1 ∨ . . . ∨ ju), x)

is false at (β, b′). In fact, b′′ disproves this implication for (β, b′). But every formula
both in {ST (i1, x) . . . ST (it, x) } and {ST (j1, x) . . . ST (ju, x) } is, by their choice, a
(Σϕ, x, k + 1 − m)-formula, and so the implication under consideration must be a
(Σϕ, x, k + 2−m)-formula. Note, further, that by (ā′m, a

′)A(b̄′m, b
′) we have

(α, a′) ≤ϕ,k−m+2 (β, b′)

and therefore this implication must be false at (α, a′) as well. But then take any
a′′ ∈ D(α) such that a′Rαa′′ and a′′ verifies the conjunction in the antecedent of
the formula but falsifies its consequent. We must conclude then, by the choice of
{ST (i1, x) . . . ST (it, x) }, that α, a

′′ |= Γ and so, by the definition of A, and given that
m+ 1 ≤ k, that (b̄′m, b

′, b′′)A(ā′m, a
′, a′′). Since, in addition, a′′ falsifies every formula

from {ST (j1, x) . . . ST (ju, x) }, then, by the choice of this set, we must conclude that
every (Σϕ, x, k + 1 − m)-formula that is a standard x-translation of an intuitionistic
formula false at (β, b′′) is also false at (α, a′′). But then, again by the definition of A,
and given the fact that m+1 ≤ k, we must also have (ā′m, a

′, a′′)A(b̄′m, b
′, b′′), and so

condition (2) holds.
Therefore A is an 〈(M,a), (N, b)〉k-asimulation and we have got our contradiction

in place.

Theorem 2. A formula ϕ(x) is equivalent to a standard x-translation of an intu-
itionistic formula iff there exists a k ∈ N such that ϕ(x) is invariant with respect to
k-asimulations.

Proof. Let ϕ(x) be equivalent to ST (i, x). Then by Corollary 1, ST (i, x) is invariant
with respect to r(ST (i, x))-asimulations, and, therefore, so is ϕ(x). In the other di-
rection, let ϕ(x) be invariant with respect to k-asimulations for some k. If k ≤ r(ϕ),
then every r(ϕ)-asimulation is k-asimulation, so ϕ(x) is invariant with respect to r(ϕ)-
asimulations and hence, by Theorem 1, ϕ(x) is equivalent to a standard x-translation
of an intuitionistic formula. If, on the other hand, r(ϕ) < k, then set l = k − r(ϕ)
and consider variables ȳl not occurring in ϕ(x). Then r(∀ȳlϕ(x)) = k and ϕ(x) is
logically equivalent to ∀ȳlϕ(x), so the latter formula is also invariant with respect to
k-asimulations, and hence by Theorem 1 ∀ȳlϕ(x) is logically equivalent to a standard
x-translation of an intuitionistic formula. But then ϕ(x) is equivalent to this standard
x-translation as well.
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3 The main result

We begin with a definition of an ‘intuitionistic’ counterpart to bisimulation:

Definition 4. Let Σ′ ⊆ Σ, R2 ∈ Σ′, (M,a), (N, b) be two pointed Σ′-models. A binary
relation

A ⊆ (D(M)×D(N)) ∪ (D(N)×D(M)),

is called 〈(M,a), (N, b)〉-asimulation iff aAb and for any α, β ∈ {M,N }, any a′ ∈ D(α),
b′ ∈ D(β) whenever we have a′Ab′, the following conditions hold:

∀P ∈ Σ′(α, a′ |= P (x) ⇒ β, b′ |= P (x)) (46)

b′′ ∈ D(β) ∧ b′Rβb′′ ⇒ ∃a′′ ∈ D(α)(a′Rαa′′ ∧ b′′Aa′′ ∧ a′′Ab′′) (47)

Example 3. Consider again models M and N from Example 1. Binary relation
B = { (a, d), (b, e), (e, b) } is an 〈(M,a), (N, d)〉-asimulation.

Lemma 5. Let A be an 〈(M,a), (N, b)〉-asimulation, and let

A′ = { 〈(c̄n, c
′), (d̄n, d

′)〉 | c′Ad′ }.

Then A′ is an 〈(M,a), (N, b)〉k-asimulation for any k ∈ N.

Proof. We obviously have (a)A′(b), and since for any α, β ∈ {M,N }, and any (c̄n, c
′)

in D(α)n+1, (d̄n, d
′) in D(β)n+1 such that (c̄n, c

′)A′(d̄n, d
′) we have c′Ad′, condition

(1) for A′ follows from the fulfilment of condition (46) for A. Also, if (c̄n, c
′)A′(d̄n, d

′)
then c′Ad′, and if, further, d′′ ∈ D(β) and d′Rβd′′ then by condition (47) we can choose
c′′ ∈ D(α) such that c′Rαc′′, c′′Ad′′ and d′′Ac′′. But then, by definition of A′ we will
also have (c̄n, c

′, c′′)A′(d̄n, d
′, d′′) and (d̄n, d

′, d′′)A′(c̄n, c
′, c′′) so condition (2) for A′ is

fulfilled for every k.

Definition 5. A formula ϕ(x) is invariant with respect to asimulations iff for any Σ′

such that Σϕ ⊆ Σ′ ⊆ Σ, any pointed Σ′-models (M,a) and (N, b), if there exists an
〈(M,a), (N, b)〉-asimulation A and M,a |= ϕ(x), then N, b |= ϕ(x).

Example 4. Consider again modelsM and N from Example 1. Since ∃y(R(x, y)∧P (y))
is true at (M,a), but not at (N, d), the fact that binary relation B from Example 3 is
an 〈(M,a), (N, d)〉-asimulation means that this formula is not invariant with respect to
asimulations.

Corollary 2. If ϕ(x) is equivalent to a standard x-translation of an intuitionistic
formula, then ϕ(x) is invariant with respect to asimulations.

Proof. Let ϕ(x) be equivalent to a standard x-translation of an intuitionistic for-
mula, let A be an 〈(M,a), (N, b)〉-asimulation and let A′ be defined as in Lemma
5. Then by this Lemma A′ is an 〈(M,a), (N, b)〉k-asimulation for every k. So if we
have M,a |= ϕ(x), but not N, b |= ϕ(x), then ϕ(x) is not invariant with respect to
k-asimulations for any k, which is in contradiction with Theorem 2.
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In what follows we will also need some notions and facts from model theory of
modal propositional logic. Thus, standard modal x-translation Tr(m,x) of a modal
propositional formula m in first-order logic is defined by the following induction on the
complexity of modal propositional formula:

Tr(pn, x) = Pn(x);

Tr(m ∧m′, x) = Tr(m,x) ∧ Tr(m′, x);

Tr(¬m,x) = ¬Tr(m,x);

Tr(✷m,x) = ∀y(R(x, y) → Tr(m, y)).

Another important idea is the notion of bisimulation:

Definition 6. Let Σ′ be a predicate vocabulary such that Σ′ ⊆ Σ, R2 ∈ Σ′, and
(M,a), (N, b) be pointed Σ′-models. Then a binary relation E ⊆ D(M) × D(N) is a
〈(M,a), (N, b)〉-bisimulation iff aEb and for any a′ ∈ M , b′ ∈ N , whenever a′Eb′, the
following conditions hold:

∀P ∈ Σ′(M,a′ |= P (x) ⇔ N, b′ |= P (x)); (48)

(a′′ ∈ D(M) ∧ a′RMa′′) ⇒ ∃b′′ ∈ D(N)(b′RNb′′ ∧ a′′Eb′′); (49)

(b′′ ∈ D(N) ∧ b′RNb′′) ⇒ ∃a′′ ∈ D(M)(a′RMa′′ ∧ a′′Eb′′). (50)

Definition 7. A formula ϕ(x) is invariant with respect to bisimulations iff for any Σ′

such that Σϕ ⊆ Σ′ ⊆ Σ, any pointed Σ′-models (M,a) and (N, b), and any 〈(M,a), (N, b)〉-
bisimulation it is true that

M,a |= ϕ(x) ⇒ N, b |= ϕ(x).

The concept of standard modal translation and that of bisimulation invariance are
tied together by Van Benthem’s famous modal characterization theorem:

Theorem 3. A formula ϕ(x) is invariant with respect to bisimulations iff it is equiv-
alent to a standard modal x-translation of a modal propositional formula.

Its proof can be found, for example, in [Blackburn et al. 2001, Theorem 2.68, pp.
103–104]. It is easy to see that our main result below (Theorem 5) is in an analogy with
Van Benthem’s characterization theorem for intuitionistic propositional logic both in
its formulation and in methods of proof employed.

Lemma 6. Let ϕ(x) be a formula invariant with respect to asimulations. Then:

1. ϕ(x) is invariant with respect to bisimulations.

2. ¬ϕ(x) is invariant with respect to bisimulations.

Proof. (1) Let Σϕ ⊆ Σ′ ⊆ Σ, let (M,a), (N, b) be pointed Σ′-models and let E be
an 〈(M,a), (N, b)〉-bisimulation such that M,a |= ϕ(x) but not N, b |= ϕ(x). Then
define A as E ∪ E−1. It is easy to verify that A is an 〈(M,a), (N, b)〉-asimulation: we
obviously have aAb, and condition (46) is fulfilled.

To verify (47), assume that a′Ab′. Then either a′ ∈ D(M) ∧ b′ ∈ D(N) or
a′ ∈ D(N) ∧ b′ ∈ D(M). So in the former case, by Definition 6 and our definition
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of A, we must have a′Eb′, while in the latter case we must have b′Ea′. Therefore,
in the former case, if b′RNb′′ we apply condition (50) and choose a′′ ∈ D(M) such
that a′RMa′′ ∧ a′′Eb′′, and so, by definition of A, we have both a′′Ab′′ and b′′Aa′′. In
the latter case, if b′RM b′′ we apply condition (49) and choose a′′ ∈ D(N) such that
a′RNa′′ ∧ b′′Ea′′, and so, again by definition of A, we have both b′′Aa′′ and a′′Ab′′.
Thus A is an 〈(M,a), (N, b)〉-asimulation and ϕ(x) is not invariant with respect to
asimulations, contrary to our assumption. The first statement of the lemma is proved.

(2) Let Σϕ ⊆ Σ′ ⊆ Σ, let (M,a), (N, b) be pointed Σ′-models and let E be an
〈(M,a), (N, b)〉-bisimulation such that N, b |= ϕ(x) but not M,a |= ϕ(x). Again,
define A as E ∪ E−1. In the previous paragraph it was established that A verifies
conditions (46) and (47). But since aEb, we also have bAa and so A is in fact an
〈(N, b), (M,a)〉-asimulation, which contradicts our assumption that ϕ(x) is invariant
with respect to asimulations.

Definition 8. A model M is called m-saturated iff for any a ∈ D(M) and for any set
Θ(x) of standard modal x-translations of modal propositional formulas it is true that

[∀(Θ′(x) ⊆ Θ(x))(Θ′(x) is finite ⇒ ∃b ∈ D(M)(aRMb ∧M, b |= Θ′(x)))] ⇒

⇒ ∃c ∈ D(M)(aRMc ∧M, c |= Θ(x)).

Let Σ′ ⊆ Σ. In what follows we adopt the following notation for the fact that for
any x all Σ′-formulas that are standard x-translations of intuitionistic formulas true at
(M,a), are also true at (N, b):

(M,a) ≤Σ′ (N, b).

Lemma 7. Let Σ′ ⊆ Σ, let M , N be m-saturated Σ′-models and let (M,a) ≤Σ′ (N, b).
Then relation ≤Σ′ is an 〈(M,a), (N, b)〉-asimulation.

Proof. It is obvious that aAb, and since for any unary predicate letter P and variable x
formula P (x) is a standard x-translation of an atomic intuitionistic formula, condition
(46) is trivially satisfied for ≤Σ′ . To verify condition (47), choose any α, β ∈ {M,N },
and a′ ∈ D(α), b′, b′′ ∈ D(β) such that (α, a′) ≤Σ′ (β, b′) and b′Rβb′′. Then choose any
variable x and consider the following two sets:

Γ = { i | ST (i, x) is a Σ′-formula, and β, b′′, |= ST (i, x) };

∆ = { i | ST (i, x) is a Σ′-formula, and β, b′′, |= ¬ST (i, x) }.

We have by the choice of Γ, ∆ that for every finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ the for-
mula ST (

∧
(Γ′) →

∨
(∆′), x) is disproved by b′′ for (β, b′). So, by our premise that

(α, a′) ≤Σ′ (β, b′), the standard translation of every such implication must be false at
(α, a′) as well. This means that every finite subset of the set

{ST (i, x) | i ∈ Γ } ∪ {¬ST (i, x) | i ∈ ∆ }

is true at some a′′ ∈ D(α) such that a′Rαa′′. (We set ∆′ = {ST (⊥, x) } if the finite
set in question has an empty intersection with ∆ and Γ′ = {ST (⊥ → ⊥, x) } if it has
an empty intersection with Γ.) But by Corollary 2 and Lemma 6 every formula in the
set under consideration is invariant with respect to bisimulations and hence equivalent
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to a standard modal x-translation of a modal propositional formula. Therefore, by
m-saturation of both M and N there must be an a′′ ∈ D(α) such that a′Rαa′′ and

α, a′′ |= {ST (i, x) | i ∈ Γ } ∪ {¬ST (i, x) | i ∈ ∆ }.

By choice of Γ and ∆ and by the independence of truth at a pointed model from the
choice of a single free variable in a formula we will have both (α, a′′) ≤Σ′ (β, b′′) and
(β, b′′) ≤Σ′ (α, a′′) and so condition (47) is also verified.

Lemma 8. Let Σϕ ⊆ Σ′ ⊆ Σ and let M be a Σ′-model. Then there is a Σ′-
model N such that N is an extension of M , N is m-saturated and there is a map
f : D(M) → D(N) such that for any formula ϕ(x) which is invariant with respect to
bisimulations and any a ∈ D(M) it is true that

M,a |= ϕ(x) ⇔ N, f(a) |= ϕ(x).

Proof. Let N be an ultrafilter extension of M and let f(a) be the principal ultrafilter
generated by a for any a ∈ D(M). Then our lemma follows from Propositions 2.59 and
2.61 of [Blackburn et al. 2001, pp. 96-97] and Theorem 3.

We are prepared now to state and prove our main result.

Theorem 4. Let ϕ(x) be invariant with respect to asimulations. Then ϕ(x) is equiv-
alent to a standard x-translation of an intuitionistic formula.

Proof. We may assume that ϕ(x) is satisfiable, for ⊥ is clearly invariant with respect
to asimulations and ⊥ ↔ ST (⊥, x) is a valid formula. In what follows we will write
IC(ϕ(x)) for the set of Σϕ-formulas that are standard x-translations of intuitionistic
formulas following from ϕ(x). For any pointed Σϕ-model (M,a) we will denote the
set of Σϕ-formulas that are standard x-translations of intuitionistic formulas true at
(M,a), or intuitionistic Σϕ-theory of (M,a) by ITϕ(M,a). It is obvious that for any
pointed Σϕ-models (M,a) and (N, b) we will have (M,a) ≤Σϕ

(N, b) if and only if
ITϕ(M,a) ⊆ ITϕ(N, b).

Our strategy will be to show that IC(ϕ(x)) |= ϕ(x). Once this is done we will apply
compactness of first-order logic and conclude that ϕ(x) is equivalent to a finite con-
junction of standard x-translations of intuitionistic formulas and hence to a standard
x-translation of the corresponding intuitionistic conjunction.

To show this, take any pointed Σϕ-model (M,a) such that M,a |= IC(ϕ(x)). Such
a model exists, because ϕ(x) is satisfiable and IC(ϕ(x)) will be satisfied in any pointed
model satisfying ϕ(x). Then we can also choose a pointed Σϕ-model (N, b) such that
N, b |= ϕ(x) and ITϕ(N, b) ⊆ ITϕ(M,a).

For suppose otherwise. Then for any pointed Σϕ-model (N, b) such thatN, b |= ϕ(x)
we can choose an intuitionistic formula i(N,b) such that ST (i(N,b), x) is a Σϕ-formula
true at (N, b) but not at (M,a). Then consider the set

S = {ϕ(x) } ∪ {¬ST (i(N,b), x) | N, b |= ϕ(x) }

Let {ϕ(x),¬ST (i(N1,b1), x) . . . ,¬ST (i(Nu,bu), x) } be a finite subset of this set. If this
set is unsatisfiable, then we must have ϕ(x) |= ST (i(N1,b1), x)∨. . .∨ST (i(Nu,bu), x), but
then we will also have (ST (i(N1,b1), x)∨ . . .∨ST (i(Nu,bu), x)) ∈ IC(ϕ(x)) ⊆ ITϕ(M,a),



Model-theoretic characterization of intuitionistic propositional formulas 13

and hence (ST (i(N1,b1), x)∨. . .∨ST (i(Nu,bu), x)) will be true at (M,a). But then at least
one of ST (i(N1,b1), x) . . . , ST (i(Nu,bu), x) must also be true at (M,a), which contradicts
the choice of these formulas. Therefore, every finite subset of S is satisfiable, and by
compactness S itself is satisfiable as well. But then take any pointed Σϕ-model (N ′, b′)
of S and this will be a model for which we will have both N ′, b′ |= ST (i(N ′,b′), x) by
choice of i(N ′,b′) and N

′, b′ |= ¬ST (i(N ′,b′), x) by the satisfaction of S, a contradiction.
Therefore, we will assume in the following that (M,a), (N, b) are pointed Σϕ-

models, M,a |= IC(ϕ(x)), N, b |= ϕ(x), and ITϕ(N, b) ⊆ ITϕ(M,a). Then, according
to Lemma 8, consider m-saturated models M ′, N ′ that are extensions of M and N ,
respectively, and maps f : D(M) → D(M ′) and g : D(N) → D(N ′) such that for any
Σϕ-formula χ(x) which is invariant with respect to bisimulations and for any a′ ∈ M

and b′ ∈ N we have

M,a′ |= χ(x) ⇔M ′, f(a′) |= χ(x);N, b′ |= χ(x) ⇔ N ′, g(b′) |= χ(x)

By our assumption, ϕ(x) is invariant with respect to asimulations and so, by Lemma
6 we get:

M,a |= ϕ(x) ⇔M ′, f(a) |= ϕ(x) (51)

N ′, g(b) |= ϕ(x) (52)

Any standard x-translation of an intuitionistic formula is also, by Corollary 2, invariant
with respect to asimulations. Therefore, we have

ITϕ(N
′, g(b)) = ITϕ(N, b) ⊆ ITϕ(M,a) = ITϕ(M

′, f(a)).

But then we have (N ′, g(b)) ≤Σϕ
(M ′, f(a)), and by m-saturation of M ′, N ′ and

Lemma 7 the relation ≤Σϕ
is an 〈(N ′, g(b)), (M ′, f(a))〉-asimulation. But then by (52)

and asimulation invariance of ϕ(x) we get M ′, f(a) |= ϕ(x), and further, by (51) we
conclude that M,a |= ϕ(x). Therefore, ϕ(x) in fact follows from IC(ϕ(x)).

The following theorem is an immediate consequence of Corollary 2 and Theorem 4:

Theorem 5. A formula ϕ(x) is invariant with respect to asimulations iff it is equivalent
to a standard x-translation of an intuitionistic formula.

Theorem 5 stated above establishes a criterion for the equivalence of first-order for-
mula to a standard translation of intuitionistic formula on arbitrary first-order models.
But, unlike in the case of modal propositional logic, some of these models will not
be intended models for intuitionistic logic. Therefore it would be interesting to look
for the criterion of equivalence of first-order formula to a standard translation of in-
tuitionistic formula on ‘intuitionistic’ subclass of first-order models. As the class of
intended models of intuitionistic propositional logic constitutes a first-order definable
subclass of first-order models in general, we can show that such a criterion is provided
by invariance with respect to asimulations on the models from this subclass using but
a slight modification of our proof for Theorems 4 and 5.

To tighten up on terminology, we introduce the following definitions:

Definition 9. Let Σ′ ⊆ Σ. Then Σ′-model M is intuitionistic, iff RM is transitive
and reflexive, and it is true that

∀(P ∈ Σ′)∀(a, b ∈ D(M))(aRM b ∧M,a |= P (x) ⇒M, b |= P (x)).
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The notion of intuitionistic model naturally leads to the following semantic defini-
tions:

Definition 10. 1. Γ is intuitionistically satisfiable iff Γ is satisfied in some intu-
itionistic model.

2. ϕ is an intuitionistic consequence of Γ (Γ |=i ϕ) iff Γ∪{¬ϕ } is intuitionistically
unsatisfiable.

3. ϕ is intuitionistically equivalent to ψ iff both ψ |=i ϕ and ϕ |=i ψ.

For Σ′ ⊆ Σ let Int(Σ′) be the following set of formulas

{ ∀yR(y, y), ∀yzw((R(y, z)∧R(z, w)) → R(y, w)) }∪{ ∀yz((P (y)∧R(y, z)) → P (z)) | P ∈ Σ′ }.

It is clear that for any set Γ of Σ′-formulas and for any Σ′-formula ϕ, Γ is intuitionis-
tically satisfiable iff Γ ∪ Int(Σ′) is satisfiable, and Γ |=i ϕ iff Γ ∪ Int(Σ′) |= ϕ.

Definition 11. A formula ϕ(x) is intuitionistically invariant with respect to asimu-
lations iff for any Σ′ such that Σϕ ⊆ Σ′ ⊆ Σ, any pointed intuitionistic Σ′-models
(M,a) and (N, b), if there exists an 〈(M,a), (N, b)〉-asimulation A and M,a |= ϕ(x),
then N, b |= ϕ(x).

Example 5. Formula ∃y(R(x, y) ∧ P (y)) is not intuitionistically invariant with re-
spect to asimulations. However, our argument from Example 4 does not show this,
because models considered in this example are not intuitionistic. To prove the absence
of intuitionistic invariance with respect to asimulations, consider two {R2, P 1 }-models
M1 and N1 such that D(M1) = { a, b, c }, RM1 = { (a, a), (a, b), (a, c), (b, b), (c, c) },
PM1 = { c }, and D(N1) = { d, e }, RN1 = { (d, d), (d, e), (e, e) }, PN1 = ∅. These are
intuitionistic models. Then binary relation C = { (a, d), (b, d), (d, b), (b, e), (e, b) } is an
〈(M1, a), (N1, d)〉k-asimulation. It remains to note that the formula under considera-
tion is true at (M1, a) but not at (N1, d).

Now for the criterion of equivalence on the restricted class of intuitionistic models:

Theorem 6. Let ϕ(x) be intuitionistically invariant with respect to asimulations. Then
ϕ(x) is intuitionistically equivalent to a standard x-translation of an intuitionistic for-
mula.

Proof. We may assume that ϕ(x) is intuitionistically satisfiable, otherwise ϕ(x) is in-
tuitionistically equivalent to ST (⊥, x) and we are done. In what follows we will write
IntC(ϕ(x)) for the set of Σϕ-formulas that are standard x-translations of intuitionistic
formulas intuitionistically following from ϕ(x).

Our strategy will be to show that IntC(ϕ(x)) |=i ϕ(x). Once this is done we will
conclude that

Int(Σϕ) ∪ IntC(ϕ(x)) |= ϕ(x).

Then we apply compactness of first-order logic and conclude that ϕ(x) is equiva-
lent to a finite conjunction ψ1(x) ∧ . . . ∧ ψn(x) of formulas from this set. But it
follows then that ϕ(x) is intuitionistically equivalent to the conjunction of the set
IntC(ϕ(x)) ∩ {ψ1(x) . . . , ψn(x) }. In fact, by our choice of IntC(ϕ(x)) we have

ϕ(x) |=i

∧
(IntC(ϕ(x)) ∩ {ψ1(x) . . . , ψn(x) }),
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And by our choice of ψ1(x) . . . , ψn(x) we have

Int(Σϕ) ∪ (IntC(ϕ(x)) ∩ {ψ1(x) . . . , ψn(x) }) |= ϕ(x)

and hence
IntC(ϕ(x)) ∩ {ψ1(x) . . . , ψn(x) } |=i ϕ(x).

To show that IntC(ϕ(x)) |=i ϕ(x), take any pointed intuitionistic Σϕ-model (M,a)
such that M,a |= IntC(ϕ(x)). Such a model exists, because ϕ(x) is intuitionistically
satisfiable and IntC(ϕ(x)) will be intuitionistically satisfied in any pointed intuitionis-
tic model satisfying ϕ(x). Then we can also choose a pointed intuitionistic Σϕ-model
(N, b) such that N, b |= ϕ(x) and ITϕ(N, b) ⊆ ITϕ(M,a).

For suppose otherwise. Then for any pointed intuitionistic Σϕ-model (N, b) such
that N, b |= ϕ(x) we can choose an intuitionistic formula i(N,b) such that ST (i(N,b), x)
is a Σϕ-formula true at (N, b) but not at (M,a). Then consider the set

S = {ϕ(x) } ∪ {¬ST (i(N,b), x) | N is intuitionistic, N, b |= ϕ(x) }

Let {ϕ(x),¬ST (i(N1,b1), x) . . . ,¬ST (i(Nu,bu), x) } be a finite subset of this set. If this
set is intuitionistically unsatisfiable, then we must have

ϕ(x) |=i ST (i(N1,b1), x) ∨ . . . ∨ ST (i(Nu,bu), x),

but then we will also have

(ST (i(N1,b1), x) ∨ . . . ∨ ST (i(Nu,bu), x)) ∈ IntC(ϕ(x)) ⊆ ITϕ(M,a),

and hence (ST (i(N1,b1), x)∨. . .∨ST (i(Nu,bu), x)) will be true at (M,a). But then at least
one of ST (i(N1,b1), x) . . . , ST (i(Nu,bu), x) must also be true at (M,a), which contradicts
the choice of these formulas. Therefore, every finite subset of S is intuitionistically
satisfiable. But then every finite subset of the set S ∪ Int(Σϕ) is satisfiable as well.
By compactness of first-order logic S ∪ Int(Σϕ) is satisfiable, hence S is satisfiable
intuitionistically. But then take any pointed intuitionistic Σϕ-model (N ′, b′) of S and
this will be a model for which we will have both N ′, b′ |= ST (i(N ′,b′), x) by choice of
i(N ′,b′) and N

′, b′ |= ¬ST (i(N ′,b′), x) by the satisfaction of S, a contradiction.
Therefore, for any given pointed intuitionistic Σϕ-model (M,a) of IntC(ϕ(x))

we can choose a pointed intuitionistic Σϕ-model (N, b) such that N, b |= ϕ(x) and
ITϕ(N, b) ⊆ ITϕ(M,a). Then, reasoning exactly as in the proof of Theorem 4, we
conclude that M,a |= ϕ(x). Therefore, ϕ(x) in fact intuitionistically follows from
IntC(ϕ(x)).

Theorem 7. A formula ϕ(x) is intuitionistically invariant with respect to asimulations
iff it is intuitionistically equivalent to a standard x-translation of an intuitionistic for-
mula.

Proof. From left to right our theorem follows from Theorem 6. In the other direction,
assume that ϕ(x) is intuitionistically equivalent to ST (i, x) and assume that for some
Σ′ such that Σϕ ⊆ Σ′ ⊆ Σ, some pointed intuitionistic Σ′-models (M,a) and (N, b),
and some 〈(M,a), (N, b)〉-asimulation A we haveM,a |= ϕ(x). Then, by Corollary 2 we
have N, b |= ST (i, x), but since ST (i, x) is intuitionistically equivalent to ϕ(x) and N is
an intuitionistic model, we also have N, b |= ϕ(x). Therefore, ϕ(x) is intuitionistically
invariant with respect to asimulations.



4 Conclusion and further research

Theorems 2, 5, and 7 proved above show that the general idea of asimulation for
intuitionistic propositional logic is a faithful analogue of the idea of bisimulation for
modal propositional logic in many important respects.

As for the future research, it is natural to concentrate on extending the above results
onto the level of intuitionistic predicate logic in order to obtain theorems analogous to
Theorem 21 of [Van Benthem 2010, p. 124]. In fact, we already obtained a proof of a
‘parametrized’ version of such result by extending techniques employed in the section
2 to cover the predicate case. We hope to publish this result in some of our future
papers.
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