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Abstract

The controllability of a dynamical system or network describes whether a given set of control 

inputs can completely exert influence in order to drive the system towards a desired state. 

Structural controllability develops the canonical coupling structures in a network that lead to un-

controllability, but does not account for the effects of explicit symmetries contained in a network. 

Recent work has made use of this framework to determine the minimum number and location of 

the optimal actuators necessary to completely control complex networks. In systems or networks 

with structural symmetries, group representation theory provides the mechanisms for how the 

symmetry contained in a network will influence its controllability, and thus affects the placement 

of these critical actuators, which is a topic of broad interest in science from ecological, biological 

and man-made networks to engineering systems and design.

I. INTRODUCTION

Controllability is an essential concept to the design of feedback controllers for networked 

brain systems. For example, non-controllable mathematical models of real systems have 

subspaces that influence model behavior, but cannot be controlled by an input. Such 

subspaces can be difficult to determine in complex nonlinear brain networks. Recent 

advances in the theory of network control [1], [2], demonstrate how a structural 

controllability [3] framework can be used to search over the nodes of a network to find the 

minimum number and location of the optimal [2] control points to obtain complete influence 

over a given network. Since almost all of the present theory was developed for networks 

without symmetries, here we present the detailed group representation framework to re-

envision structural controllability to include systems possessing group symmetries, which 

complements and expands Lin’s seminal theorems on structural controllability [3].
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II. STURCTURAL CONTROLLABILITY

Lin [3] utilized the notion of structure in a dynamic system to define two canonical 

situations where a system would be un-controllable, then proved how two basic controllable 

structures could be used to evaluate the controllability of a network by determining if they 

spanned the network.

Recall that for an arbitrary linear time invariant (LTI) system

(1)

with state variables x(t) ∈ ℝn, system matrix A ∈ ℝn×n, input matrix B ∈ ℝn×p and control 

input u(t) ∈ ℝp×n, the controllability matrix is defined as

(2)

and when Q is full rank (rank(Q) = n), the system defined by the pair (A, B) is fully 

controllable. Lin supposed that the nonzero parameters of a real-world system (A, B) are 

only generally known within some measurement error, and accordingly, postulated that any 

specific system that was uncontrollable due to the choice of parameters was arbitrarily close 

to a parameter set that would render the system fully controllable. From this view of a 

system, the position of the zeros in (A, B) are assumed to be fixed while the remaining 

system parameters are arbitrary. The structure of the system (1) is hence defined by the zeros 

in (A, B), which we will denote:

Definition 1: The set of matrix entries αij in the pair (A, B) that are equal to zero are called 

the structure of the pair, and are defined as

(3)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n+p, and where any two systems with equal Ψ indicates both have 

zero entries in the same positions.

Now, structural controllability [3] states for a controllable pair (A′, B′) with structure Ψ(A′, 
B′),

(4)

i.e. if a pair (A′, B′) is controllable, any other pair (A″, B″) with the same structure as (A′, 
B′) is therefore structurally controllable (S.C.). The major assumption of this prior work lies 

in the invariance of the arbitrary parameters (non-zero entires) in determining structural 

controllability, which could actually lead to a system being uncontrollable due to the specific 

non-zero entries in (A, B).
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A. Un-controllable Structures: Dilation and Isolation

The first un-controllable canonical structure, is defined in [3] as a dilation, and shown in Fig. 

1a. It is easy to determine upon inspection of the system equations in (5) that the 

controllability matrix Q, composed of the pair (A, B) from (2) will never be full rank for n = 

3 with two columns of zeros, thus even control input into all three nodes cannot 

independently control V1, V2, and V3.

(5)

Likewise, the second un-controllable structure – called an isolation, is exemplified in Fig. 

1b; indeed by inspection of the system graph in the figure, it is readily apparent that the 

control input to node V3 can only influence that node since there are no edges directed from 

V3 to either of the other two nodes, thus the control influence of this node is isolated and 

controllability is lost when controlling only this isolated node.

B. Controllable Structures: Bud, Stem and Cactus

In addition to the un-controllable canonical structures, [3] defined two structures called a 

bud and a stem, which are always structurally controllable. The first of the two, called a bud 
is shown in Fig. 2a, and the pair for (A, B) takes the form,

(6)

where it is straightforward to determine by inspection that the controllability matrix Q of 

this pair (A, B) is full rank for any n ∈ ℕ. This elementary cycle is controllable from any 

node in the structure, and when taken in combination with the second controllable structure 

– a directed path called a stem in Fig. 2b – forms a more complex structure that is 

completely controllable. Inherited from the stem structure, the cactus is also completely 

controllable from the foremost upstream node in the chain as shown in Fig. 3. Lin proved 

how a network that is spanned by a cactus is always structurally controllable [3], and these 

structural definitions were the basis for finding the minimum required control inputs to 

completely control a linear network in [1], [2].

III. GROUP REPRESENTATION THEORY

For linear systems containing group symmetries, Rubin and Meadows [4] used a similarity 

transform T to change the coordinates of the n-dimensional system (1) to an orthogonal 

basis defined by the group action of the symmetry on ℝn (called the symmetry basis). 

Furthermore, Ref. [4] demonstrated how group representation theory [5] is used to construct 
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the symmetry basis for a symmetric group from the irreducible representations of the group 

which transforms the system matrix A into block diagonal form. In some cases the type of 

symmetry would cause the network to be non-controllable due to symmetries (termed NCS), 

evident by inspection of the structure of the transformed system. Likewise, this same type of 

similiarity transformation was shown to define the subspaces of a network that synchronize 

[6], which also has deep implications for neural networks [7]. Essentially, this 

transformation may reveal a new structure containing dilations or isolated nodes in which 

the transformed system is actually not controllable on the basis of that structure.

Structural controllability [3] did not explicitly cover symmetry, so for any structurally 

controllable pair (A, B) that contains no dilations or isolated nodes, the presence of 

symmetry could still cause the network to be NCS (as shown in [4]), as the act of 

transforming the network to the symmetry basis would redefine the structure to one that is 

un-controllable. These two theorems together paint a more complete picture of 

controllability than either alone as shown in [8], where both are used in concert to explain 

and understand why certain neural networks were not controllable from particular inputs. 

Including symmetry constraints makes structural controllability a more general concept, as it 

does not depend on the explicit non-zero entries of the system pair (A, B) (necessary, but not 

sufficient), while a network that has the NCS property possesses specific sets of the non-zero 

entries in (A, B) that define the symmetry contained by the system.

A. The Symmetry Group and Basis

Symmetry present in a network is defined by the set of symmetry operations R that 

transform the system into itself. Formally, this set of network permutations forms an 

algebraic group – called the symmetric group on q elements, from which matrix 

representations of the group elements D(R) can be constructed from monomial matrices 

(those with only one non-zero entry per column that describe how each operation R 
permutes the state variables of the network). For example, a network with S2 symmetry will 

have the form given in Fig. 4. The S2 symmetric group contains two elements or symmetry 

operations R : {E, σy}, the identity E, and a reflection across the y axis σy – swap x with z. 

The cardinality g of the set of symmetry operations R for the symmetric group gives the 

order of the symmetric group Sq as g = q!. For the network in Fig. 4, n = 3, q = 2, g = 2, and 

we can construct matrix representations D(R) of the elements of S2 as,

(7)

where these matrix representations carry the group action of S2 to the linear vector space on 

ℝ3 for the system pair:
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(8)

defined in (1).

In [4] the similarity transformation that takes the system into the coordinates of the 

symmetry basis is defined from the irreducible representations Γ(p)(R) of the group 

symmetry present in the network. The number of irreducible representations p = 1 … k can 

be determined from the character of the representation χ(R). Defined by taking the trace of 

the matrix representations

(9)

the value of the character determines the conjugacy class for each group element R and the 

total number of conjugacy classes (distinct character values) equals the number of 

irreducible representations. The conjugacy class of each group element refers to the type of 

symmetry operation of that group element, so that rotations, reflections, etc. have the same 

conjugacy class, and matrix representations of the group elements D(R) have the same trace. 

Computing the character (9) of the matrix representations D(R) in (7) for each group 

element in S2 yields χ(E) = 3, and χ(σy) = 1, indicating two conjugacy classes which 

implies there are two irreducible representations of S2 on ℝ3. Furthermore, the irreducible 

representations form an orthogonal basis in the g-dimensional space of the group, and 

following from Schur’s lemma on orthogonality [5], the dimensionality theorem provides 

the relation between the number of irreducible representations and their dimensionality as

(10)

where the sum is taken over all irreducible representations of the group k, and lp is the 

dimension of the pth irreducible representation. Thus, using the character of the 

representations (9) to find the total number of irreducible representations along with the 

dimensionality equation in (10), we can find all of the possible irreducible representations 

that span the group [5]. So for our network in Fig. 4 with S2 symmetry and 2 irreducible 

representations, the dimensionality equation (10) allows us to conclude that their are a total 

of 2, 1-dimensional irreducible representations of S2.

The 1-dimensional irreducible representations of S2 can be found from the identity 

representation (every group element represented by 1) and the alternating representation An, 

defined by An = det[D(R)] which yields the table of irreducible representations Γ(p), with p = 

{1, 2} from (10):
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(11)

Finally, the similarity transform T that takes the system (1) into the coordinates of the 

symmetry basis is defined in [4] as a projection of the irreducible representations onto the 

space of the system (1) on ℝn:

(12)

where  generates basis vectors on ℝn from the pth irreducible representation Γ(p), * 

indicates the complex conjugate, and i indicates the (i, i)-th entry of the irreducible 

representation for i = 1 … lp. Once  is computed for each p and i, the similarity 

transform is constructed from the normalized linearly independent vectors that span ℝn. For 

our example network in Fig. 4, we can compute G for each irreducible representation,

(13)

where each linearly independent column of G forms a column of T. After normalizing we 

have

(14)

which defines the first and second columns of T. Computing G for the second irreducible 

representation we have,
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(15)

which after normalization yields the final column of T

(16)

and the similarity transformation matrix T is given as

(17)

B. Symmetry in the Structure

As mentioned previously in Sec. III-A, when a system or network contains an explicit group 

symmetry the generic entries of the pair (A, B) become constrained, and in fact once the pair 

(A, B) is transformed by T into the coordinates of the symmetry basis, the structure of the 

transformed pair  could be different from (A, B) which could also alter whether or not 

(A, B) is structurally controllable. As an example, take the network in Fig. 4 which has the 

pair (8). The unconstrained network is easily shown to be structurally controllable as the 

controllability matrix Q computed from (8) is full rank for this choice of the non-zero 

entries. However, if we constrain α11 = α33 and α12 = α32, the network has S2 symmetry 

and transforming (A, B) in (8) into the symmetry basis we have, ,  which 

yields

(18)

where † is the complex conjugate transpose, and the transformed pair  has a new 

structure in Fig. 6 that is easily seen to contain an isolated node and therefore not 

structurally controllable as well as NCS.
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While this result exemplifies how symmetry in a network can alter its apparent structure, let 

us also demonstrate how certain symmetries leave the network structure invariant. Consider 

again Lin’s bud structure for n = 3 in Fig. 5 with the pair

(19)

For C3 symmetry on ℝ3 we have matrix representations D(R) constructed as

(20)

and the identity element E as before in (7). Next, the table of irreducible representations of 

C3 cyclic symmetry is given in [8] as

(21)

where , C3 is a rotation by 2π/3 and  by 4π/3. Now generating the symmetry 

basis via (12) we have for the first irreducible representation,
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(22)

Next compute G for the second irreducible representation

(23)

and lastly for the third irreducible representation
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(24)

Thus our similarity transformation T for C3 symmetry is constructed as

(25)

and the transformed system  defined by ,  becomes:

(26)

which is readily seen to be fully controllable, and hence structurally controllable in the 

presence of C3 symmetry, which agrees exactly with the presentation of the bud structure in 

[3].

IV. DISCUSSION

Here we have shown the details of the application of group representation theory in order to 

determine the effects of symmetry on structurally controllable networks. While [3] identified 

the basic canonical structures that define how a control input can reach through all nodes of 

a generic network, the connection between structural controllability and networks containing 
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symmetries was established in [8] and demonstrated here. Additionally, it is worth noting 

that the dilation un-controllable structure in Fig. 1a from [3] is a peculiar one in that the 

downstream nodes V1 and V3 are absent any self-connections, which cause degeneracy and 

hence un-controllability in the form of two columns of zeros in the system pair (A, B) as 

shown in (5). The importance of these self-connections in defining the structural 

controllability is given treatment in [9], and including the intuition that the controllability of 

nonlinear networks depends on the system trajectory [8], calls into question the utility of the 

dilation canonical structure in determining structural controllability for real world networks 

– which have nodal dynamics at each node.

Group elements that belong to the same conjugacy class have the same character, which 

categorically describes the type of symmetry operations and provides further insight into 

how certain types of symmetry influence controllability (degeneracy) of a network. For 

example, a class of group elements that all commute with one another (called Abelian) are 

the rotational symmetry operations and these are defined by:

(27)

where n is the order of the generating element, and E is the identity. The intuition here 

comes from the fact that symmetry operations that commute do not introduce degeneracy 

into the network, hence if the group symmetry is comprised of only rotations (and the 

identity element which is just A1 = E) as in Lin’s “bud” structure, or the example C3 

symmetry network in Fig. 5, no degeneracy is introduced by the symmetry to the network, 

which will allow controllability. Furthermore, if the group symmetry of the network contains 

non-commuting elements (symmetry operations), then a degeneracy may be inherent in the 

network causing it to be NCS, as in the example S2 symmetry network in Fig. 4, which 

contains a non-commuting reflection resulting in un-controllability.

Structural controllability is indeed affected by certain types of symmetries present in the 

network which manifests as change in the structure of the transformed system, while other 

types of symmetries leave the structure invariant. The link between symmetries and 

synchrony has been established in previous work [10], and the fact that synchronous 

network activity in living neural networks suggests such symmetries are inherent to brains. 

These results offer new insights into the strategic structural control design of the class of 

networks containing symmetries, and demonstrates the utility of group representation theory 

as applied to such networks which extends to any natural or man-made network.

Acknowledgments

This work was supported by grants from the National Academies - Keck Futures Initiative, NSF grant DMS 
1216568, Collaborative Research in Computational Neuroscience NIH grant 1R01EB014641, and NIH BRAIN 
Initiative grant 1R21EY026438-01

References

1. Liu, Y., Slotine, J., Barabási, A. Controllability of complex networks; Nature. 2011. p. 1-7.[Online]. 
Available: http://www.nature.com/nature/journal/v473/n7346/abs/nature10011.html

Whalen et al. Page 11

Proc Am Control Conf. Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/nature/journal/v473/n7346/abs/nature10011.html


2. Pequito S, Kar S, Aguiar A. A framework for structural input/output and control configuration 
selection in large-scale systems. Automatic Control, IEEE Transactions on. May; 2015 PP(99):1–1.

3. Lin C-T. Structural controllability. Automatic Control, IEEE Transactions on. 1974; 19:201–208.

4. Rubin, H., Meadows, H. Controllability and Observability in Linear TimeVariable Networks With 
Arbitrary Symmetry Groups. Bell System Technical Journal. 1972. [Online]. Available: http://
onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1972.tb01933.x/abstract

5. Tinkham, M. Group Theory And Quantum Mechanics. McGraw-Hill Inc.; San Francisco: 1964. 

6. Pecora LM, Sorrentino F, Hagerstrom AM, Murphy TE, Roy R. Cluster synchronization and 
isolated desynchronization in complex networks with symmetries. Nature communications. Jan.
2014 5:4079. May. 

7. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and 
pathophysiology. Neuron. Oct; 2006 52(1):155–68. [PubMed: 17015233] 

8. Whalen AJ, Brennan SN, Sauer TD, Schiff SJ. Observability and controllability of nonlinear 
networks: The role of symmetry. Phys Rev X. Jan.2015 5:011005. [Online]. Available: http://
link.aps.org/doi/10.1103/PhysRevX.5.011005. 

9. Cowan NJ, Chastain EJ, Vilhena Da, Freudenberg JS, Bergstrom CT. Nodal dynamics, not degree 
distributions, determine the structural controllability of complex networks. PloS one. Jan; 2012 7(6):
1–5.

10. Golubitsky M, Romano D, Wang Y. Network periodic solutions: patterns of phase-shift synchrony. 
Nonlinearity. Apr; 2012 25(4):1045–1074.

Whalen et al. Page 12

Proc Am Control Conf. Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1972.tb01933.x/abstract
http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1972.tb01933.x/abstract
http://link.aps.org/doi/10.1103/PhysRevX.5.011005
http://link.aps.org/doi/10.1103/PhysRevX.5.011005


Fig. 1. 
The two canonical un-controllable structures in [3], with control input u.
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Fig. 2. 
The two always controllable canonic structures in [3].
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Fig. 3. 
The cactus is the union of bud and stem structures, which determines the structurally 

controllability of a network that is spanned by a cactus [3].
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Fig. 4. 
An example 3-node network with S2 symmetry when α12 = α32, and α11 = α33.
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Fig. 5. 
An example 3-node bud network which is structurally controllable and has C3 symmetry 

when α12 = α23 = α31.
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Fig. 6. 
The network in Fig. 4 transformed into a new structure defined by the S2 symmetry basis.
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