
Exploiting Reversibility in the
Complete Simulation of Reversible Circuits

Robert Wille∗† Simon Stelter∗ Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{rwille,sstelter,drechsle}@informatik.uni-bremen.de

Abstract—Reversible circuits employ an alternative compu-
tation paradigm where all operations are performed in a re-
versible fashion only. Motivated by the promising applications,
researchers started to developed corresponding design methods
for this kind of circuits. In most of the resulting solutions, they
try to address the restrictions and limitations that come with
this alternative computation paradigm. In this work, we are
instead showing possible advantages to be exploited. We present
an alternative solution for complete simulation of reversible
circuits which explicitly utilizes the reversibility of the underlying
computation paradigm. By this, improvements of up to three
orders of magnitude compared to the standard simulation can
be achieved.

I. INTRODUCTION

From the beginning, researchers and engineers narrowed the
investigation of computing machines down to a preponder-
antly irreversible computing paradigm. In fact, most of the
established computations are not invertible. A simple standard
operation like the logical AND already illustrates that. Indeed,
it is possible to obtain the inputs of an AND gate if the output
is set to 1 (then, both inputs must be set to 1 as well). But,
it is not possible to determine the input values if the AND
outputs 0. While mainly relying on this conventional way of
computation, alternative paradigms and their applications have
hardly been considered and exploited yet.

A promising alternative is based on reversible computation,
a computing paradigm which allows bijective operations only,
i.e. reversible n-input n-output functions that map each possi-
ble input vector to a unique output vector. In circuits based on
reversible logic, all computations can be reverted (i.e. the in-
puts can be obtained from the outputs and vice versa). For this
purpose, established conventional gate libraries can obviously
not be applied. As a consequence, new libraries of reversible
gates have been introduced. Albeit not so well established yet,
reversible computation enables several promising applications
and, indeed, superiors conventional computation paradigms in
many domains including but not limited to:
• Low Power Computation, where the fact that no infor-

mation is lost in reversible computation can be exploited
(see e.g. [1], [2], [3]),

• Adiabatic Circuits, a special low power technology where
reversible circuits are particularly suited for (see e.g. [4]),

• Encoding and Decoding Devices, which always realize
one-to-one mappings and, thus, inherently follow a re-
versible computing paradigm (see e.g. [5]),

• Quantum Computation, which enables to solve many
relevant problems significantly faster than conventional
circuits and inherently is reversible (see e.g. [6]), and

• Program Inversion (see e.g. [7]), as programs based on a
reversible computation paradigm would allow an inherent
and obvious program inversion.

Motivated by these applications, researchers started the
investigation of corresponding methods for computer-aided
design of this kind of circuits. This led to a variety of design
solutions for a wide range of design tasks such as synthesis
(see e.g. [8], [9], [10], [11]), optimization (see e.g. [12], [13]),
verification (see e.g. [14], [15]), debugging (see e.g. [16]), and
even automatic test pattern generation (see e.g. [17], [18]).
Good overviews can be found e.g. in [19], [20], [21].

In most of these approaches, researchers try to address the
restrictions and differences caused by reversible circuits in
comparison to their conventional counterparts. For example,
fanout and feedback are not directly allowed and, hence, the
respective circuits have to be composed as cascades of special
reversible gates. But beyond that, the reversible computing
paradigm also employs several advantages that can be ex-
ploited in the design.

In this paper, we make use of one of these advantages in
order to improve the complete simulation of reversible circuits.
In fact, we present a revised simulation approach that does
not consider each pattern to be simulated separately, but all
possible patterns at once. We show that such a consideration
is beneficial since, in reversible computation, (1) usually just
a very small set of patterns is affected by a gate and (2) gates
simply lead to an exchange of input patterns. The proposed
solution significantly reduces the complexity of simulation
and, hence, allows for speed-ups of up to three orders of
magnitude.

In the remainder of this paper, the proposed simulation
approach is described in detail. Section II briefly reviews
the basics on reversible functions and circuits. Section III
considers complete simulation and sketches the general idea of
our contribution followed by Section IV describing the precise
implementation. The complexity of the solutions are discussed
in Section V and experimentally evaluated in Section VI.
Finally, the paper is concluded in Section VII.

TABLE I
BOOLEAN FUNCTIONS

(a) Irreversible (Adder)
x1 x2 x3 f1 f2

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(b) Irreversible
x1 x2 x3 f1 f2 f3

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(c) Reversible
x1 x2 x3 f1 f2 f3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1

II. REVERSIBLE FUNCTIONS AND CIRCUITS

Logic computations can be defined as a function over
Boolean variables. More precisely:

Definition 1. A Boolean function is a mapping f : Bn → B
with n ∈ N. A function f is defined over its primary input
variables X = {x1, x2, . . . , xn} and hence is also denoted by
f(x1, x2, . . . , xn). The precise mapping is described in terms
of Boolean expressions which are formed over the variables
from X and operations like ∧ (AND), ∨ (OR), or · (NOT).

A multi-output Boolean function is a mapping f : Bn → Bm

with n, m ∈ N. More precisely, it is a system of Boolean
functions fi(x1, x2, . . . , xn) with 1 ≤ i ≤ m. The respective
functions fi are also denoted as primary outputs.

Multi-output functions are also denoted as n-input,
m-output functions or n × m functions, respectively. In this
work, realizations of reversible functions are considered. Re-
versible functions are a subset of multi-output functions and
are defined as follows:

Definition 2. A multi-output function f : Bn → Bm is
reversible iff
• its number of inputs is equal to the number of outputs

(i.e. n = m) and
• it maps each input pattern to a unique output pattern.

In other words, each reversible function is a bijection that
performs a permutation of the set of input patterns. A function
that is not reversible is termed irreversible.

Example 1. Table I(a) shows the truth table of a 3-input,
2-output function representing a 1-bit adder. This function is
irreversible, since n 6= m. Also the function in Table I(b) is
irreversible. Here, the number n of inputs indeed is equal to
the number m of outputs, but there is no unique input-output
mapping (e.g. both inputs 000 and 001 map to the output 000).
In contrast, the 3×3 function shown in Table I(c) is reversible,
since each input pattern maps to a unique output pattern.

Reversible functions are realized through reversible circuits.

Definition 3. A reversible circuit G is a cascade of re-
versible gates G = g1 . . . gd, where fanout and feedback
are not directly allowed [6] and d denotes the number
of gates. A reversible gate has the form g(C, T), where
C = {xi1 , . . . , xik

} ⊂ X is the set of control lines and
T = {xj1 , . . . , xjl

} ⊂ X with C ∩ T = ∅ is the set of target
lines. The set C may be empty.

x1 = 1 f1 = 0
x2 = 0 f2 = 1
x3 = 1 f3 = 0
x4 = 0 f4 = 1

1
0
1
0

1
1
1
0

1
1
1
0

0
1
1
0

0
1
0
1

Fig. 1. A reversible circuit

Commonly used reversible gates are:

• The Toffoli gate TOF (C, {xt}) [22] which consists of a
single target line xt ∈ X \ C whose value is inverted if
all values on the control lines are set to 1 or if C = ∅. All
remaining values are passed through the gate unaltered.

• The Fredkin gate F (C, {xt1, xt2}) [23] which consists of
two target lines xt1, xt2 ∈ X \C interchanges the values
of these target lines if all values on the control lines are
set to 1 or if C = ∅, respectively. Again, all remaining
values are passed through the gate unaltered.

Example 2. Fig. 1 shows a reversible circuit composed of six
reversible gates. Black circles denote the control lines, while
the ⊕-symbol and the ×-symbol is used to denote the target
line of the Toffoli gate and the Fredkin gate, respectively.
The annotated values demonstrate the computation in the
respective gates.

III. COMPLETE SIMULATION OF REVERSIBLE CIRCUITS

In this work, we consider the complete simulation of re-
versible circuits, i.e. the determination of all possible output
patterns obtained by applying all possible input patterns. For
this purpose, we first discuss the straight-forward solution
which probably is mostly used in the respective applications
relying on simulation. Afterwards, we illustrate the general
idea of our improved approach. The precise algorithm is then
presented in the next section.

A. Standard Solution

The straight-forward solution for simulation is rather sim-
ple: All input patterns are separately applied to the circuit.
Then, for each input pattern, the respective cascades of gates
is successively applied eventually leading to the desired output
pattern. This complies with the application of the pattern 1010
as illustrated above in Fig. 1.

TABLE II
ILLUSTRATION OF THE GENERAL IDEA

(a) Identity
Inp. Out.

a b c d a b c d
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1

(b) 1st Gate
Inp. Out.

a b c d a b c d
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0

(c) 2nd Gate
Inp. Out.

a b c d a b c d
0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 0 1 1 1 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

(d) 3rd Gate
Inp. Out.

a b c d a b c d
0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 0 0
1 0 0 1 1 0 1 1
1 0 1 0 1 1 1 0
1 0 1 1 1 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 1 0 1
1 1 1 1 1 0 1 0

(e) 4th Gate
Inp. Out.

a b c d a b c d
0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 1 0 1 1 1 0
0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 1
1 0 1 0 0 1 1 0
1 0 1 1 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 1 0

(f) 5th Gate
Inp. Out.

a b c d a b c d
0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 1 0 1 1 0 1
0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 1 1 1 1 0
1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 1
1 0 1 0 0 1 0 1
1 0 1 1 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

(g) 6th Gate
Inp. Out.

a b c d a b c d
0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1
0 0 1 1 1 0 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 1 1 1 1 0
1 0 0 0 0 1 0 0
1 0 0 1 1 1 1 1
1 0 1 0 0 1 0 1
1 0 1 1 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0
1 1 1 0 0 1 1 0
1 1 1 1 1 1 0 1

Because of this simplicity, this solution is heavily used in
many applications such as validation, optimization, automatic
test pattern generation, or debugging of reversible circuits. In
total, this leads to a run-time complexity of 2n ·d with n and d
being the number of circuit lines and gates, respectively.

B. General Idea for Improvement
Considering reversible circuits, complete simulation can

significantly been improved by exploiting two certain char-
acteristics of this type of computation:

1) Functional Effect of Single Gates
For many input patterns, single gates often have no
effect, i.e. often just very small sets of inputs are actually
leading to different output patterns. In fact, e.g. a Toffoli
gate g(C, T) only has an effect for the 2n−|C| input
patterns where all control lines x ∈ C are set to 1.

2) Reversible Gates Realize Permutations
Reversible gates always realize a permutation of two
input patterns, i.e. if e.g. an input pattern 0000 maps to
an output pattern 0001, then the input pattern 0001 must
map to an output pattern 0000, too. By this, each gate
eventually leads to an exchange of input patterns.

Example 3. Consider again the circuit from Fig. 1. Consid-
ering all 24 = 16 possible input patterns for this circuit, then
• gate g1 modifies only 2 of them,
• gate g2 modifies all 16 of them,
• gate g3 modifies only 4 of them,
• gate g4 modifies only 8 of them,
• gate g5 modifies all 8 of them, and
• gate g6 modifies only 4 of them.

Furthermore, e.g. the first gate just swaps the respective
patterns 1110 and 1111. The same holds e.g. for the sixth
gate where all patterns of the form 11− 1 are swapped with
the corresponding pattern of the form 10− 1.

These characteristics enable a complete simulation without
the need for the application of 2n · d steps. In fact, in order
to simulate e.g. the first gate from Fig. 1, just two steps (for
1110 and 1111) are necessary. The remaining 14 simulations

steps can be omitted because, due to the structure of the gate,
they have no affect on the result. Moreover, this number of
steps can be reduced further by exploiting the second charac-
teristic: Since each gate has a unique input/output mapping,
the corresponding computation just leads to an exchange of
patterns. For example, the first gate from Fig. 1 simply swaps
1110 and 1110. Because of this, it is sufficient to only consider
patterns with a target line set to 1 (in this case 1111)1. This
reduces the number of patterns to be considered to just a single
one (instead of 16 when the standard solution is applied).

This is exploited in the proposed simulation approach.
Instead of separately applying all possible input patterns, we
suggest a methodology that considers all patterns at once.
Then, the application of a single gate does not consider each
pattern separately, but just performs the respective swaps on
exactly those patterns which are actually affected by the gate.
The configuration of these affected patterns can easily be
determined from the type and the set of control lines of the
considered gate.

The application of this idea is illustrated by the following
example.

Example 4. Following the general idea from above, the
circuit depicted in Fig. 1 shall completely been simulated.
The respective steps are given in Table II. We start with a
representation of all 24 = 16 possible pattern. As long as no
gate is applied, the identity results (see Table II(a)). Then, the
respective gates are applied.

As discussed above, the first gate in Fig. 1 only swaps the
patterns 1110 and 1111. That is, only one step has to be
performed to simulate this gate (leading to Table II(b)). The
second gate is the worst case as all patterns are affected.
Nevertheless, still only half the steps compared to standard
simulation are necessary since each pattern of the form −1−−
is simply swapped with the corresponding pattern of the
form −0−− (leading to Table II(c)). The third gate represents
a Fredkin gate. Because of the control line, this shall affect
patterns of the form − − −1. However, patterns with both

1In a similar fashion, this also holds for the Fredkin gate.

Input : G = g1..gd (circuit to be simulated)
Output: TT (truth table)

TT ← id1

foreach g(C, T) from G do2

P = {~p ∈ Bn | pi = 1 for each xi ∈ C∪{t} and t ∈ T}3

foreach ~p ∈ P do4

if g is a Toffoli gate then5

~q = q1 . . . qn with qi =
{

0, for xi ∈ T
pi, otherwise6

if g is a Fredkin gate then7

// consider xi, xj ∈ T with xi 6= xj8

if pi = 1 ∧ pj = 0 then9

~q = q1 . . . qn with qi =

 0, for xi

1, for xj

pi, otherw.10

swap(TT [~p],TT [~q])11

return TT12

Fig. 2. Proposed simulation algorithm

target lines set to the same value are also not affected (as
Fredkin gates swap the value of the target lines). Hence,
for this gate only the patterns 0011 and 1011 are swapped
with 0101 and 1101, respectively (leading to Table II(d)). In
a similar fashion all remaining gates are applied eventually
leading to the results of the complete simulation as shown in
Table II(g).

IV. IMPLEMENTATION

Motivated by the general idea sketched above, this section
presents the improved algorithm for complete simulation of
reversible circuits. The algorithm does not simulate single
patterns separately, but considers all of them at once. The
execution of gates is conducted by swapping those patterns
which are actually affected by the currently considered gate.
The configuration of these affected patterns is determined from
the type and the set of control lines of the considered gate.
More precisely:

Definition 4. Let g(C, T) be a reversible gate in a circuit
over n lines and the inputs X = {x1 . . . xn}. All patterns
with the respective control line set to 1 are affected by this
gate. Furthermore, due to the permutative nature of reversible
gates, only those pattern with their first target line set to 1
have to be considered. Hence, the patterns to be considered
can be summarized in a set P composed of all patterns of the
form ~p ∈ Bn with pi = 1 for each xi ∈ C ∪ {t} with t ∈ T
and i ∈ {1 . . . n}.

Example 5. Consider the last gate of the circuit from Fig. 1.
The corresponding set M of patterns to be considered is
P = {1101, 1111}.

Having this definition, the proposed simulation approach
follows the algorithm as sketched in Fig. 2. This algorithm gets
a circuit G to be simulated and generates the complete function

(in terms of a truth table) realized by G. In the following, the
respective steps are discussed.

First, the truth table to be generated is initialized with the
identity function (Line 1). Then, each gate g(C, T) of the
circuit G is traversed from the outputs to the inputs (Line 2).
In each iteration, the set P of patterns to be considered for the
current gate g is created according to Definition 4 (Line 3). For
each of those patterns ~p ∈ P the corresponding counterpart ~q,
i.e. the pattern to be swapped with ~p, is created next (Line 4-
10). This depends on the type of the current gate g:
• In case of a Toffoli gate (Line 5/6), an inversion is

conducted at the target line. Hence, ~q is equal to ~p except
for the target line which is set to 0 (instead of 1).

• In case of a Fredkin gate (Line 7-10), the value of one
of the target lines (1, in the currently considered pattern)
is swapped with the value of the other target line. This
only has an effect, if the other target line is 0. Hence,
only patterns ~p with pi = 1 and pj = 0 for xi, xj ∈ T
and xi 6= xj are considered. The counterpart q is then
defined by the opposite assignment of the target lines.

By this, an affected pattern ~p and its corresponding coun-
terpart ~q have been determined and, thus, only need to be
swapped in the truth table representation (Line 11). If all af-
fected patterns and all gates have been considered accordingly,
the algorithm returns the resulting truth table and terminates
(Line 12).

V. DISCUSSION

Following the procedure described above leads to an im-
proved run-time complexity in comparison to the standard
simulation. In fact, we can distinguish between a best case
and a worst case:
• The best case can be observed when the circuit is

solely composed of Toffoli gates with the maximum
number of control lines (i.e. of Toffoli gates g(C, T)
with |C| = n− 1). Then, the simulation of each gate just
requires one general step, namely swapping two patterns.
This leads to d steps for the whole circuit. As the initial
creation of all possible patterns requires 2n steps, we
eventually get 2n + d steps in the best case. Compared
to the standard approach with its 2n · d steps, this is
considerably smaller. The number of gates hardly affects
the total run-time anymore.

• The worst case can be observed when the circuit is solely
composed of Toffoli gates with no control lines at all
(i.e. of Toffoli gates g(C, T) with C = ∅). Then, all
patterns are affected. However, due to the exploitation of
the permutation characteristic, still only half the swapping
steps need to be considered. This eventually leads to
2n + (2n·d)

2 steps in the worst case. But since circuits
solely composed of Toffoli gates with no control lines
(i.e. basically NOT gates) hardly occur, this worst case
does not occur frequently.

In both cases, the complexity is considerably less compared
to the standard simulation. Of course, the major bottleneck
remains the exponential complexity. However, as simulation
still is heavily applied in various applications for small circuits

(where exponential complexity is feasible), the improvements
enabled by the proposed simulation approach are beneficial.
This is also confirmed by actual run-time measurements con-
ducted in our experimental evaluation which is summarized in
the next section.

VI. EXPERIMENTAL EVALUATION

The approach introduced in Section IV has been imple-
mented in C++ on top of RevKit [24]. In order to evaluate
the efficiency of the approach, the proposed solution has been
applied to completely simulate a wide range of benchmarks
circuits taken from RevLib [25]. Then, the resulting run-time
has been compared to the corresponding results obtained using
a standard simulation2. All experiments have been conducted
on an Intel Core i5-2430M machine with 2.4 GHz and 6 GB
of memory running Linux.

Table III summarizes the results. The first columns pro-
vide the name (denoted by Circuit), the number of lines
(denoted by n), and the number of gates (denoted by d)
of the respectively considered benchmark circuits. The run-
time (in milliseconds) required for standard simulation and the
proposed simulation scheme are given in the columns denoted
by Standard and Proposed, respectively. The improvement
of the proposed approach, i.e. the run-time of the standard
approach divided by the run-time of the proposed simulation,
is provided in Column Impr.

The results clearly confirm the benefits of the proposed
approach. For all benchmark circuits, significant reductions
in the needed run-time can be observed. In particular for
circuits with a large number of gates, the increase in the
performance is evident. In these cases improvements of more
than three orders of magnitude can be observed. Instead of
waiting several minutes for a result, the proposed approach
delivers the results in a fraction of a second. In particular, for
approaches which rely on frequent complete simulation runs
(such as window optimization [13]), this speed-up is essential.

Besides that, Table III also provides some numbers con-
cerning the complexity discussion from Section V. As dis-
cussed there, the proposed simulation approach has a worst
case and best case complexity of 2n + (2n·d)

2 and 2n + d,
respectively, compared to the complexity of the standard
simulation (which is 2n · d). Applied to precise benchmark
circuits, Columns Complexity Impr. of Table III show the
improvements with respect to the worst case (denoted by wc)
and the best case (denoted by bc). Also these numbers confirm
the discussions from above. For almost all benchmark circuits,
the actual run-time improvement (Column Impr.) indeed is
between the estimated worst and best case; in most of the
cases a bit closer to the worst case.

Overall, the proposed algorithm provides an alternative
simulation method that is as easy to implement as the standard
simulation, but has significant benefits with respect to the
resulting complexity which has also been confirmed by the
actual application to a large set of circuits.

2In fact, we used the open source simulation engine provided in RevKit [24].

VII. CONCLUSION

In this paper, we introduced an approach for complete
simulation of reversible circuits which explicitly exploited
the reversibility of the underlying computation paradigm. In
particular, we utilized the fact that (1) usually just a very
small set of patterns is affected by a gate and (2) that gates
simply lead to an exchange of input patterns. Although the
proposed solution still remains exponential in the complexity,
improvements of up to three orders of magnitude can be
achieved compared to the standard simulation. Nevertheless,
due to the complexity the approach still is restricted to circuits
with a small number of inputs/outputs only. Furthermore, the
approach only supports complete simulation thus far. However,
for all applications which rely on frequent complete simulation
runs (such as window optimization [13]) the proposed methods
offers a simple but effective alternative.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[3] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[4] P. Patra and D. Fussell, “On efficient adiabatic design of MOS circuits,”
in Workshop on Physics and Computation, Boston, 1996, pp. 260–269.

[5] R. Wille, R. Drechsler, C. Oswald, and A. Garcia-Ortiz, “Automatic
design of low-power encoders using reversible circuit synthesis,” in
Design, Automation and Test in Europe, 2012, pp. 1036–1041.

[6] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[7] R. Glück and M. Kawabe, “A method for automatic program inversion
based on LR(0) parsing,” Fundamenta Informaticae, vol. 66, no. 4, pp.
367–395, 01 2005.

[8] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[10] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[11] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
ASP Design Automation Conf., 2012, pp. 85–92.

[12] D. Y. Feinstein, M. A. Thornton, and D. M. Miller, “Partially redundant
logic detection using symbolic equivalence checking in reversible and
irreversible logic circuits,” in Design, Automation and Test in Europe,
2008, pp. 1378–1381.

[13] M. Soeken, R. Wille, G. W. Dueck, and R. Drechsler, “Window opti-
mization of reversible and quantum circuits,” in Symposium on Design
and Diagnostics of Electronic Circuits and Systems, 2010, pp. 341–345.

[14] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in Int’l Conf. on CAD, 2007, pp. 69–74.

[15] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo, “An XQDD-based
verification method for quantum circuits,” IEICE Transactions, vol. 91-
A, no. 2, pp. 584–594, 2008.

[16] R. Wille, D. Große, S. Frehse, G. W. Dueck, and R. Drechsler,
“Debugging of Toffoli networks,” in Design, Automation and Test in
Europe, 2009, pp. 1284–1289.

[17] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A family of logical fault
models for reversible circuits,” in Asian Test Symp., 2005, pp. 422–427.

[18] R. Wille, H. Zhang, and R. Drechsler, “ATPG for reversible circuits us-
ing simulation, Boolean satisfiability, and pseudo Boolean optimization,”
in IEEE Annual Symposium on VLSI, 2011, pp. 120–125.

[19] R. Drechsler and R. Wille, “From truth tables to programming lan-
guages: Progress in the design of reversible circuits,” in Int’l Symp.
on Multi-Valued Logic, 2011, pp. 78–85.

TABLE III
EXPERIMENTAL EVALUATION

Simulation Run-time Complexity Impr.
Circuit n d Standard Proposed Impr. wc bc

urf6 160 15 10740 663459 1639 404.8 2.0 8089.6
urf6 281 15 5088 349400 2021 172.9 2.0 4405.0
urf4 187 11 32004 152443 279 545.4 2.0 1924.9
alu3 200 18 94 63286 12458 5.1 2.0 95.0
urf3 155 10 26468 52481 142 369.9 2.0 985.9
sqr6 259 18 81 52346 13335 3.9 2.0 82.0
5xp1 194 17 85 28241 5998 4.7 2.0 85.9
dk27 225 18 24 24266 12470 1.9 1.9 25.0
urf3 279 10 14075 24174 95 254.4 2.0 954.6
example2 231 16 157 23937 2586 9.3 2.0 157.6
alu2 199 16 157 23682 2594 9.1 2.0 157.6
ryy6 256 17 44 23389 5898 4.0 2.0 45.0
mlp4 245 16 131 21064 2687 7.8 2.0 131.7
x2 267 17 38 16692 6970 2.4 2.0 39.0
inc 237 16 93 15635 2598 6.0 2.0 93.9
parity 247 17 32 13148 5991 2.2 1.9 33.0
urf1 149 9 11554 11520 58 197.1 2.0 490.3
t481 263 17 21 11406 6001 1.9 1.9 22.0
ham15 107 15 132 9991 1242 8.0 2.0 132.5
urf5 158 9 10276 9882 53 186.9 2.0 487.7
urf3 156 10 2732 7826 41 191.2 2.0 745.1
clip 206 14 174 7603 587 12.9 2.0 173.2
ham15 109 15 109 7551 1482 5.1 2.0 109.6
dc2 222 15 75 7129 1240 5.7 2.0 75.8
cnt3-5 179 16 25 6697 2608 2.6 1.9 26.0
ham15 108 15 70 6617 1601 4.1 2.0 70.8
urf3 157 10 2674 6613 39 168.8 2.0 740.7
urf1 278 9 6761 5967 40 147.8 2.0 476.0
cnt3-5 180 16 20 5480 2622 2.1 1.9 21.0
misex1 241 15 55 5110 1219 4.2 2.0 55.9
co14 215 15 30 4692 1307 3.6 1.9 31.0
urf5 280 9 5097 4638 39 120.1 2.0 465.4
sao2 257 14 88 4076 546 7.5 2.0 88.5
rd84 142 15 28 3571 1332 2.7 1.9 29.0
dist 223 13 185 3535 248 14.3 2.0 181.9
cm85a 209 14 69 3407 784 4.3 2.0 69.7
urf2 152 8 5030 2440 22 109.5 2.0 243.7
cm42a 207 14 35 2070 712 2.9 1.9 35.9
pm1 249 14 35 2053 698 2.9 1.9 35.9
hwb9 123 9 1959 1975 26 77.1 2.0 406.1
root 255 13 99 1960 258 7.6 2.0 98.8
0410184 169 14 46 1893 559 3.4 2.0 46.9
hwb9 121 9 1541 1800 23 79.6 2.0 384.6
urf1 150 9 1517 1797 19 92.7 2.0 383.1
hwb9 119 9 1544 1785 23 78.4 2.0 384.7
urf1 151 9 1487 1763 21 83.9 2.0 381.1
sym6 316 14 29 1722 576 3.0 1.9 29.9
urf2 161 8 3250 1639 17 99.3 2.0 237.4
urf2 277 8 3144 1590 21 75.3 2.0 236.8
radd 250 13 48 1245 261 4.8 2.0 48.7
adr4 197 13 55 1133 261 4.3 2.0 55.6
squar5 261 13 43 1043 254 4.1 2.0 43.8
rd84 253 12 111 995 121 8.3 2.0 109.0
sym10 262 11 194 922 59 15.7 2.0 178.1
rd53 311 13 34 778 259 3.0 1.9 34.9
urf5 159 9 499 631 15 43.4 2.0 253.2
sym9 148 10 210 513 29 17.5 2.0 175.1
sqrt8 260 12 40 476 150 3.2 2.0 40.6
dc1 220 11 39 439 91 4.8 2.0 39.3

Simulation Run-time Complexity Impr.
Circuit n d Standard Proposed Impr. wc bc

dc1 221 11 39 402 93 4.3 2.0 39.3
urf2 153 8 638 374 8 46.8 2.0 183.0
hwb8 116 8 749 364 8 45.4 2.0 191.0
hwb8 113 8 637 363 11 32.7 2.0 182.9
urf2 154 8 620 354 8 45.2 2.0 181.5
sym9 146 12 28 353 121 2.9 1.9 28.8
cycle10 2 110 12 19 349 131 2.7 1.9 19.9
hwb8 114 8 614 348 8 45.7 2.0 181.0
9symml 195 10 129 303 29 10.3 2.0 115.5
sym9 193 10 129 295 36 8.3 2.0 115.5
cm152a 212 12 16 261 131 2.0 1.9 16.9
z4ml 269 11 48 258 59 4.4 2.0 47.9
z4 268 11 48 255 54 4.8 2.0 47.9
life 238 10 107 254 27 9.5 2.0 97.8
max46 240 10 107 249 35 7.1 2.0 97.8
sqn 258 10 76 190 27 7.1 2.0 71.7
rd73 252 10 80 185 29 6.4 2.0 75.1
hwb7 59 7 289 170 5 33.3 2.0 89.0
wim 266 11 25 155 60 2.6 1.9 25.7
rd73 140 10 20 100 30 3.4 1.9 20.6
hwb7 62 7 331 84 4 23.7 2.0 92.6
sys6-v0 111 10 20 75 28 2.7 1.9 20.6
hwb7 61 7 236 71 4 19.2 2.0 83.3
mini alu 305 10 20 69 27 2.5 1.9 20.6
hwb7 60 7 166 51 4 14.0 2.0 72.7
con1 216 9 21 38 12 3.2 1.9 21.1
rd53 251 8 27 21 5 3.8 1.9 25.3
hwb6 56 6 126 19 2 10.6 2.0 42.8
f2 232 8 19 18 5 3.8 1.9 18.6
cm82a 208 8 22 18 5 3.3 1.9 21.2
rd53 130 7 30 15 4 4.2 1.9 25.1
rd53 138 8 12 15 5 2.7 1.9 12.4
sym6 145 7 36 14 3 4.5 1.9 28.9
rd53 131 7 28 14 5 2.9 1.9 23.8
ham7 104 7 23 10 3 3.4 1.9 20.3
hwb6 57 6 65 9 2 5.6 2.0 32.7
ham7 106 7 25 9 3 3.3 1.9 21.8
ham7 105 7 21 9 3 3.2 1.9 18.9
majority 239 6 8 8 3 2.9 1.8 8.0
rd53 135 7 16 7 3 2.6 1.9 15.1
hwb6 58 6 42 7 2 4.5 2.0 26.0
rd53 137 7 16 7 3 2.5 1.9 15.1
rd53 133 7 12 6 3 2.4 1.9 11.9
C17 204 7 9 6 3 2.3 1.8 9.3
alu-bdd 288 7 9 5 3 1.6 1.8 9.3
4mod5-bdd 287 7 8 5 3 1.9 1.8 8.5
mod5adder 128 6 15 4 2 2.5 1.9 13.0
decod24-bdd 294 6 11 4 2 2.6 1.8 10.2
graycode6 47 6 5 4 2 1.9 1.7 5.6
mod5adder 127 6 21 4 2 2.6 1.9 16.6
graycode6 48 6 5 4 2 1.9 1.7 5.6
mod5adder 129 6 17 4 1 2.4 1.9 14.2
decod24-enable 126 6 14 4 1 2.4 1.9 12.3
ex3 229 6 7 4 1 2.4 1.8 7.2
ex3 228 6 13 3 1 2.3 1.9 11.6
ex2 227 6 13 3 1 2.2 1.9 11.6
xor5 254 6 7 3 2 1.9 1.8 7.2
ex1 226 6 7 3 1 2.2 1.8 7.2
decod24-enable 125 6 9 3 1 1.9 1.8 8.8

Circuit: Name of the benchmark circuit n: Number of lines d: Number of gates
Standard: Run-time of the standard simulation Proposed: Run-time of the proposed simulation Impr.: Improvement of the proposed simulation (factor)
Complexity Impr.: Improvements in the complexity with respect to the worst case (wc) and the best case (bc) compared to the complexity of the standard simulation

[20] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible
circuits - a survey,” ACM Computing Surveys, 2011.

[21] R. Drechsler and R. Wille, “Reversible circuits: Recent accomplishments
and future challenges for an emerging technology,” in Int’l Symp. on
VLSI Design and Test, 2012, pp. 383–392.

[22] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[23] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

[24] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An Open
Source Toolkit for the Design of Reversible Circuits,” in Reversible
Computation 2011, ser. Lecture Notes in Computer Science, vol. 7165,
2012, pp. 64–76, RevKit is available at www.revkit.org.

[25] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

