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p-ADIC ZEROS OF QUINTIC FORMS

JAN H. DUMKE

Abstract. It is shown that a quintic form over a p-adic field with at least 26
variables has a non-trivial zero, providing that the cardinality of the residue
class field exceeds 9.

1. Introduction

Let F (x1, . . . , xn) denote a form of degree d over a p-adic field K. It is a conjec-
ture of E. Artin from the 1930s, that F has a non-trivial zero as soon as n > d2.
Although this is known to be false for many d (for instance, see [11] for a 2-adic
quartic form) the conjecture has been partially verified by Ax and Kochen [1]. They
showed that for every d and l = [K : Qp] there exists a positive integer q0(d, l), such
that Artin’s conjecture holds whenever the cardinality q of the residue class field
exceeds q0(d, l). However, little is known about the actual values of q0(d, l). Brown
[3] has given a huge, but explicit bound on q0(d, 0). If we write a ↑ b for ab it can
be stated as

q0(d, 0) ≤ 2 ↑ (2 ↑ (2 ↑ (2 ↑ (2 ↑ (d ↑ (11 ↑ (4d))))))).

If d is neither composite nor a sum of composite numbers, better bounds are avail-
able. If they are not dependent on l, we write q0(d) instead of q0(d, l). Besides the
classical result q0(2) = 1 (Hasse [6]) and q0(3) = 1 (Lewis [10]) this concerns in fact
d = 5, 7, 11 only. Leep and Yeomans [9] have shown q0(5) ≤ 43 and later this was
improved by Heath-Brown [7]. He proved that a quintic form over Qp possesses a
non-trivial zero if p ≥ 17. For septic and unidecic forms bounds q0(7) ≤ 883 and
q0(11) ≤ 8053 are due to Wooley [13]. In this paper we shall establish q0(5) ≤ 9.

Theorem 1. Let F (x1, . . . , xn) = F (x) be a quintic form with at least n ≥ 26
variables over a p-adic field K with residue class field of cardinality q > 9. Then
there exists a non-zero vector x ∈ Kn with F (x) = 0.

The proof relies on a p-adic minimisation procedure applicable to forms of degree
d = 2, 3, 5, 7 and 11 which was developed by Lewis [10], Birch and Lewis [2] and
Laxton and Lewis [8]. They showed that one may assume that F is reduced,
that is, the resultant of the partial derivatives does not vanish and is of minimal
normalised p-adic valuation. It then follows from a result of Leep and Yeomans that
the reduction of F over the residue class field, denoted by θ(F ), is a non-degenerate
form with at least 6+s variables, where s is the maximal affine dimension of a vector
space on which θ(F ) vanishes. If θ(F ) possesses a non-singular zero, it can be lifted
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by Hensel’s Lemma to a non-trivial zero of F . We recall that a non-singular zero
is one which is not a simultaneous zero of the partial derivatives.

We shall use certain properties of quintic forms to choose a suitable subspace
and show that it contains a non-singular zero. For q = 11, 13, 16, 25, 27, 32 this is
accomplished with the help of computer calculations. The author was able to carry
those out on his personal notebook. This, together with the previously mentioned
results of Leep and Yeomans, and Heath-Brown, yields Theorem 1.

There is numerical evidence to suggest that the imposed constraint on q can be
further reduced. Given the current state of technology, it certainly seems doubtful
to expect an answer for all q at this stage.

2. Preliminaries

Let K denote a p-adic field with normalised valuation ν, residue class field Fq

and ring of integers OK. As we are interested in a zero, we may assume from now
on that F has coefficients in OK and is non-degenerate.

We call two forms F and G over OK equivalent if there exists a matrix A ∈
GLn(K) and c ∈ K× such that cF (Ax) = G(x). In order to state the first lemma
we denote by I(F ) the resultant of the n partial derivatives of F . Laxton and
Lewis have shown that if I(F ) = 0, then there exists a sequence of forms Fi with
I(Fi) �= 0 converging to F . This observation results in the following lemma.

Lemma 1 ([8, Corollary to Lemma 6]). In order to prove that any form of degree
d over a p-adic field K in n > d2 variables has a non-trivial zero it is sufficient to
prove this fact for forms with I(F ) �= 0.

We call F reduced if I(F ) �= 0 and ν(I(F )) is minimal among all integral forms
equivalent to F . Thus we may assume by Lemma 1 that F is a reduced quintic
form in at least 26 variables. From now on we shall write f for the non-degenerate
form that is linearly equivalent to θ(F ). This yields suitable implications on the
number of variables of f .

Lemma 2 ([9, Proposition 4.3]). Let s ≥ 0 be an integer such that f vanishes on
an affine s-dimensional linear plane V . If s > 1 we assume in addition that q ≥ 5.
We then obtain that f is a non-degenerate form in at least 6 + s variables.

The next lemma shows in particular that s ≥ 1. Throughout this paper we shall
denote by Z(f) the set of projective zeros of f over Fq.

Lemma 3 (Warning). Let f be a form of degree d over Fq in n variables. If n > d
we have

|Z(f)| ≥ qn−d − 1

q − 1
.

A proof of this classical result can be found in [12]. Lemmas 2 and 3 yield the
following consequence.

Corollary 1. Let F be a reduced quintic form in at least 26 variables over OK and
s be as defined in Lemma 2. We then have

|Z(f)| ≥ qs+1 − 1

q − 1
.
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A zero of f is not sufficient for a non-trivial zero of F , instead we require a
non-singular zero. Once we have found one, we can apply the version of Hensel’s
Lemma given below.

Lemma 4 (Hensel’s Lemma). Let F ∈ OK[x1, . . . , xn]. If θ(F ) has a non-singular
zero, then F has a non-trivial zero in Kn.

For a discussion of Hensel’s Lemma see [5], for example.

3. Proof of Theorem 1

Let F be a quintic form in at least 26 variables over a p-adic field K with residue
class field of cardinality q > 9. As above we shall write f for the non-degenerate
form that is linearly equivalent to θ(F ). We denote the linear span of vectors
v1, . . . ,vl ∈ Fn

q by 〈v1, . . . ,vl〉.
By Lemma 1 we may assume that F is reduced. It then follows by Lemma 2

that f is a non-degenerate form in at least 6 + s variables, where s is the maximal
affine dimension of a linear subspace of Z(f).

Suppose that f does not have a non-singular zero. We show that there are at
least four linearly independent zeros

z1, z2, z3, z4 ∈ Z(f) such that 〈zi, zj〉 � Z(f)

for all 1 ≤ i < j ≤ 4. Hence the form

g(x1, x2, x3, x4) := f(x1z1 + x2z2 + x3z3 + x4z4)

must be of a certain shape. In particular, certain coefficients of g do not vanish. We
then prove the existence of a non-singular zero of g, contrary to our assumption.
This is achieved by considering successively larger subspaces of 〈z1, z2, z3, z4〉 and
sieving out forms possessing non-singular zeros.

As a first step, we prove that there are five distinct non-zero vectors

z1, . . . , z5 ∈ Z(f)

such that z1, z2, z3 are linearly independent and f does not vanish on any plane
spanned by two vectors of one of the quadruples

{z1, z2, z3, zi} where i = 4, 5.

In order to establish this, we begin by showing that there are three distinct sub-
spaces V1, V2, V3 ⊆ Z(f) of maximal dimension and two zeros z1, z2 ∈ Z(f) such
that

z1, z2 /∈
3⋃

i=1

Vi and 〈z1, z2〉 � Z(f).

Second, we prove the existence of a third zero z3 ∈ V3\(V1 ∪ V2) such that z1, z2,
z3 are linearly independent. Third, we show that there is a fourth zero z4 ∈ V2\V1

completing the first quadruple and finally, we will choose a fifth zero z5 ∈ V1

completing the second quadruple.
For convenience, we first state a basic lemma and give the details of the argument

outlined afterwards.
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Lemma 5 ([9, Lemma 5.1]). Let f be a quintic form over Fq possessing two distinct
non-trivial zeros z1 and z2. Then f either has a non-singular zero or

f(x1z1 + x2z2) = c12x
3
1x

2
2 + c21x

3
2x

2
1

and c12c21 = 0. If, in addition, |〈z1, z2〉 ∩ Z(f)| ≥ 3, then f(x1z1 + x2z2) either
possesses a non-singular zero or is the zero polynomial.

Proof. We write

f(x1z1 + x2z2) = a1x
5
1 + b12x

4
1x2 + c12x

3
1x

2
2 + c21x

3
2x

2
1 + b21x

4
2x1 + a2x

5
2.

We may assume that z1 and z2 are singular zeros and hence

f(x1z1 + x2z2) = (c12x1 + c21x2)x
2
1x

2
2.

If c12c21 �= 0, then (−c21, c12) is a non-singular zero and otherwise 〈z1, z2〉∩Z(f) =
{z1, z2} or 〈z1, z2〉 ⊆ Z(f). �

Since f has at least 6 variables, Lemma 3 yields a non-trivial zero and thus we
may assume s ≥ 1. By Corollary 1 we have

|Z(f)| > 4(qs − 1)

q − 1
,(1)

provided q ≥ 4. Thus we can pick four distinct subspaces

V1, V2, V3, V4 ⊆ Z(f)

such that Vi is of maximal dimension for 1 ≤ i ≤ 4. By equation (1) we can choose

an additional zero z1 ∈ Z(f)\
⋃4

i=1 Vi. We set S3 :=
⋃3

i=1 Vi and show that there
exists a vector z2 ∈ V4\S3 such that 〈z1, z2〉 � Z(f). Suppose by the contrary that

for all z ∈ V4\S3 we have 〈z1, z〉 ⊆ Z(f).(2)

If V4 ∩ S3 = {0}, then (2) contradicts the maximality of V4 and otherwise we shall
argue as follows. Let s ∈ V4 ∩ S3 be non-zero. As V4 is distinct from S3 and
q ≥ 3 we can choose a non-zero vector v ∈ V4\S3 and consider the projective line
Ls := 〈v, s〉. Since v /∈ S3, the projective line Ls cannot contain two vectors of Vi for
each 1 ≤ i ≤ 3. Thus the intersection Ls∩S3 contains at most three non-zero points.
On the other hand, since q ≥ 5, there are at least three points p1,p2,p3 ∈ Ls not
contained in S3. It follows from our assumption (2) that 〈z1,pi〉 ⊆ Z(f) for all
1 ≤ i ≤ 3.

Lemma 6. Let f be a quintic form over Fq without a non-singular zero, L a
projective line, z a non-zero point not on L and p1,p2,p3 ∈ L three distinct non-
zero points. Assume that

〈pi, z〉 ⊆ Z(f) for all 1 ≤ i ≤ 3.

Then 〈L, z〉 ⊆ Z(f).

Proof. Let x ∈ 〈L, z〉 and x /∈
⋃3

i=1〈pi, z〉. There exists a projective line H in
〈L, z〉 through x that does not contain z. Since we have assumed that x /∈ 〈pi, z〉
and 〈pi, z〉 has co-dimension 1 in 〈L, z〉, the line H intersects 〈pi, z〉 in exactly one

point si, say, for each 1 ≤ i ≤ 3. Since
⋂3

i=1〈pi, z〉 = z and z /∈ H, we conclude
that there are at least three distinct points, namely si for 1 ≤ i ≤ 3, in H that
are contained in Z(f). By Lemma 5 we have H ⊆ Z(f) and hence x ∈ Z(f). We
conclude that 〈L, z〉 ⊆ Z(f). �
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For every s ∈ V4 ∩ S3 we have 〈z1, s〉 ⊆ 〈z1, Ls〉 ⊆ Z(f) by applying Lemma 6.
Thus we have 〈z1, V4〉 ⊆ Z(f) by (2), contrary to the maximality of the dimension
of V4. We conclude that there are three non-identical subspaces V1, V2, V3 ⊆ Z(f)

of maximal dimension and two zeros z1, z2 /∈
⋃3

i=1 Vi such that

〈z1, z2〉 ∩ Z(f) = {z1, z2}.
As mentioned above we shall proceed by proving the existence of a third vector
z3 ∈ V3\(V1 ∪ V2) with the property 〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 3. Suppose
by the contrary that for every z ∈ V3\(V1 ∪ V2) at least one of the following holds:

〈z, z1〉 ⊆ Z(f) or 〈z, z2〉 ⊆ Z(f).(3)

We set S2 := V1 ∪ V2 for shorter notation and shall argue that (3) holds for each
non-zero z ∈ V3. Suppose there exists at least one non-zero vector s ∈ S2 ∩ V3. We
then pick a vector v ∈ V3\S2 and define for any vector s ∈ S2 ∩ V3 the projective
line Ls := 〈s,v〉. We show that

〈Ls, z1〉 ⊆ Z(f) or 〈Ls, z2〉 ⊆ Z(f).(4)

Since v /∈ S2, neither two vectors of the subspace V1 nor two of the subspace V2 can
be contained in Ls. Thus there are at least 5 projective points in Ls\S2, provided
q ≥ 6. By our assumption (3) there are three points p1,p2,p3 among them such
that 〈pi, zk〉 ⊆ Z(f) for all 1 ≤ i ≤ 3 and a certain 1 ≤ k ≤ 2. Equation (4) then
follows from Lemma 6 and thus, we have that for every z ∈ V3 at least one of the
following holds:

〈z, z1〉 ⊆ Z(f) or 〈z, z2〉 ⊆ Z(f).(5)

Lemma 7. Let f be a quintic form over Fq without a non-singular zero, V ⊆
Z(f) an m-dimensional subspace where m ≥ 2 and z1, . . . , zk non-trivial zeros not
contained in V . We assume q ≥ 2k and that there exists for any projective plane
W ⊆ V of co-dimension 1 an index i ∈ {1, . . . , k} such that 〈W, zi〉 ⊆ Z(f). Then
there exists an index i ∈ {1, . . . , k} such that

〈V, zi〉 ⊆ Z(f).

Proof. We write [x1 : · · · : xm] for a projective point in V . Since m ≥ 2 we can
define the subspaces

W(a,b) := {[x1 : · · · : axm−1 : bxm−1] | xi ∈ Fq for 1 ≤ i ≤ m}

for (a, b) ∈ ({1} × Fq) ∪ {(0, 1)}.
Since q ≥ 2k there are at least 2k + 1 subspaces W(a,b). Thus we may assume

that there are at least three subspaces, W1, W2, W3 say, among these and a zero
z ∈ {z1, . . . , zk} such that

〈Wi, z〉 ⊆ Z(f) for 1 ≤ i ≤ 3.

We shall complete the proof of this lemma by following Leep and Yeomans [[9],
Lemma 5.3]. For W1,W2,W3 as above, we have

〈Wi, z〉 ∩ 〈Wj , z〉 = 〈Wi ∩Wj , z〉,(6)

〈Wi, z〉 ∩ 〈Wj , z〉 =
3⋂

i=1

〈Wi, z〉(7)
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for any 1 ≤ i < j ≤ 3. We notice that for equation (6) we have for each pair
i �= j with 〈Wi, z〉 and 〈Wj , z〉 two non-identical m-dimensional planes and that
〈Wi ∩Wj , z〉 is an m− 1 dimensional plane. Equation (7) follows from (6) and the
fact that

Wi ∩Wj =

3⋂

i=1

Wi for distinct i, j.

Let x be a point in 〈V, z〉\
⋃3

i=1〈Wi, z〉. We observe that
⋂3

i=1 Wi has co-dimension

2 in V . Thus we conclude by (6) and (7) that
⋂3

i=1〈Wi, z〉 has co-dimension 2 in
〈V, z〉. Hence we can choose a projective line H through the point x that does

not intersect with
⋂3

i=1〈Wi, z〉. Since x /∈ 〈Wi, z〉 and 〈Wi, z〉 has co-dimension 1
in 〈V, z〉, we conclude that there exists for each i a point pi ∈ 〈Wi, z〉 ∩H. Since

〈Wi, z〉 ⊆ Z(f) andH does not intersect
⋂3

i=1〈Wi, z〉 there are at least three distinct
non-trivial zeros of f on H. Thus we conclude by Lemma 5 that 〈V, z〉 ⊆ Z(f). �

We apply Lemma 7 to (5) and use induction on dim(V3) to conclude that

〈V3, z1〉 ⊆ Z(f) or 〈V3, z2〉 ⊆ Z(f).

However, this contradicts the maximality of the dimension of V3. Moreover, the
vectors z1, z2, z3 are linearly independent, since by Lemma 5 there are at most two
zeros on the projective line 〈z1, z2〉. Thus we have found three linearly independent
vectors z1, z2, z3 such that

〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 3.

We show that there exists a fourth vector z4 ∈ V2\V1 such that

〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 4.

Suppose by the contrary that for all z ∈ V2\V1 at least one of the following holds:

〈z, z1〉 ⊆ Z(f), 〈z, z2〉 ⊆ Z(f) or 〈z, z3〉 ⊆ Z(f).(8)

We shall argue that (8) holds for each non-zero vector z ∈ V2. As there exists a
point v ∈ V2\V1 we consider for any vector s ∈ V2 ∩ V1 the plane Ls := 〈s,v〉. We
show that

〈Ls, z1〉 ⊆ Z(f), 〈Ls, z2〉 ⊆ Z(f) or 〈Ls, z3〉 ⊆ Z(f).

Since q ≥ 7 there are at least 7 projective points in Ls not contained in V1. Thus,
by (8) there are three points p1,p2,p3 among them such that 〈pi, zk〉 ⊆ Z(f) for
all 1 ≤ i ≤ 3 and a certain 1 ≤ k ≤ 3. By Lemma 6, we have that for every z ∈ V2

at least one of the following holds:

〈z, z1〉 ⊆ Z(f), 〈z, z2〉 ⊆ Z(f) or 〈z, z3〉 ⊆ Z(f).(9)

It then follows in conjunction with Lemma 7 that

〈V2, z1〉 ⊆ Z(f), 〈V2, z2〉 ⊆ Z(f) or 〈V2, z3〉 ⊆ Z(f).

However, any of those contradicts the maximality of the dimension of V2 and hence
we may assume the existence of a vector z4 ∈ V2\V1 such that

〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 4.

We show that there exists a fifth vector z5 ∈ V1 such that

〈zi, z5〉 � Z(f) for all 1 ≤ i ≤ 3.
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Suppose to the contrary that for all z ∈ V1 at least one of the conditions in equation
(8) holds. By Lemma 7 this implies

〈V1, z1〉 ⊆ Z(f), 〈V1, z2〉 ⊆ Z(f) or 〈V1, z3〉 ⊆ Z(f).

However, any of these contradicts the maximality of the dimension of V1 and thus
we conclude that there is a vector z5 ∈ V1 such that

〈zi, z5〉 � Z(f) for all 1 ≤ i ≤ 3.

In summary, we have shown that there are two quadruples of zeros,

z1, z2, z3, z4 and z1, z2, z3, z5,

such that f does not vanish on any two-dimensional plane spanned by two zeros
of one quadruple. Moreover, we know that z1, z2, z3 are linearly independent. We
will now estimate the number of zeros of f in 〈z1, z2, z3〉.

Lemma 8. Let f be a quintic form over Fq with three linearly independent zeros
z1, z2, z3 ∈ Z(f) such that 〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 3. Then the following
holds.

If q ≥ 17, then f has a non-singular zero. If 11 ≤ q < 17, it possesses a non-
singular zero or |〈z1, z2, z3〉 ∩ Z(f)| = 3 holds. If 2 ≤ q < 11 it has a non-singular
zero or |〈z1, z2, z3〉 ∩ Z(f)| ≤ 4 holds.

The last inequality is sharp. For instance,

2x3
1x

2
2 + 2x3

1x
2
3 + 4x3

2x
2
3 + x1x2x3(5x

2
1 + 6x2

2 + 2x2
3 + x1x2 + x1x3 + x2x3)

is a form over F7 possessing exactly four singular zeros, namely

〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 6, 2)〉.

Proof. Suppose that f does not have a non-singular zero. Thus we can write
f(x1z1 + x2z2 + x3z3) as

x1x2x3Q(x1, x2, x3) +
∑

1≤i<j≤3

cijx
3
ix

2
j + cjix

3
jx

2
i ,

where Q(x1, x2, x3) is a quadratic form. By applying Lemma 5 to any two variables
of f(x1z1 + x2z2 + x3z3) we have cijcji = 0 for all 1 ≤ i < j ≤ 3. Since f does not
vanish on any of the projective lines 〈zi, zj〉 with 1 ≤ i < j ≤ 3, we have either

cij �= 0 or cji �= 0 for all 1 ≤ i < j ≤ 3.

Hence, we see after permuting the variables that f(x1z1 + x2z2 + x3z3) takes one
of the following shapes

t1(x1, x2, x3) = c12x
3
1x

2
2 + c13x

3
1x

2
3 + c23x

3
2x

2
3 + x1x2x3Q(x1, x2, x3),

t2(x1, x2, x3) = c12x
3
1x

2
2 + c31x

3
3x

2
1 + c23x

3
2x

2
3 + x1x2x3Q(x1, x2, x3),

where Q(x1, x2, x3) is a quadratic form and c12, c13, c23 and c31 are all non-zero
coefficients.

It has been proved by Leep and Yeomans [9] using the Lang-Weil bound that
f(x1z1+x2z2+x3z3) has always been a non-singular zero, provided q ≥ 43. Heath-
Brown [7] has extended this to prime values of q ≥ 17.

Similarly, we show by computer calculations that f has a non-singular zero for
q = 25, 27, 32. In each case there are after an appropriate rescaling of both, the
forms t1, t2 and the variables, just 6 degrees of freedom. A computer program can
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verify the existence of a non-singular zero for each form t1, respectively, each form
t2, by successively testing points in F3

q .
If q < 17 it can be checked by an analogous computer calculation that t1 and t2

either possess a non-singular zero or that the bound on |〈z1, z2, z3〉∩Z(f)| holds. �
Lemma 8 establishes Theorem 1, provided q ≥ 17. Moreover, if q < 17 and there

are no non-singular zeros, then not both quadruples z1, z2, z3, z4 and z1, z2, z3, z5
can consist of linearly dependent vectors. Thus we may assume, after renaming,
that we have linearly independent vectors z1, z2, z3, z4 such that

〈zi, zj〉 � Z(f) for all 1 ≤ i < j ≤ 4.

We write f(x1z1 + x2z2 + x3z3 + x4z4) as
∑

i �=j

aijx
3
ix

2
j +

∑

k �=i,j
i<j

bijkxixjx
3
k +

∑

i �=j,k
j<k

cijkxix
2
jx

2
k +

∑

l �=i,j,k
i<j<k

dijklxixjxkx
2
l ,(10)

where 1 ≤ i, j, k ≤ 4. By applying Lemma 5 and since f does not vanish on any of
the projective lines 〈zi, zj〉, if f has no non-singular zero we conclude that for each
pair (i, j) with i �= j exactly one of aij and aji is zero. It then follows that, after a
permutation of the variables, the form (10) can take only four different shapes. If
we write h for

a23x
3
2x

2
3 + a24x

3
2x

2
4 + a34x

3
3x

2
4

+
∑

k �=i,j
i<j

bijkxixjx
3
k +

∑

i �=j,k
j<k

cijkxix
2
jx

2
k +

∑

l �=i,j,k
i<j<k

dijklxixjxkx
2
l ,

those are

g1 := a12x
3
1x

2
2 + a13x

3
1x

2
3 + a14x

3
1x

2
4 + h,

g2 := a12x
3
1x

2
2 + a31x

3
3x

2
1 + a14x

3
1x

2
4 + h,

g3 := a12x
3
1x

2
2 + a13x

3
1x

2
3 + a41x

3
4x

2
1 + h,

g4 := a21x
3
2x

2
1 + a13x

3
1x

2
3 + a41x

3
4x

2
1 + h.

As indicated it has been checked on a computer that each of those forms has a non-
singular zero, provided 9 < q ≤ 16. We briefly describe the assembling process.

Along the way, we have already excluded, via Lemma 5, all forms that have a
non-singular zero on one of the projective lines 〈zi, zj〉 for some 1 ≤ i < j ≤ 4.
Furthermore, we know from the proof of Lemma 8 all forms which do not have a
non-singular zero in one of the subspaces

〈zi, zj , zk〉 for some 1 ≤ i < j < k ≤ 4.

Note that g1, g2, g3 and g4 restricted to such a subspace are, after permuting the
variables, equal to t1 or t2 as stated in the proof of Lemma 8. The computer
programs for g1, g2, g3 and g4 are analogous. Suppose gs for some 1 ≤ s ≤ 4 is
one of these cases. We save the rearranged coefficients of those forms of shape t1,
respectively t2, without a non-singular zero in four multidimensional arrays,

Aijk[�, �] where 1 ≤ i < j < k ≤ 4,

such that they represent the coefficients of gs restricted to the subspace 〈zi, zj , zk〉.
Thus, every set of coefficients of the form gs|〈zi,zj ,zk〉 without a non-singular zero
corresponds to a line Aijk[r, �].
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We use these data to construct all remaining forms by combining data in these
arrays and four additional degrees of freedom. Let rijk denote the rijk-th line of
Aijk[�, �] for 1 ≤ i < j < k ≤ 4. The non-negative integers r123, r124, r134, r234,
provided the corresponding lines are compatible with respect to the coefficients they
share, determine a form

C(r123, r124, r134, r234)

in four variables, x1, x2, x3, x4 say, with each monomial in at most three variables.
Thus any relevant form of shape gs can be written as

C(r123, r124, r134, r234; a, b, c, d)

= C(r123, r124, r134, r234) + x1x2x3x4(ax1 + bx2 + cx3 + dx4).

For all admissible r123, r124, r134, r234 and for all a, b, c, d ∈ Fq we then search for a
non-singular zero (x1, x2, x3, x4) ∈ F4

q of

C(r123, r124, r134, r234; a, b, c, d)

by trying points successively. To do this efficiently, one can rescale both the forms
and variables. For instance, rescale g1, g2, g3 such that

a12 = 1, a23 = 1, a34 = 1

and g4 such that

a21 = 1, a23 = 1, a34 = 1.

It is easier to choose a rescaling that is compatible with the one used in Lemma 8
(and hence with the data in the arrays Aijk[�, �]). Besides these considerations, we
put a general effort on implementing the algorithm efficiently.

The full C++ program and the data used in the assembling process are available
at [4]. This completes the proof of Theorem 1.

Note that apart from the computer checks we have not used any assumption
other than q > 5. For q = 8, 9 it is likely that one can also find by a computer
search a non-singular zero of every form of the shapes g1, g2, g3 and g4. Whereas the
case q = 7 seems more doubtful than q = 8, 9, one can easily find counterexamples,
for instance, of shape g1, for q = 5 using the same algorithm.
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