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Sweden; bLaboratory of Automation and Robotics, Department of Electrical Engineering, University of Patras, Patras, Greece

(Received 31 January 2013; accepted 17 November 2013)

In this article, a combined networked switching output feedback control scheme, with a D-region stability performance
improvement module is presented. The network induced time delays, that are considered to be time varying and integer
multiples of the sampling period, are being embedded in the system model, by state augmentation. The resulting model of the
overall networked closed-loop system is switching, with the current measured round-trip time delay acting as the switching
rule. Based on this modelling approach, a Linear Matrix Inequality (LMI) tuned switching output feedback controller is
designed. The proposed approach establishes robustness against time delays and is able to guarantee the overall stability of the
switching closed-loop system. Integrated in the controlled synthesis phase, an LMI tuned performance improvement module
is being introduced, based on D-region stability. Multiple simulation results are being presented that prove the efficacy of
the proposed scheme.
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1. Introduction

Networked Controlled System (NCS) architectures are be-
coming dominant due to the recent developments in the
communication capabilities and in the improvements of the
networks’ infrastructure (Chen, Cao, Cheng, Xiao, & Sun,
2010; Sipahi, Niculescu, Abdallah, Michiels, & Gu, 2011;
Zhang, Branicky, & Phillips, 2001). These networks are
being affected by various issues (Heemels, Teel, Woow, &
Nes, 2011), stemming from the need to exchange infor-
mation over a shared communication link (Halevi & Ray,
1988; Puccinelli & Haenggi, 2005), while special effort
should be paid to design proper control schemes, able to
adjust their settings to account for possible peculiarities
encountered in typical real-time control applications and
mainly present robustness against the networked induced
time delays, which deteriorate the overall performance of
the closed-loop system and can even drive it to instability
(Tzes, Nikolakopoulos, & Koutroulis, 2005; Yang, 2006).

In the relative literature, there have been multiple theo-
retical and experimental approaches, in the field of control
design and stability analysis (Walsh, Ye, & Bushnell, 2002;
Zhang et al., 2001). In most of the cases the adopted ap-
proaches have proposed static or switching control schemes
that can take into account many issues of an NCS, such as:
(a) varying time delays (Mahmoud, 2009; Shu, Lam, &
Xiong, 2010), (b) data-packet losses (Sun & Qin, 2011; Yu,
Wang, & Chu, 2005), (c) data-packet reordering (Leung,

∗
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Li, & Yang, 2007; Li, Zhang, & Cai, 2009), and (d) data-
packet transmission scheduling (Kyung, Suck, & Hyung,
2005). Most of these approaches, based their main con-
tribution in proposing control schemes that guarantee the
overall stability of the closed-loop system, with respect to
the previous (a)–(b) problems, without focusing in over-
all system’s closed-loop performance and with the switch-
ing control schemes depicting superiority against the static
ones.

The main novelty of this article stems from the com-
bination of the control synthesis approach for switched
networked controlled systems, with the principle of D-
region stability. More specifically a novel LMI-based D-
region stability criterion will be proposed, which will be
able to guarantee at the same time both overall stability
for the switched closed-loop system and significant per-
formance improvement. Robust pole clustering has been
widely discussed over the past few decades, see for example
Arzelier, Bernussou, and Garcia (1993), Garcia, Daafouz,
and Bernussou (1996), Garcia and Bernussou (1995), Chou,
Ho, and Horng (1991), Bachelier, Peaucelle, and Arzelier
(2002), Chen and Lin (2004), Lee, Park, Joo, and Lin (2012)
and the references therein. The resulting dual scheme guar-
antees the overall stability of the closed-loop system, under
arbitrary switching sequences, while providing significant
improvement in the overall performance, such as faster
response and settling times. More specifically, an output
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Figure 1. Model representation of a time delayed LTI system.

feedback scheme is proposed for each switching subsystem
that assures the asymptotic stability of the system, while sat-
isfying certain pole placement requirements. The proposed
control scheme is tuned based on LMIs, and provides a flex-
ible approach for improving the performance of the control
design.

The rest of the article is structured as it follows. In Sec-
tion 2, the system modelling with the state augmentation is
presented. In Section 3, the switching controller synthesis
scheme is being presented, followed by Section 4, where
the tuning of the D-region stability performance improve-
ment module is analysed. Finally, simulation results are
being presented in Section 5, followed by the conclusions
in Section 6.

Notations: Standard notations have been utilised
throughout this article. LT and L−1 are the transpose and
the inverse of the matrix L, respectively. I denotes the n ×
n identity matrix, L > 0 (L < 0) denotes that L is positive
definite (negative definite). Finally, let R+ and Z

+ denote,
respectively, the non-negative real numbers and the finite
set of integers {1, . . . , Z}.

2. System modelling

Consider the networked system setup depicted in Figure 1.
The discrete time Linear Time Invariant (LTI) dynamics of
the system model can be described as:

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k), (2)

where x(k) ∈ �n, u(k) ∈ �m, y(k) ∈ �n, and k, n,m ∈ Z
+.

In a networked controlled system, the feedback loop
is being closed over a common communication channel,
without any real-time characteristics. Due to the sharing of
this communication channel among multiple users, various
delays and of variable length can occur. These networked
induced time delays, in a networked controlled system, can
be categorised as delays from controller to actuator (feed
forward delays) and from sensor to controller (feedback
delays), while it should be noted that these delays almost
always differ among them. Although the values of these
delays are random and depend on the traffic, the packet
losses, the collisions, etc. in the communication network,

it is straightforward to measure their values by perform-
ing a time stamping process. In this approach, both the
remote controller and the process are time synchronised,
while all the exchanged data packets (in both directions)
are being time stamped, which means that the contained
valuable information (control signal or sensory feedback)
is been extended by appending the current time stamp. In
the case of time stamped data packets and for extracting the
elapsed time that the transmission lasted, a simple subtrac-
tion, upon reception of the data packet, between the current
time and the appended time stamp, would provide a direct
indication of the time delay. This procedure allows to have a
complete and precise measurement of the real networked in-
duced time delays, in both the feed forward and the feedback
loops, while experimental verifications of this approach can
be located in Tzes, Nikolakopoulos, and Koutroulis (2003)
and Nikolakopoulos, Panousopoulou, and Tzes (2008).

Without a generality loss, it can be assumed that these
random and real valued time delays are bounded, which
means that assumptions, in the form of maximum bounds,
on the network induced maximum communication delay
(worst case scenario) can be posed a priori. For mathemat-
ically formulating this problem, the random and bounded
time delays from the sensor to the controller are notated as
d1 ∈ R+ and from the controller to the sensor as d2 ∈ R+ ,
as it has been also indicated in Figure 1. In a zero-latency
environment (d1 = d2 = 0: immediate transmission condi-
tions), the utilised controller corresponds to that of a static
output feedback, or ũ(k) = Ke(k) = K(r(k) − y(k)). How-
ever, owing to the networked environment, transmission
delays should be considered: (a) to the applied control sig-
nal; feed forward (actuation) path delay u(k) = ũ(k − d1),
and (b) to the feedback (sensory) path delay in the reverse
transmission; e(k) = r(k) − y(k − d2).

Let τ (k) = d1(k) + d2(k), with τ ∈ �+, be the time
varying overall round trip delay, at sampled instant k, and
τ (k) ∈ [0, λ̄], λ̄ ∈ �+, with λ̄ the apriori known bound on
the maximum time delay that the system can encounter.
Moreover, rs(k) is being introduced, which is a bounded
integer sequence with 0 ≤ rs(k) ≤ D ≤ ∞, and D ∈ Z

+.
The switching mode selection signal rs(k) can be defined as
a sequence of integer multiples or:

rs(k) ∈ [0, 1, . . . , D], (3)

with D to represent the maximum expected delay, measured
as integer multiples of the adopted sampling time Ts ∈ Z

+,
which is equal to the number of discrete states that the
switching signal rs can take. The entries in Equation (3) are
defined as it follows:

rs(k) =
{

� τ (k)
Ts

	,∀τ (k) > Ts

Ts,∀τ (k) < Ts

(4)

D
ow

nl
oa

de
d 

by
 [

L
ul

ea
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

1:
08

 0
3 

A
pr

il 
20

14
 



1174 G. Nikolakopoulos et al.

where �(·)	 notates the upper ceiling operation.
The mode-dependent switching Krs

state feedback con-
trol law, at the sampling instant k can be defined as:

u(k) = Krs
Cx(k − rs(k)). (5)

Based on the previous analysis, the state vector x(k) is
augmented to include all the delayed terms as follows:

x̃(k) = [x(k)T , x(k − 1)T , . . . , x(k − D)T ]T (6)

with x̃ ∈ �D+1×D+1, while the dynamics of the system in
Equation (1) at sample time k are being transformed as:

x̃(k + 1) = Ãx̃(k) + B̃u(k), (7)

y(k) = C̃rs
x̃(k),

where the augmented version of the state space matrices
defined as:

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0 . . . 0

I 0 . . . 0 0

0 I . . . 0 0
...

...
...

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

C̃rs
= [ 0 . . . 0 C 0 . . . 0 ], (8)

while C corresponds to the matrix term that it is found on the
(rs + 1)th column of the C̃rs

(k) and Ã ∈ �(D+1)·n×(D+1)·n,
B̃ ∈ �(D+1)·n×m, C̃rs

∈ �n×(D+1)·n.
The resulting closed-loop system is switched, since the

mode selection signal rs(k) and thus the feedback term Krs
C

in Equation (5) is of a time varying nature (Xiao, Hassibi,
& How, 2000). From Equations (5) and (8), this mode-
dependent switching state feedback closed-loop discrete
time system can be formulated as:

x̃(k + 1) = (Ã + B̃Krs
C̃rs

)x̃(k), (9)

y(k) = C̃rs
x̃(k),

and the closed-loop matrix Ã + B̃Krs
C̃rs

can switch in any
of the D + 1 i-vertices, or Ai = Ã + B̃KiC̃i , and therefore
conditions are sought for the stabilisation of the switched
system:

x̃(k + 1) = Ai x̃(k), (10)

with i : Z
+ → I = 0, 1, . . . , D,

where the notation rs(k) : Z
+ → I = 0, 1, . . . ,D will be

considered to be the switching function (varying time de-
lay) in the following analysis. It should be noted that the
equations in Equation (9) are in the form of an output

feedback control problem, even the fact that initially state
feedback control in Equation (5) has been considered.

3. Switching controller synthesis

For the synthesis of the switching controller, the measure-
ment of the round trip latency time rs(k) = d1(k) + d2(k),
for calculating the index of the switched-state is a manda-
tory information and as it has been mentioned before this
measurement can be directly obtained by time stamping in
all the data packets from the controller to the plant and vise
versa. This time stamping has no effect on the network’s
bandwidth as the control commands are being described by
a few bytes and the time information can be easily added in
the transmitted and received data packets.

In this section, the aim will be to design an overall
controller that will be able to stabilise the networked con-
trolled system described in Equation (10) under an arbi-
trary latency time rs(k). The system description in Equa-
tion (10) indicates that for a specific delay, the overall net-
worked controlled system can be described by a specific
augmented state-space representation. However, for assur-
ing global stability, a proper control scheme should be de-
signed that will be able to guarantee the stability of each of
the switching systems (based on specific rs(k)), as well as
all the arbitrary transitions from one mode of Equation (10)
to another one. For such a demand, the overall system con-
taining all the possible switching states of Equation (10),
based on all the possible variations of the corresponding
latency time should be considered. The overall set of the
switching systems can be mathematically formulated as it
follows:

x̃(k + 1) =
D∑

i=0

ξi(k)Ai x̃(k), (11)

where

ξ (k) = [ξ0(k), . . . , ξD(k)]T and ξi =
{

1, mode = Ai

0, mode �= Ai
.

(12)

Such a system representation indicates the set of all the
possible D switchings that the network system can execute,
while it should be noted that for a specific time delay the
system description is being provided by Equation (10).

The problem of calculating a switching output feedback
controller Krs

or with an equivalent simpler notation Ki

(rs = i), which will be able to guarantee the stability of
the closed-loop switching system in Equation (11), under
arbitrary and time varying switching, can be transformed
into calculating Pi > 0 and Ki matrices ∀i ∈ I such that
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International Journal of Control 1175

(Daafouz, Riedinger, & Iung, 2002):

[
Pi AT

i Pj

Pj Ai Pj

]
> 0, ∀(i, j ) ∈ I × I,

or finding rs + 1 symmetric positive definite matrices Si >

0, Gi > 0, and Ui , Vi matrices, ∀i ∈ I, that satisfy the
following LMI:

[
Gi + GT

i − Si (ÃGi + B̃UiC̃rs
)T

ÃGi + B̃UiC̃rs
Sj

]
> 0, ∀(i, j ) ∈ I × I,

(13)

and

ViCi = CiGi ,∀i ∈ I. (14)

Then the switching output feedback gains Krs
(k) can be

calculated as:

Ki = UiV
−1
i (15)

with Vi provided by Equation (14) as:

Vi = CiGiC
T
i [CiC

T
i ]−1, (16)

where Ci is of full row rank. Based on these Si > 0 matrices,
it is possible to calculate a positive Lyapunov function of
the following form:

V (k, x̃k) = x̃T
k

(
D+1∑
i=1

ξi(k)S−1
i

)
x̃k (17)

whose difference:

�V (k, x̃k) = V (k + 1, x̃(k + 1)) − V (k, x̃(k)) (18)

decreased along all x̃(k) solutions of the switched system
in Equation (11), thus ensuring asymptotic stability of the
system, under any arbitrary switching.

4. D-Region pole placement for performance
improvement

Let D be a subregion in the discrete plane. A dynamical
system ẋ = Ax is called D-stable if its all poles lie in D,
or all of the eigenvalues of the matrix A lie also in D,
while A is called D-stable. When D is the full unitary cir-
cle, this notion reduces to asymptotic stability, which can
be characterised in LMI terms by the Lyapunov Theory
(Chilali & Gahinet, 1996). A general LMI region in the
complex plane is any subset D where symmetric matri-
ces L = [λkl] ∈ �m×m and M = [μkl] ∈ �m×m exist, such

that

D = {z ∈ S : L + zM + z̄MT < 0}, (19)

where the ·̄ symbol to represent the complex conjugate, and
the following notation:

[λkl]1≤k,l≤m :=

⎡
⎢⎢⎣

λ11 · · · λ1m

...
. . .

...

λm1 · · · λmm

⎤
⎥⎥⎦ < 0.

The matrix valued function:

fD(z) = L + zM + z̄MT (20)

is called the characteristic function of D, and can be for-
mulated also as:

fD(z) = [λkl + μklz + μlkz̄]1≤k,l≤m, (21)

where for the general case of a disk centred at (−q, 0), with
a radius r, L and M are being defined as (m = 2):

L =
[−r q

q −r

]
, M =

[
0 1
0 0

]
,

and the characteristic function results in (Chilali, Gahinet,
& Apkarian, 1999):

fD(z) =
[

−r q + z

q + z̄ −r

]
< 0. (22)

The pole location in a given LMI region can be characterised
in terms of the m × m block matrix MD(A, X) (Chilali &
Gahinet, 1996), which can be considered as the output of the
application of the matrix valued function in Equation (21)
on the system’s state-space matrix Ai.

Theorem 4.1: The matrix Ai is D-stable, if and only if there
exists a symmetric matrix X such that:

MD(A, X) < 0, X > 0. (23)

For the switching system in Equation (10), the D-stability
is formulated as:

[λklP + μklAiP + μlkP(Ai)
T ]1≤k,l≤m < 0. (24)

Or in an LMI form, the switching system Ai is D-stable,
with D defined in Equation (22) if and only if there exist
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matrices Ki ∈ S
+, i ∈ Z

+, satisfying the following LMIs:

L =
[

−rÃ Ã + BKiCi

(Ã + B̃KiCi)T −rÃ

]
< 0,∀i ∈ I.

(25)

Proof: See Theorem 2.2 in Chilali and Gahinet (1996), for
the closed-loop system described in Equation (9). �

For a prescribed performance as it has been indicated in
Equation (26) and an overall system stability for the switch-
ing closed-loop system in Equation (9), the proposed prob-
lem consists of finding switching output-feedback gains Ki

that:

• places the closed-loop poles in an apriori defined
LMI stability region D with the characteristic func-
tion (22);

• guarantees the overall stability of the switching sys-
tem in Equation (9), under arbitrary time delays and
mode-dependent switchings.

Theorem 4.2: The stability of the mode-dependent switch-
ing closed-loop matrix Ai is guaranteed and it is D-stable,
with D defined in Equation (22), if and only if there ex-
ist matrices Gi , Ui ∈ S

+, i ∈ Z
+, satisfying the following

LMIs:[ −rGi ÃGi + B̃UiCi

(ÃGi + B̃UiCi)T −rGi

]
< 0,∀i ∈ I.

Proof: By replacing in Equation (24) the analytical closed-
loop description of the system in Equation (9), the following
formulation is being obtained:

[λklPi + μkl(Ã + B̃KiCi)Pi

+μlkPi(Ã + B̃KiCi)
T ]1≤k,l≤m < 0. (26)

By utilising the characteristic function fD of Equation (22)
in Equation (26), the following inequalities are being de-
rived:

(Ã + B̃KiCi)Pi < 0 (27)

Pi(Ã + B̃KiCi)
T < 0 (28)

− rP̃i < 0. (29)

Recalling from Equation (14) that ViCi = CiGi , or Vi =
CiGiCT

i [CiCT
i ]−1 and Equation (15) the following formu-

lation can be derived:

KiCiGi = KiViCi = UiV
−1
i ViCi = UiCi (30)

and by setting Pi = Gi , the LMI in Equation (27), after
some basic mathematics and substitution of Equation (30)
is being formulated as:

(Ã + B̃KiCi)Pi = ÃGi + B̃UiCi < 0. (31)

The LMI in Equation (28), with Pi = Gi , can be trans-
formed as:

Gi(Ã + B̃KiCi)
T = GiÃ

T + GiC
T
i KT

i B̃i
T

< 0. (32)

By transposing Equation (30), it is obtained that:

(UiCi)
T = GiC

T
i KT (33)

and the final step is to replace Equation (33) into Equa-
tion (32) to obtain:

Gi(Ã + B̃KiCi)
T = GiÃ

T + (B̃iUiCi)
T . (34)

By utilising equations in Equations (31) and (34) the fol-
lowing LMIs can be obtained:

[
−rGi ÃGi + B̃UiCi

(ÃGi + B̃UiCi)T −rGi

]
< 0,∀i ∈ I

and this completes the proof. �
To conclude this section, it is being summarised that

for overall switching stability and D-stable stability for
performance improvement, positive definite matrices Si, Gi

should exist that satisfy the following LMIs:

[
Gi + GT

i − Si (ÃGi + B̃UiC̃rs
)T

ÃGi + B̃UiC̃rs
Sj

]
> 0, (35)[ −rGi ÃGi + B̃UiCi

(ÃGi + B̃UiCi)T −rGi

]
< 0,∀(i, j ) ∈ I × I,

with Ki provided by Equations (14) and (15).
By the establishment of the current switching output

feedback control scheme with D-region performance im-
provement, as it will be presented in the following section,
a controller can be designed that will be able to guaran-
tee the stability of the networked controlled system, while
introducing a criterion for significant performance improve-
ment. The current approach is not focusing on the selection
of an optimal D region since it is assumed that this region
has been a priori set. In general it can be stated that by
achieving smaller D radiuses, faster responses can be also
achieved. However, since the tuning of the switching con-
troller gains, as it has been presented, it is a solution of
two coupled LMIs in Equation (35) there is not always a
feasible solution to this problem, while the smaller the D
radius becomes, the harder and more computationally te-
dious is to find a proper LMI solution. For dealing with this
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issue a generic engineering approach can be followed by
starting with a large D radius and progressively reducing
as along the corresponding LMIs in Equation (35) are be-
ing satisfied, which indicates a bound on the performance
improvement. However, there is still on going research in
the field and on the way that the required D region can be
theoretically defined as it can be addressed in Lee and Lee
(1987), Mao and Chu (2009), Montagner, Leite, Oliveira,
and Peres (2006), where some explicit formulas have been
derived, but these issues are out of the scope of the presented
research and will not be addressed further.

5. Simulation results

All simulations have been carried out on the nonlinear
quadrotor attitude dynamics presented in Bouabdallah and
Siegwart (2007), which take into account all aerodynamic
forces and moments acting on the rotations subsystem of
the quadrotor including the hub forces, the rolling mo-
ments, and the variation in the aerodynamic coefficients
due to the relative motion of the quadrotor inside the atmo-
sphere. It must be noted that separate design of the attitude
controller is a valid process since the attitude and transla-
tional dynamics of the quadrotor can be decoupled (Alexis,
Nikolakopoulos, & Tzes, 2011; Bouabdallah, Noth, &
Siegwart, 2004).

The quadrotor attitude nonlinear dynamics have been
linearised around x◦ = [0, 0, 0, 0, 0, 0]T and assuming a
sampling time Ts = 0.001, the discrete time state matrices
for the model under study take the following values:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.001 0 0 0 0

0 1 0 0 0 0

0 0 1 0.001 0 0

0 0 0 1 0 0

0 0 0 0 1 0.001

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.0021 0 0 0

0 0.0433 0 0 0

0 0 0.0021 0 0

0 0 0.0433 0 0

0 0 0 0.0001 0

0 0 0 0.10201 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the presented simulation results, it should be recalled
that all the data transmissions and the calculation of the
controllers gains were event triggered and time stamped.
Moreover, it is assumed that the round-trip delay at the
k-sampling time instant can always be measured.

According to the presented scheme in Section 4, the
first stage in the design of the switching controller with D-
region performance should be the definition of the estimated

maximum time delay that can be encountered in the adopted
communication network. Based on this a priori information
the augmented system model representation will be formu-
lated according to the augmentation procedure depicted in
Equations (7) and (8). By having the state-space represen-
tation or the equivalent switching system formulated for
all the corresponding time delays that can be encountered
and the desired D-region, a solution to the LMIs in Equa-
tion (34) should be evaluated. In case that these LMIs are
feasible then the gains for the switching controller can be
calculated from Equations (14) and (15). For improving fur-
ther the performance of the overall networked controlled
system, smaller D-regions could be evaluated by repeat-
ing the previous control design process (feasibility check
of the corresponding LMIs). From a practical implemen-
tation point of view, and after the calculation of the gains
for the switching output feedback controller, the control
scheme can be implemented in the form of a look-up ta-
ble, where for a specific round trip measured time delay a
corresponding gain matrix should be selected as the active
controller.

For the first simulation results, a time varying latency
time has been considered, bounded from D = 2, which re-
sults in a switching system with i ∈ [0, 1, 2], while the
D-stability region, for performance improvement, has been
selected as r = 0.85. The adopted bound in the time delay
assumes that the maximum round-trip communication de-
lay is 0.003 sec, allowing every arbitrary switching. Based
on the presented methodology, the gains for the switching
feedback controller have been tuned as:

K0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0193 −0.0633 0 0 0 0

0 0 −0.0193 −0.0633 0 0

0 0 0 0 −0.0082 −0.0269

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0182 −0.1511 0 0 0 0

0 0 −0.0182 −0.1511 0 0

0 0 0 0 −0.0077 −0.0642

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0257 −0.3532 0 0 0 0

0 0 −0.0257 −0.3532 0 0

0 0 0 0 −0.0109 −0.1500

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The initial states of the quadrotor were x0 = [0.1, 0,
0.2, 0, 0.3, 0]. In Figure 2, the responses of the quadrotors’
states (φ, θ , ψ angles and the corresponding accelerations)
based on the novel LMI proposed scheme are depicted in
red colour. The response of the quadrotor based on only the
controller synthesis approach, described by Equation (13)
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Figure 2. Comparison of the quadrotor’s state responses with and without the D-stability region performance improvement (D = 3, r =
0.85).

as in Daafouz et al. (2002), is also being displayed in the
same Figure 2 by red coloured lines. Moreover, random
simulated time delays (with a period of 1 sec) have been
considered, while the time delay-based switching among the
controllers has also been depicted in the lower part of this
figure. From comparing the obtained responses, it is obvi-
ous that the proposed switched control synthesis approach,
with combined performance D-stability region, achieves
much faster settling times, while assuring for the over-
all stability of the system against switchings due to time
delays.

In the second simulation results, greater time delays
have been considered, with D = 4, which results in a switch-
ing system for i ∈ [0, 1, 2, 3, 4], while in this case, the
D-stability region, for performance improvement, has been
selected as r = 0.9. The adopted bound in the time delay
assumes that the maximum round-trip communication de-
lay is 0.004 sec, with arbitrary switching. For this case, the
gains for the switching feedback controller have been tuned
as:

K0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0181 −0.1160 0 0 0 0

0 0 −0.0181 −0.1160 0 0

0 0 0 0 −0.0077 −0.0493

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0161 −0.1512 0 0 0 0

0 0 −0.0161 −0.1512 0 0

0 0 0 0 −0.0068 −0.0642

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0165 −0.1845 0 0 0 0

0 0 −0.0165 −0.1845 0 0

0 0 0 0 −0.0070 −0.0784

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0177 −0.2194 0 0 0 0

0 0 −0.0177 −0.2194 0 0

0 0 0 0 −0.0075 −0.0932

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

K4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.0195 −0.2607 0 0 0 0

0 0 −0.0195 −0.2607 0 0

0 0 0 0 −0.0083 −0.1107

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The initial states of the quadrotor were x0 = [0.1, 0, 0.15,
0, 0.2, 0]. In Figure 3, the responses of the quadrotors’
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Figure 3. Comparison of the quadrotor’s state responses with and without the D-stability region performance improvement (D = 5, r =
0.9).

states (φ, θ , ψ angles and the corresponding accelerations)
based on the proposed LMI switching control scheme are
depicted in blue colour. As it has been observed in the
previous examined case, it is obvious that based on the con-
trol synthesis approach from Equation (13) in Daafouz et al.
(2002), depicted with red-coloured lines, the settling time is
much slower than the responses obtained with the combined
stability and performance control synthesis (blue-coloured
lines). In general it has been observed that the larger the
communication latency time is, the worse the performance
of the control synthesis scheme is (without the performance
improvement). By selecting appropriate D-stability region,
the resulting control scheme is able to: (a) assure the over-
all stability of the switching system and (b) achieve fast
responses.

From a complexity point of view, Table 1 summarises
the necessary iterations for calculating the solutions to the

Table 1. LMI iterations complexity.

D Switched control synthesis D-switched control syntesis

1 8 10
2 24 25
3 36 39
4 49 53
5 63 68

LMIs in Equations (13) and (37)–(38) correspondingly. The
results have been obtained by the utilisation of the Matlab’s
LMI Toolbox, for various number of utilised switched sys-
tems D. According to Table 1, it is clear that the addition
of the D-stability region performance improvement, retains
the complexity of the proposed algorithm and has the same
computational efficiency.

6. Conclusions

In this article, a combined networked switching output
feedback control scheme, with a D-region stability per-
formance improvement module, has been presented. The
proposed scheme has been applied for the case of time
varying and multiples of the sampling period induced de-
lays, which act as the switching signal. Based on this mod-
elling approach, a Linear Matrix Inequality (LMI) tuned
switching output feedback controller has been applied that
allowed robustness against time delays and was able to
guarantee the overall stability of the switching closed-loop
system. Integrated in the controlled synthesis phase, an
LMI tuned performance improvement module has being
introduced, based on D-region stability. Part of the fu-
ture objectives in the recommended research framework
is the experimental evaluation of the suggested control
architecture.
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