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Time Multiplexed Color Image Processing
Based on a CNN with Cell-State Outputs

Lei Wang, Member, IEEE,Jośe Pineda de Gyvez,Member, IEEE,
and Edgar S´anchez-Sinencio,Fellow, IEEE

Abstract—A practical system approach for time-multiplexing
cellular neural network (CNN) implementations suitable for pro-
cessing large and complex images using small CNN arrays is
presented. For real size applications, due to hardware limitations,
it is impossible to have a one-on-one mapping between the CNN
hardware cells and all the pixels in the image involved. This
paper presents a practical solution by processing the input image,
block by block, with the number of pixels in a block being the
same as the number of CNN cells in the array. Furthermore,
unlike other implementations in which the output is observed at
the hard-limiting block, the very large scale integrated (VLSI)
architecture hereby described monitors the outputs from the
state node. While previous implementations are mostly suitable
for black and white applications because of the thresholded
outputs, our approach is especially suitable for applications in
color (gray) image processing due to the analog nature of the state
node. Experimental complementary metal–oxide–semiconductor
(CMOS) chip results in good agreement with theoretical results
are presented.

Index Terms—Analog VLSI cellular neural networks (CNN),
high-performance image processing applications, neural
networks, PC interfaces.

I. INTRODUCTION

SINCE their introduction in 1988, cellular neural networks
(CNN) have shown a vast computing power, especially

for image processing [1]–[4]. A number of VLSI implemen-
tations of CNN analog neural networks have been proposed
in recent years [15], [18], [23]. These implementations in-
clude transconductance-mode-based processing elements [8],
discrete-time implementations [5], [11], [12], switched-current
signal processing elements [14], and the current-mode [13]
implementation. Each kind of CNN realization has its own
advantages and disadvantages. Worth mentioning is that the
silicon area and power dissipation are greatly reduced be-
cause of the tradeoffs between precision and area, or power
dissipation.

For example, the discrete-time CNN can yield “exact”
template weights and time constant, but it often takes more
area and consumes more power [11], [12]. Early CNN im-
plementations were designed to perform one specific function
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in image processing or classification, such as edge detection
[2], [3], connected component detection, or hole filling. More
recently, the ability to change template values electronically,
has been studied in detail [6], [7], [10], [23], [24]. Furthermore,
in some implementations the activation function of some CNN
chips is also tunable, e.g., is programmable [16], [17], the
slope and the threshold of the activation function. The basic
equation of a CNN cell is [1], [2]

(1)

(2)

where is the state of cell (0) is the initial
condition of the cell, and conform the integration
time constant of the system, and is an independent bias
constant. and are space invariant
programming templates for all cells in the neigh-
borhood of cell represents the external
input and represents the output equation, i.e., the activation
function applied to the cell’s state.

One common feature of currently available CNN circuits is
that the output signals are the feedback outputs of the cells,
and those output values are confined as binary values [1].
Hence, the output image is a black and white image even
when the CNN, in its nature, is an analog and continuous
signal processing system. The binary output values of the
CNN are the positive or negative threshold of the activation
function. Due to this nonlinear function, the feedback output
of a cell can converge to either a positive or negative value
under some well studied “stability conditions,” [1] such as

. This characteristic makes the CNN very attractive
for some pattern extracting applications, such as edge detection
and connected element detection where a binary valued output
image is acceptable. Moreover, the circuit design is relatively
easy if the output is just binary rather than continuous, since
the linearity, precision, and offsets of the output values are not
relevant [9], [13], [15], [23] because the “” state observed
before the activation function is not of critical importance.
However, in some cases, the binary output CNN does not
carry information. For example, in order to solve a group of
differential equations, or to build a real time control system,
or to obtain an output image with multiple gray levels (color
levels), a CNN with linear continuous observable outputs is
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required. Since the feedback outputs are limited by thresholds,
e.g., and , state variables have relatively wider dynamic
ranges than the feedback outputs and therefore can be used as
continuous outputs. In some CNN theoretical research papers
[25], the state variable (or state output) has already been
mentioned as a useful continuous information of the CNN.
Some authors also define state variables as the roots of the
differential equations and hence solve differential equations
with the CNN.

So far, except for the above fundamental work, there are
no circuits that have been fabricated or designed for the
purpose of obtaining continuous state outputs. Although in
some CNN chips the state variables could be observed [13],
[18], they were not used as operating outputs. In this case,
additional design constraints are imposed to the CNN cell.
These constraints involved improved linearity and the dynamic
range of the linear components of the cell.

The contribution hereby proposed consists of a practical
solution to handle large image sizes by using 1) a multiplexing
scheme and 2) a linearized CNN cell array for color (or gray)
images. It should be noticed that the CNN cell array can
be as small as 3 3 and still be capable of handling large
image sizes. It is necessary to stress out that the state-of-the-
art work in cellular neural networks has concentrated on VLSI
implementations without really addressing the “systems level.”
While efficient implementations have been reported, no reports
have been presented on the use of these implementations for
processing large complex images. The work hereby presented
introduces a strategy to process large images using small
CNN arrays. The approach, time-multiplexing, is prompted
by the need to simulate hardware models and test hardware
implementations of CNN. For practical size applications, due
to hardware limitations, it is impossible to have a one-on-one
mapping between the CNN hardware processors and all the
pixels in the image involved. We present a practical solution
by processing the input image block by block, with the number
of pixels in a block being the same as the number of CNN
processors in the hardware.

II. TIME-MULTIPLEXING HARDWARE SIMULATION

In time-multiplexing hardware simulations one can define
a block of pixels (subimage) which will be processed by
an equal number of CNN cells [22]. Once convergence is
achieved, a new subimage adjacent to the one just processed,
is scheduled for further processing. This procedure is repeated
until the whole image has been scanned using a lexicographical
order, say, from left to right and from top to bottom. It is
obvious that with this approach the processing of large images
becomes feasible in spite of the finite number of CNN cells.
Even though the approach seems simple and appealing, an
important observation is necessary: the processed border pixels
in each subimage may have incorrect values since they are
processed without neighboring information. Hence, to cope
with the previous problem, two sufficient conditions must be
considered to ensure that each border cell properly interacts
with its neighbors. These conditions are: 1) to have a belt
of pixels from the original image around the subimage being

(a) (b)

Fig. 1. Conditions for time multiplexing operation: (a) belt of inputs and (b)
overlapped pixels.

processed and 2) to have pixel overlaps between adjacent
subimages. We will go into the details of these two constraints
in the next subsection.

A. Sufficient and Necessary Conditions for Time Multiplexing

Notice first that in the absence of template-A values the
processing error is both image and template-B dependent. In
other words, the steady state of a border cell may converge
to an incorrect value due to the absence of it’s neighbors
weighted input. One can easily conclude that the error is
canceled if the missing external inputs are provided to the
border cells as depicted in Fig. 1(a). Since typically, the array
is “embedded” in the image during operation, this condition
can easily be satisfied.

Let us address now the interactions among cells. The
problem in this situation is more involved because the output
signals depend on the state of their corresponding cells. To
minimize the error an overlap of pixels between two adjacent
blocks is proposed, see Fig. 1(b). In this form, the inner cells
of the CNN array will always receive weighted processing
information from the border cells.

The general time-multiplexing procedure consists in pro-
cessing each image block until all CNN cells within the
block converge. The block with converged cells will have
state output variables which are the values used for the final
output image. Every time that a new subimage is processed,
the physical CNN array is initialized to the initial conditions
of the original image, or to black or to white as required
by the template in use. In the overlapping procedure the
outer overlapped cell’s converged values are discarded since
they were computed with incomplete neighboring information.
Only the inner cell’s converged values are kept as valid values.
This implies that for a neighborhood radius of one, an overlap
of two pixel column/rows is needed to be able to ensure
correct values for pixels assigned to the border cells. With
the added overlapping feature, better neighboring interactions
are achieved, but at the same time, an increase in computation
time is inevitable.

With the previous multiplexing scheme the image needs to
be iterated several times over newly obtained states to allow
the proper propagation of global effects. Multiple iterations
are necessary to guarantee that all cells have converged to
correct values taking into account all global effects. This can
be inferred by considering a diagonal propagation of, say,
a black pixel in a fully white image. Notice that without
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overlaps it is impossible to propagate global effects, and that
the propagation is achieved with at least one overlapped pixel.

For the purpose of better understanding the overall idea
of this time-multiplexing approach, a simplified algorithm is
presented below. Assume an image, an CNN
array, pixel values , overlaps, and a cell .

for 1
for

for
for

/ load input image/
/ load initial conditions,
and let CNN run /

III. SYSTEM ARCHITECTURE

The CNN IC consists of a 3 3 array with shared in-
put/output pins. Salient features of this implementation are full
template programmability, a programmable integration time
constant, and an external output at the state node.

Fig. 2 presents a modular view of the CNN IC along with
I/O signals.

• are the pins to set the analog template
values of where .

• are the pins to set the analog template
values of where .

• IO1, IO2, , IO9 are the input–output pins of all nine
cells. The pin of each cell is used to do the functions of
setting the boundary conditions, initializing the state, and
of providing external input values to the cell, as well as
obtaining its state output.

• and are control signals to multiplex each in-
put–output pin for different functions at different time
periods.

• is the offset bias voltage for the templates, and
is a tuning voltage of the active resistor.

• 5, 5, 1, 1 V are the power supplies for the circuit and
for the activation function, respectively.

Two control signals are used as switching signals to mul-
tiplex inputs, outputs, and cell initial conditions in order
to let them use the same pins. Data lines are shared by
analog inputs, boundary values, initial conditions of cell state
variables, and outputs of state variables. The logic codes and
sequences of pin multiplexing are shown in Table I. The pin
multiplexing scheme uses capacitors (0.6 pF) to hold the
input information when the circuit is switched to the output

Fig. 2. System structure of the 3�3 CNN.

TABLE I
THE CODES AND SEQUENCE OFPIN MULTIPLEXING OPERATIONS

mode. This capacitance value is designed to eliminate the feed-
through effects of complementary metal–oxide–semiconductor
(CMOS) switches, and for the same purpose, all analog
switches are transistors with minimal size. As a result, the
output is kept unchanged when the pin is switched from the
input to the output voltage. The terminal to set the initial
condition is connected to the state variable node of the cell.

A. Cell Core

Fig. 3 shows the hardware realization of a CNN cell. Here
the integrator time constant is composed of a capacitor, an
opamp and an OTA which is in the feedback path. The OTA is
used to substitute an active resistor, with a value .
The purpose of adding the opamp is to buffer the RC integrator
from the 19 multipliers used to implement the weights of both
A and B templates. Observe that when the 19 multipliers are
connected in parallel a much smaller net output resistance than
that of just one multiplier (divided by 19), and also a much
larger net parasitic capacitance than that of one multiplier
(19 ) appear. These two nonideal elements could reduce the
effective value of and increase the value of in the
structure of Fig. 3 because of their parallel connections with
each other. However, thevirtual ground point(noninverting
input) of the opamp can isolate the output impedances of the
multipliers from and . On the other hand, the virtual
ground makes each multiplier have a “virtual” zero load, and
thus eliminates the load effect on the multiplier which comes
from the finite output impedance of the transconductance
multiplier.

Another advantage of buffering the large aggregated par-
asitic capacitance of 19 multipliers is that the value of
can be controlled by a single capacitor, rather than by many
(undetermined) parasitic values. In this way, it is possible to
control the time constant of the integrator. More importantly,
the mismatches of the time constants of the cells are much
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Fig. 3. Building structure of the CNN cell.

smaller if the value of is determined by one monolithic
capacitor rather than by many distributed parasitic values.

To prevent the integrator from entering into oscillation,
the value of has to be large enough to form a domi-
nant pole, and thus, compensate for the phase shift of the
integrator. Assuming a single-pole model for the OTA, this
condition is satisfied when where is the OTA’s
transconductance andis the OTA’s dominant pole.

Finally, the buffer in Fig. 3 is basically an opamp with
unity-gain feedback connection whose function is to isolate the
state variable node of the cell from the outside environment.

B. Multiplier Circuit

For the design of a continuous output CNN, the general re-
quirements for the transconductance multiplier are the linearity
and its tolerance to process mismatches.

The multiplier used here is a folded Gilbert multiplier [26]
with linearity enhancement, which is illustrated in Fig. 4.
PMOS transistors M1 and M2 form a current mirror pair to
supply a biasing current to the input pair M3 and M4, thus

/2. M3 and M4 are biased in their linear regions as
source degenerated resistors, whose functions are to expand the
linearity of the input pair M5 and M6. is a control voltage
that represents the template value, e.g., , etc. In the
following equations, M3 and M4 are ignored for convenience
of the mathematical analysis. It can be proven that the output
differential current of this multiplier is

(3)

where and
.

Equation (3) is the fundamental equation to perform four-
quadrant multiplications with the input voltage and the
control voltage . The linearity of the circuit can be improved
by either using long channel transistors or large biasing
currents, since the value of can be much larger
than .

In order to save area and power dissipation, a summing
current mirror (shown in Fig. 5) is utilized to collect the
output currents ( and ) of all 19 multipliers instead of
adding individual current mirrors for every multiplier at their
corresponding output stage. This cascode summing current
mirror is needed to minimize output offsets and make the

Fig. 4. Circuit of the folded Gilbert multiplier with linear expansion.Vc is
the control voltage (template input), andVin is the image pixel input.

Fig. 5. Summing current mirror of all 19 multipliers.

circuit properties less sensitive to process variations. HSPICE
simulations showed a total harmonic distortion (THD) of 0.5%,
at 1.0 V and 1.0 V, and a power dissipation of
about 0.75 mW using the process parameters of 2m n-well
CMOS technology from MOSIS.

C. The Linear Tunable OTA

The linear resistor of the cell core was implemented with a
tunable OTA. The tunability of the OTA is also indispensable
because 1) on-chip tuning is required to compensate systematic
errors raised by parameter mismatches and 2) CNN pro-
grammability involves that the value of be also adjustable.
The traditional method of tuning the transconductance of the
OTA is by adjusting the biasing current of the input differential
pair. The linearity is significantly reduced by decreasing its
biasing current because of the quadratic relationship between
the gate-source voltage and the drain current. Hence, this
method is not suitable for our purposes. One suitable way
to simultaneously improve both the linearity and tunability
of the OTA is to utilize a programmable current mirror [20],
[21]. This approach has been found to be very good for both
linearity and tunability. It consists of adjusting the gain of the
current mirrors rather than the biasing current of the input
pair. In our case, a modified programmable current mirror
(programmable Widlar current mirror) is presented. It has a
simple structure and its performance is also good.

1) Circuit Analysis: The circuit structure of the OTA is
shown in Fig. 6. The only difference of this circuit from
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Fig. 6. Circuit of the tunable linear OTA using programmable current
mirrors.

Fig. 7. Plots of THD versus input voltage (peak to peak value) of the basic
OTA and the tunable OTA atVc = �2 V and Vc = 2 V.

a basic CMOS OTA is that there are two transistors MR1
and MR2, which are biased in their linear regions. The
functions of both active resistors are to tune the current
gains of two current mirrors: M3-M5 and M4-M6, as well
as to increase the linear range. Let the linear resistance of
MR1 and MR2 be denoted as. Now recall that since MR1
and MR2 are working in the linear range, their equivalent
resistance is . Assume also, that

and
.

It is reasonable to assume the values ofand to be
larger than 10 5 A/V2, larger than 100 K , and the biasing
current large enough (e.g., 35A). Then within a limited
input range such that and are not far from /2, we have

(4)

(5)

Therefore, by obtaining and in terms of and ,
respectively, around MR1 and MR2 the output current can
be approximated as

(6)

In order to separate the linear and nonlinear terms of,
it is better to expand it into polynomial expressions in terms
of the differential input voltage . All even terms vanish if it
is assumed that the input voltage is differential. Disregarding
high order terms we have

where

(7)

(8)

Evaluating the corresponding derivatives, (7) and (8) yield,
respectively

(9)

(10)

The linear term in (9) is the conductance of the OTA. In
certain cases, such as when is large enough, can be
further simplified as

(11)

Simultaneously notice from (10), that the nonlinearity (third-
order distortion) of can be greatly reduced by increasing
the values of and . Under the assumptions made in (4)
and (5), the third-order term is much smaller than the linear
term. Then, it can be concluded that

(12)

Another advantage of this programmable current mirror is
that its gain bandwidth product will not significantly change
with the adjustment of its conductance. The OTA’s input
range is from 3–3 V. The tuning range of the conductance
is from 2 to 5 mhos. The simulated THD versus input
voltages is plotted in Fig. 7. Although there are differences
between different input voltages, these variations are within
the tolerable range of linearity. The estimated total power
dissipation of the OTA is 0.45 mW.

D. The Activation Function

The sigmoid activation function plays a very important role
to control the errors and the stability of the CNN [19]. The
most important aspects to consider are as follows.

1) The threshold voltages of the sigmoid function must
be accurate to avoid measurement errors applied to the
output voltage.
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(a) (b)

Fig. 8. Circuit structure of the activation function: (a) an opamp having separate power voltages and unity feedback configuration and (b) HSPICE
simulation results.

2) The slope of the linear segment should be the same
among all cells in the CNN. Any mismatch may in-
troduce stability problems.

3) The slope of the sigmoid function of each cell should be
about 1.0 to make the cell more stable than other values.

4) The slew rate of the output voltage should be high to
have a short settling time.

The circuit structure of the sigmoid activation function is
shown in Fig. 8(a). It is basically an opamp in unity gain-
feedback connection, but the power supplies of the first and
second stages of the opamp are different. The supply voltages
of the first stage are 5 and 5 V, while the voltages
of the second stage are only1 and 1 V. All power
voltages are supplied external to the IC. The advantage of
using independent power supplies in one opamp is that the
threshold voltages of the sigmoid function are well defined and
programmable. Therefore we do not have to use hard limiter
circuits, whose threshold voltages are always significantly
variable with process variations.

The structure of the feedback connection of a high-gain
opamp guarantees that the slope of the input–output charac-
teristic curve is almost ideal 1.0 and that there are sharp turning
corners at the points of V and V. These
conditions make the active function be a perfect piecewise
linear function; see Fig. 8(b). However, the deep feedback
connection of the opamp may introduce stability problems.
A compensation capacitor has to be added to compensate
for the phase shift, but will contribute to the time delay
of the activation function. Within one chip, it is acceptable
to assume that the relative mismatch (or the variation of the
ratio) of the ’s between two cells is very small, so the time
delay mismatch caused by is not critical. The simulated
slew rate of the activation function is about 10 V/s, for a

TABLE II
HSPICE SIMULATED RESULTS OF THEONE-STAGE OPAMP IN FIG. 9

load capacitance of 1 pF. The total power dissipation of the
activation function is 0.38 mW.

E. Op Amp

There are two op amps in each cell; one is in the cell
core; another one is used as a buffer to isolate the parasitic
capacitance of the outside world from the state variable node.
Both op amps have a one-stage opamp structure as shown
in Fig. 9. The advantage of using a one-stage opamp is
that it is more stable than a two-stage opamp, and the load
capacitance does not affect the stability of the opamp. The
gain of the one-stage opamp is not very high, but is enough
for our applications. For 5 V, its HSPICE
simulation results are listed in Table II.

IV. TESTING OF ELECTRICAL PARAMETERS

The 3 3 CNN chip was fabricated with MOSIS n-well
2.0 m process. The microphotograph of the die is shown in
Fig. 10 where all cells are arranged as a 33 array. The die
area of the circuit is approximately 3.2 mm2, and the power
dissipation is less than 250 mW. The cell area is 0.19 mm2.
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Fig. 9. Circuit structure of one-stage opamp.

Fig. 10. Photograph of microchip.

Fig. 11. DC sweep characteristic of the tunable OTA where the tuning
voltageVc is from �2 to +2 V.

Two important circuit building blocks; the analog multiplier
and the tunable linear OTA, were also fabricated in separate
chips for testing purposes. The dc sweep curves of the OTA
at different values of are shown in Fig. 11. The dc sweep
characteristics of the multiplier are shown in Fig. 12.

Another import function of tuning is to expand the
adjustable range of template values. For example, reducing

can increase the value of .
The linearity of the central cell (2, 2) can be calibrated

by adjusting the of the tunable OTA using the procedure
previously described. It is necessary here to deduct an amount
of 0.51 V from since this value is used to cancel
the output offset of (2, 2) and cannot be counted in the
calculation of linearity.

The CNN chip is connected to a personal computer (PC)
through an A/D and a D/A interfacing board. The system
connections are described in Fig. 13. The operations of setting
inputs and getting outputs from the CNN chip are multiplexed

Fig. 12. DC sweep characteristics of the analog multiplier where the sweep
voltage is from�1 to 1 V.

Fig. 13. General interface circuit of the CNN chip with a personal computer.

Fig. 14. Detailed connections of 4-1 analog multiplexers for CNN-PC in-
terface.

externally by 4-1 analog multiplexer chips (ADG509A). Exter-
nal operations are synchronized with the multiplexing opera-
tions inside the chip. The type of A/D board was AT-MIO-16F,
which has 12 A/D channels; the type of D/A board was AT-
AO-6/10, which has 10 D/A channels. Both are products of
National Instruments. The pin multiplexing control code, is
generated by a computer program and interfaced through the
digital I/O port in the AT-MIO-16F board.

The detailed connections of the analog multiplexers are
shown in Fig. 14 where the opamps are added as A/D output
buffers to isolate the output node from the parasitic capacitance
of the wires and the A/D board.

The operating sequence is listed next as follows.

1) Initialize the A/D and D/A boards. Set the required
template values by providing the corresponding analog
voltages for the template values.

2) Set the boundary values of the 33 CNN, and the initial
values of all the CNN cells.
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(a) (b) (c)

Fig. 15. Processed images. (a) Unprocessed image, (b) edge detection, and (c) hole filler.

3) Map the pixel values (0–255) of the input image into
CNN input voltage values 1.0 to1.0 V, and send them
to the chip.

4) Extract the steady-state values (3.0 to3.0 V) of the
state variables of all cells and map them to pixel values
(0–255) of the output image.

5) For time multiplexing applications [22], move to another
position in the input image and repeat at Step 2).

V. IMAGE PROCESSINGAPPLICATIONS

The following comprises several examples of image pro-
cessing applications using this 33 CNN chip, with output
pixels at the state outputs (see Fig. 15). The size (number of
pixels) of the input and output image are 256256. The actual
picture is in color, but is displayed here with 255 gray levels.
The image processing is realized by using thetime multiplexing
method. The CNN chip only processes a 33 pixel array of
the image, but the border cells of the CNN are overlapped
between the two neighbor arrays to have correct boundary
dynamics. Therefore, only cell, (2, 2) gives the output pixel
value. The edge detection templates are the following [2]:

B A

V

In our experiments, the value affects the results very
much. In order to obtain a good edge, several adjustments
of may be needed. The processed image is shown in
Fig. 15(b). The hole filling function can be used in contrasting
operations and noise removal. This function is realized by
the mutual feedback of output pixel values. The correspond-
ing output image is shown in Fig. 15(c). The corresponding
templates are as follows:

B A

V

VI. CONCLUSION

This paper demonstrated the feasibility of processing large
images using a time-multiplexing approach involving small
CNN arrays. For practical image size applications, due to cur-
rent state-of-the-art technological limitations, it is impossible
to have a one-on-one mapping between the CNN hardware
cells and all the pixels in the image involved. It is thus a
key issue the proper use of time-multiplexing implementations
in common-day situations. Additionally, it was shown that
a state-node output approach is especially suitable for color
image processing and applications involving continuous-time
output signals.
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