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Abstract

We describe a computer vision system for observing facial
motion by using anoptimal estimationoptical flow method
coupled with geometric, physical and motion-based dynamic
models describing thefacial structure. Our method produces
a reliable parametric representation of the face's indepen-
dent muscle action groups, as well as an accurate estimate
of facial motion.

Previous efforts at analysis of facial expression have been
based on the Facial Action Coding System (FACS), a repre-
sentation developed in order to allow human psychologists
to code expression from static pictures. To avoid use of this
heuristic coding scheme, we have used our computer vision
system to probabilistically characterize facial motion and
muscle activation in an experimental population, thus de-
riving a new, more accurate representation of human facial
expressions that we call FACS+.

Finally, we show how this method can be used for cod-
ing, analysis, interpretation, and recognition of facial ex-
pressions.

Keywords: Facial Expression Analysis, Expression
Recognition, Face Processing, Emotion Recognition,
Facial Analysis, Motion Analysis, Perception of Action,
Vision-based HCI.

1. Introduction

Faces are much more than keys to individual identity,
they play a major role in communication and interaction that
makes machine understanding, perception and modeling of
human expression an important problem in computer vision.
There is a significant amount research on facial expressions
in computer vision and computer graphics (see [10, 23] for
review). Perhaps the most fundamental problem in this area
is how to categorize active and spontaneous facial expres-
sions to extract information about the underlying emotional
states? [6]. Although a large body of work dealing with hu-
man perception of facial motions exists, there have been few
attempt to develop objective methods for quantifying facial
movements.

Perhaps the most important work in this area is that of Ek-
man and Friesen [9], who have produced the most widely
used system for describing visually distinguishable facial
movements. This system, called theFacial Action Coding
Systemor FACS, is based on the enumeration of all “action
units” of a face which cause facial movements.

However a well recognized limitation of this method is
the lack of temporal and detailed spatial information (both at
local and global scales) [10, 23]. Additionally, the heuristic
“dictionary” of facial actions originally developed for FACS-
based coding of emotion, after initial experimentation, has
proven quite difficult to adapt for machine recognition of fa-
cial expression.

To improve this situation we would like toobjectively
quantify facial movements using computer vision tech-
niques. Consequently, the goal this paper is to provide a
method for extracting an extended FACS model (FACS+),
by coupling optical flow techniques with a dynamic model
of motion, may it be physics-based model of both skin and
muscle, geometric representation of a face or a motion spe-
cific model.

We will show that our method is capable of detailed, re-
peatable facial motion estimation in both time and space,
with sufficient accuracy to measure previously-unquantified
muscle coarticulations, and relates facial motions to facial
expressions. We will further demonstrate that the parame-
ters extracted using this method provide improved accuracy
for analysis, interpretation, coding and recognition of facial
expression.

1.1 Background

Representations of Facial Motion: Ekman and
Friesen [9] have produced a system for describing “all
visually distinguishable facial movements”, called the
Facial Action Coding Systemor FACS. It is based on the
enumeration of all “action units” (AUs) of a face that
cause facial movements. There are 46AUs in FACS that
account for changes in facial expression. The combination
of these action units result in a large set of possible facial
expressions. For example smile expression is considered to
be a combination of “pulling lip corners (AU12+13) and/or
mouth opening (AU25+27) with upper lip raiser (AU10)
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and bit of furrow deepening (AU11).” However this is only
one type of a smile; there are many variations of the above
motions, each having a different intensity of actuation.
Despite its limitations this method is the most widely used
method for measuring human facial motion for both human
and machine perception.

Tracking facial motion: There have been several attempts
to track facial expressions over time. Mase and Pentland [20]
were perhaps the first to track action units using optical flow.
Although their method was simple, without a physical model
and formulated statically rather than within a dynamic opti-
mal estimation framework, the results were sufficiently good
to show the usefulness of optical flow for observing facial
motion.

Terzopoulos and Waters [29] developed a much more so-
phisticated method that tracked linear facial features to esti-
mate corresponding parameters of a three dimensional wire-
frame face model, allowing them to reproduce facial expres-
sions. A significant limitationof this system is that it requires
that facial features be highlighted with make-up for success-
ful tracking.

Haibo Li, Pertti Roivainen and Robert Forchheimer [18]
describe an approach in which a control feedback loop be-
tween what is being visualized and what is being analyzed
is used for a facial image coding system. Their work is the
most similar to ours, but both our goals and implementation
are different. The main limitation of their work is lack of
detail in motion estimation as only large, predefined areas
were observed, and only affine motion computed within each
area. These limits may be an acceptable loss of quality for
image coding applications. However, for our purposes this
limitation is severe; it means we cannot observe the “true”
patterns of dynamic model changes (i.e., muscle actuations)
because the method assumes the FACS model as theunder-
lying representation. We are also interested in developing a
representation that is not dependent on FACS and is suitable
not just for tracking, but recognition and analysis.

Recognition of Facial Motion: Recognition of facial ex-
pressions can be achieved by categorizing a set of such pre-
determined facial motions as in FACS, rather than determin-
ing the motion of each facial point independently. This is
the approach taken by several researchers [19, 20, 33, 4] for
their recognition systems. Yacoob and Davis, who extend the
work of Mase, detect motion (only in eight directions) in six
predefined and hand initialized rectangular regions on a face
and then use simplifications of the FACS rules for the six
universal expressions for recognition. The motion in these
rectangular regions, from the last several frames, is corre-
lated to the FACS rules for recognition. Black and Yacoob
extend this method, using local parameterized models of im-
age motion to deal with large-scale head motions. These
methods show about 90%accuracy at recognizing expres-
sions in a database of 105 expressions [4, 33]. Mase [19] on
a smaller set of data (30 test cases) obtained an accuracy of

80%. In many ways these are impressive results, consider-
ing the complexity of the FACS model and the difficulty in
measuring facial motion within small windowed regions of
the face.

In our view perhaps the principle difficulty these re-
searchers have encountered is the sheer complexity of de-
scribing human facial movement using FACS. Using the
FACS representation, there are a very large number ofAUs,
which combine in extremely complex ways to give rise
to expressions. Moreover, there is now a growing body
of psychological research that argues that it is the dynam-
ics of the expression, rather than detailed spatial deforma-
tions, that is important in expression recognition. Several
researchers [1, 2, 6, 7, 8, 17] have claimed that the timing
of expressions, something that is completely missing from
FACS, is a critical parameter in recognizing emotions. This
issue was also addressed in the NSF workshops and reports
on facial expressions [10, 23]. To us this strongly suggests
moving away from a static, “dissect-every-change” analy-
sis of expression (which is how the FACS model was devel-
oped), towards a whole-face analysis of facial dynamics in
motion sequences.

2. Visual Coding of Facial Motion

2.1 Vision-based Sensing: Visual Motion

We use optical flow processing as the basis for percep-
tion and measurement of facial motion. We have found
that Simoncelli's [28] method for optical flow computation,
which uses a multi-scale, coarse-to-fine, Kalman filtering-
based algorithm, provides good motion estimates and error-
covariance information. Using this method we compute the
estimated mean velocity vectorv̂i(t), which is the estimated
flow from time t to t + 1. We also store the flow covari-
ances�v between different frames for determining confi-
dence measures and for error corrections in observations for
the dynamic model (see Section 2.3 and Figure 3 [observa-
tion loop (a)]).

2.2 Facial Modeling

A priori information about facial structure is required for
our framework. We use a face model which is an elabora-
tion of the facial mesh developed by Platt and Badler [27].
We extend this into a topologically invariant physics-based
model by adding anatomically-based muscles to it [11].

In order to conduct analysis of facial expressions and to
define a new suitable set of control parameters (FACS+) us-
ing vision-based observations, we require a model with time
dependentstatesand state evolutionrelationships. FACS
and the related AU descriptions are purely static and pas-
sive, and therefore the association of a FACS descriptor with
a dynamic muscle is inherently inconsistent.

By modeling the elastic nature of facial skin and the
anatomical nature of facial muscles we develop a dynamic
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Figure 1. Using the geometric mesh to determine the
continuum mechanics parameters of the skin using Fi-
nite Element Methods.

muscle-based model of the face, including FACS-like con-
trol parameters (see [11, 32] for implementation details).
A physically-based dynamic model of a face may be con-
structed by use of Finite Element methods. These methods
give our facial model ananatomically-basedfacial structure
by modeling facial tissue/skin, and muscle actuators, with a
geometric model to describe force-based deformations and
control parameters [3, 15, 21].

By defining each of the triangles on the polygonal mesh
as anisoparametric triangular shell element, (shown in Fig-
ure 1), we can calculate the mass, stiffness and damping
matrices for each element (usingdV = teldA), wheretel
is thickness, given the material properties of skin (acquired
from [26, 30]). Then by the assemblage process of the direct
stiffness method [3, 15] the required matrices for the whole
mesh can be determined. As the integration to compute the
matrices is done prior to the assemblage of matrices,each el-
ement may have different thicknesstel, although large differ-
ences in thickness of neighboring elements are not suitable
for convergence [3].

The next step in formulating this dynamic model of the
face is the combination of the skin model with a dynamic
muscle model. This requires information about the attach-
ment points of the muscles to the face, or in our geomet-
ric case the attachment to the vertices of the geometric sur-
face/mesh. The work of Pieper [26] and Waters [32] provides
us with the required detailed information about muscles and
muscle attachments.

2.3 Dynamic Modeling and Estimation

Initialization of Model on an image

In developing a representation of facial motion and then us-
ing it to compare to new data we need to locate a face and
the facial features in the image followed by a registration
of these features for all faces in the database. Initially we
started our estimation process by manually translating, ro-
tating and deforming our 3-D facial model to fit a face in
an image. To automate this process we are now using the

(a) Original Image (b)with Eyes, Lips (c) Face Model
Nose Extracted

(d) Mask of (e) Warped & (f) Canonical
Model Masked Points Extracted

Figure 2. Initialization on a face image using Modu-
lar Eigenfeatures method with a canonical model of a
face.

View-based and Modular Eigenspace methods of Pentland
and Moghaddam [22, 24].

Using this method we can automatically extract the po-
sitions of the eyes, nose and lips in an image as shown in
Figure 2(b). These feature positions are used to warp the
face image to match the canonical face mesh (Figure 2(c)
and (d)). This allows us to extract the additional “canoni-
cal feature points” on the image that correspond to the fixed
(non-rigid) nodes on our mesh (Figure 2(f)). After the ini-
tial registering of the model to the image the coarse-to-fine
flow computation methods presented by Simoncelli [28] and
Wang [31] are used to compute the flow. The model on the
face image tracks the motion of the head and the face cor-
rectly as long as there is not an excessive amount of rigid
motion of the face during an expression. This limitation can
be addressed by using methods that attempt to track and sta-
bilize head movements (e.g., [12, 4]).

Images to face model

Simoncelli's [28] coarse-to-fine algorithm for optical flow
computations provides us with an estimated flow vector,v̂i.
Now using the a mapping function,M, we would like to
compute velocities for the vertices of the face modelvg .
Then, using the physically-based modeling techniques and
the relevant geometric and physical models, described ear-
lier, we can calculate the forces that caused the motion. Since
we are mapping global information from an image (over the
whole image) to a geometric model, we have to concern
ourselves with translations (vectorT ), and rotations (ma-
trix R). The Galerkin polynomial interpolation functionH
and the strain-displacement functionB, used to define the
mass, stiffness and damping matrices on the basis of the fi-
nite element method are applied to describe the deformable
behavior of the model [15, 25, 3].

We would like to use only a frontal view to determine fa-
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cial motion and model expressions, and this is only possible
if we are prepared to estimate the velocities and motions in
the third axis (going into the image, thez-axis). To accom-
plish this, we define a function that does a spherical mapping,
S(u; v), where areu and v are the spherical coordinates.
The spherical function is computed by use of a prototype
3-D model of a face with a spherical parameterization; this
canonical face model is then used to wrap the image onto the
shape. In this manner, we determine the mapping equation:

vg(x; y; z)
= M(x; y; z)v̂i(x; y j z; y)
� HSR (v̂i(x; y) + T ) :

(1)

For the rest of the paper, unless otherwise specified, when-
ever we talk about velocities we will assume that the above
mapping has already been applied.

Estimation and Control

Driving a physical system with the inputs from noisy mo-
tion estimates can result in divergence or a chaotic physi-
cal response. This is why an estimation and control frame-
work needs to be incorporated to obtain stable and well-
proportioned results. Similar considerations motivated the
control framework used in [18]. Figure 3 shows the whole
framework of estimation and control of our active facial ex-
pression modeling system. The next few sections discuss
these formulations.

The continuous time Kalman filter (CTKF) allows us
to estimate the uncorrupted state vector, and produces an
optimal least-squares estimateunder quite general condi-
tions [5, 16]. The Kalman filter is particularly well-suited
to this application because it is a recursive estimation tech-
nique, and so does not introduce any delays into the system
(keeping the system active). The CTKF for the above system
is:

_̂
X = AX̂+BU+ L

�
Y �CX̂

�
;

where:L = �eC
T�m

�1;
(2)

whereX̂ is the linear least squares estimate ofX based on
Y (� ) for � < t and�e the error covariance matrix for̂X.

The Kalman gain matrixL is obtained by solving the follow-
ing Riccati equation to obtain the optimal error covariance
matrix�e:

d

dt
�e = A�e + �eA

T +G�pG
T � �eC

T�m
�1
C�e:

(3)
We solve for�e in Equation (3) assuming a steady-state sys-
tem (i.e., d

dt
�e = 0).

The Kalman filter, Equation (2), mimics the noise free dy-
namics and corrects its estimate with a term proportional to
the difference(Y �CX̂), which is the innovations process.
This correction is between the observation and our best pre-
diction based on previous data. Figure 3 shows the estima-
tion loop (the bottom loop) which is used to correct the dy-
namics based on the error predictions.

The optical flow computation method has already estab-
lished a probability distribution (�v(t)) with respect to the
observations. We can simply use this distribution in our dy-
namic observations relationships. Hence we obtain:

�m(t) =M(x; y; z)�v(t); and;Y(t) =M(x; y; z)v̂i(t):

(4)

Control, Measurement and Correction of Dynamic Mo-
tion

Now using a control theory approach we will obtain the mus-
cle actuations. These actuations are derived from the ob-
served image velocities. The control input vectorU is there-
fore provided by the control feedback law:U = �GX,
whereG is the control feedback gain matrix. We assume
the instance of control under study falls into the category of
anoptimal regulator(as we need some optimality criteria for
an optimal solution [16]). Hence, the optimal control lawU�

is given by:
U� = �R�1BTPcX

� (5)

whereX� is the optimal state trajectory andPc is given by
solving yet anothermatrix Riccati equation[16]. HereQ
is a real, symmetric, positive semi-definitestate weighting
matrix andR is a real, symmetric, positive definitecontrol
weightingmatrix. Comparing with the control feedback law
we obtainG = R�1BTPc. This control loop is also shown
in the block diagram in Figure 3 (upper loop (c)).

2.4 Motion Templates from the Facial Model

So far we have discussed how we can extract the muscle
actuations of an observed expression. These methods have
relied on detailed geometric and/or physics-based descrip-
tion of facial structure. However our control-theoretic ap-
proach can also be used to extract the “corrected” or “noise-
free” 2-D motion field that is associated with each facial ex-
pression. In other words, as much as the dynamics of motion
is implicit into our analysis, it does not explicitly require a
geometric and/or physical model of the structure. The de-
tailed models are there so that we canback-projectthe facial

4



(a) Surprise (b) Smile

(c) & (d) Model

(e) & (f) Motion Energy

Figure 4. Determining of expressions from video se-
quences. (a) and (b) show expressions of smile and
surprise, (c) and (d) show a 3-D model with surprise
and smile expressions, and (e) and (f) show the spatio-
temporal motion energy representation of facial mo-
tion for these expressions.

motion onto these models and use these models to extract a
representation in the state-space of these models. We could
just use the motion and velocity measurements for analy-
sis, interpretation and recognition without using the geomet-
ric/physical models. This is possible by using 2-D motion
energy templates that encode just the motion. This encoded
motion in 2-D is then used as representation for facial action.

The system shown in Figure 3 employs optimal estima-
tion, within an optimal control and feedback framework.
It maps 2-D motion observations from images onto a dy-
namic model, and then the estimates of corrected 2-D mo-
tions (based on the optimal dynamic model) are used to cor-
rect the observations model. Figure 9 and Figure 10 show
the corrected flow for the expressions of raise eyebrow and
smile, and also show the corrected flow after it has been ap-
plied to a dynamic face model. Further corrections are possi-
ble by using deformations of the facial skin (i.e., the physics-
based model) as constraints in state-space that only measures
image motion.

By using this methodology without the detailed 3-D ge-
ometric and physical models andback-projectingthe facial
motion estimates into the image we can remove the complex-
ity of physics-based modeling from our representation of fa-
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Figure 5. FACS/Candide deformation vs. Observed
deformation for the Raising Eyebrow expression. Sur-
face plots (top) show deformation over time for FACS
actionsAU2, and (bottom) for an actual video se-
quence of raising eyebrows.

cial motion. Then learning the “ideal” 2-D motion views
(e.g., motion energy) for each expression we can charac-
terize spatio-temporal templates for those expressions. Fig-
ure 4 (e) and (f) shows examples of this representation of fa-
cial motion energy. It is this representation of facial motion
that we use for generating spatio-temporal “templates” for
coding, interpretation and recognition of facial expressions.

3. Analysis and Representations

The goal of this work is to develop a new representation
of facial action that more accurately captures the character-
istics of facial motion, so that we can employ them in recog-
nition, coding and interpretation of facial motion. The cur-
rent state-of-the-art for facial descriptions (either FACS itself
or muscle-control versions of FACS) have two major weak-
nesses:

� The action units are purely local spatial patterns. Real
facial motion is almost never completely localized; Ek-
man himself has described some of these action units
as an “unnatural” type of facial movement. Detecting a
unique set of action units for a specific facial expression
is not guaranteed.

� There is no time component of the description, or only a
heuristic one. From EMG studies it is known that most
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Figure 6. FACS/Candide deformation vs. Observed
deformation for the Happiness expression. Surface
plots (top) show deformation over time for FACS ac-
tionAU12, and (bottom) for an actual video sequence
of happiness.

facial actions occur in three distinct phases:applica-
tion, releaseand relaxation. In contrast, current sys-
tems typically use simple linear ramps to approximate
the actuation profile. Coarticulation effects are not ac-
counted for in any facial movement.

Other limitations of FACS include the inability to describe
fine eye and lip motions, and the inability to describe the
coarticulation effects found most commonly in speech. Al-
though the muscle-based models used in computer graphics
have alleviated some of these problems [32], they are still too
simple to accurately describe real facial motion. Our method
lets us characterize the functional form of the actuation pro-
file, and lets us determine a basis set of “action units” that
better describes the spatial properties of real facial motion.

Evaluation is an important part of our work as we do need
to experiment extensively on real data to measure the valid-
ity of our new representation. For this purpose we have de-
veloped a video database of people making expressions;the
results presented here are based on 52 video sequences of
8 users making 6 different expressions. These expressions
were all acquired at 30 frames per second at full NTSC video
resolution.

Currently these subjects are video-taped while making an
expression on demand. These “on demand” expressions have
the limitation that the subjects' emotion generally does not
relate to his/her expression. However we are for the moment
more interested in measuring facial motion and not human
emotion. In the next few paragraphs, we will illustrate the

resolution of our representation using the smile and eyebrow
raising expressions. Questions of repeatability andaccuracy
will also be briefly addressed.

3.1 Spatial Patterning

To illustrate that our new parameters for facial expressions
are more spatially detailed than FACS, comparisons of the
expressions ofraising eyebrowandsmileproduced by stan-
dard FACS-like muscle activations and our visually extracted
muscle activations are shown in Figure 5 and Figure 6.

The top row of Figure 5 showsAU2 (“Raising Eyebrow”)
from the FACS model and the linear actuation profile of the
corresponding geometric control points. This is the type
of spatio-temporal patterning commonly used in computer
graphics animation. The bottom row of Figure 5 shows the
observed motion of these control points for the expression
of raising eyebrowby Paul Ekman. This plot was achieved
by mapping the motion onto the FACS model and the actu-
ations of the control points measured. As can be seen, the
observed pattern of deformation is very different than that
assumed in the standard implementation of FACS. There is
a wide distribution of motion through all the control points,
not just around the largest activation points.

Similar plots for smile expression are shown in Figure 6.
These observed distributed patterns of motion provide a de-
tailed representation of facial motion that we will show is
sufficient for accurate characterization of facial expressions.

3.2 Temporal Patterning

Another important observation about facial motion that is
apparent in Figure 5 and Figure 6 is that the facial motion
is far from linear in time. This observation becomes much
more important when facial motion is studied with refer-
ence to muscles, which is in fact theeffectorof facial mo-
tion and the underlying parameter for differentiating facial
movements using FACS.

The top rows of Figure 5 and Figure 6, that show the de-
velopment of FACS expressions can only be represented by
a muscle actuation that has a step-function profile. Figure 7
and Figure 8 show plots of facial muscle actuations for the
observed smile and eyebrow raising expressions. For the pur-
pose of illustration, in this figure the 36 face muscles were
combined into seven local groups on the basis of their prox-
imity to each other and to the regions they effected. As can
be seen, even the simplest expressions require multiple mus-
cle actuations.

Of particular interest is the temporal patterning of the
muscle actuations. We have fit exponential curves to the ac-
tivation and release portions of the muscle actuation profile
to suggest the type of rise and decay seen in EMG studies of
muscles. From this data we suggest that the relaxation phase
of muscle actuation is mostly due to passive stretching of the
muscles by residual stress in the skin.

Note that Figure 8 for the smile expression also shows a
second, delayed actuation of muscle group 7, about 3 frames
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after the peak of muscle group 1. Muscle group 7 includes
all the muscles around the eyes and as can be seen in Figure 7
is the primary muscle group for the raising eye brow expres-
sion. This example illustrates that coarticulation effects can
be observed by our system, and that they occur even in quite
simple expressions. By using these observed temporal pat-
terns of muscle activation, rather than simple linear ramps, or
heuristic approaches of the representing temporal changes,
we can more accurately characterize facial expressions.

3.3 Characterization of Facial Expressions

One of the main advantages of the methods presented here
is the ability to use real imagery to define representations for
different expressions. As we discussed in the last section, we
do not want to rely on pre-existing models of facial expres-
sion as they are generally not well suited to our interests and
needs. We would rather observe subjects making expressions
and use the measured motion, either muscle actuations or 2-

D motion energy, to accurately characterize each expression.
Our initial experimentation on automatic characterization

of facial expression is based on 52 image sequences of 8 peo-
ple making expressions ofsmile, surprise, anger, disgust,
raise brow, and sad. Some of our subjects had problems
making the expression of sad, therefore we have decided to
exclude that expression from our study. Complete detail of
our work on expression recognition using the representations
discussed here appears elsewhere [14]. Using two different
methods; one based on our detailed physical model and the
other on our 2-D spatio-temporal motion energy templates,
both showed recognitionaccuracy rates of 98%.

4. Discussion and Conclusions

We have developed a mathematical formulation and im-
plemented a computer vision system capable of detailed
analysis of facial expressions within an active and dynamic
framework. The purpose of this system to to analyze real fa-
cial motion in order to derive an improved model (FACS+)
of the spatial and temporal patterns exhibited by the human
face.

This system analyzes facial expressions by observing ex-
pressive articulations of a subject's face in video sequences.
The visual observation (sensing) is achieved by using anop-
timal optical flowmethod. This motion is then coupled to a
physical model describing the skin and muscle structure, and
the muscle control variables estimated.

By observing the control parameters over a wide range of
facial motions, we can then extract a minimal parametric rep-
resentation of facial control. We can also extract a minimal
parametric representation of facial patterning, a representa-
tion useful for static analysis of facial expression.

We have used this representation in real-time tracking and
synthesis of facial expressions [13] and have experimented
with expression recognition. Currently our expression recog-
nition accuracy is 98% on a database of 52 sequences. using
either our muscle models or 2-D motion energy models for
classification [14].

We are working on expanding our database to cover many
other expressions and also expressions with speech. Catego-
rization of human emotion on the basis of facial expression is
an important topic of research in psychology and we believe
that our methods can be useful in this area. We are at present
in collaborating with several psychologists on this problem
and procuring funding to undertake controlled experiments
in the area with more emphasis on evaluation and validity.
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Figure 9. Left figure shows a motion field for the ex-
pression of raise eye brow expression from optical flow
computation and the right figures shows the motion
field after it has been mapped to a dynamic face model
using the control-theoretic approach of Figure 3.

Figure 10. Left figure shows a motion field for the
expression of smile expression from optical flow com-
putation and the right figures shows the motion field
after it has been mapped to a dynamic face model us-
ing the control-theoretic approach of Figure 3.
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