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Abstract—The successful use of deep learning (DL) 

algorithms in a variety of applications is conceptually based on 

convolutions. Though convolution is a simple operation, it 

suffers from severe performance degradation when 

implemented in software. Recently, with the advancement of 

CMOS technology, the convolution operation in DL algorithms 

has been accelerated by being delegated to specialized hardware 

platforms such as Field Programmable Gate Array (FPGA) 

devices. On hardware platforms, the convolution operation can 

be implemented on a synthesizable processor core or custom 

hardware accelerators based on systolic arrays (SA). Choosing 

an optimal hardware implementation should not be done 

analytically but instead employ the use of tools for fast and 

accurate estimation of metrics such as execution cycles, 

hardware resource utilization, and power consumption. This 

work evaluates the efficiency of implementing the convolution 

operation on various SA dimensions (8 × 8, 16 × 16, and 32 × 32) 

on the open-source Gemmini DL hardware accelerator with a 

comparison to the synthesizable RISC-V Rocket processor core. 

In terms of execution cycles the 8 × 8, 16 × 16, and 32 × 32 

Gemmini configurations offer speedups of 323×, 249×, and 204× 

relative to the Rocket core. This work shows that, unlike the 

General Matrix to Matrix Multiplication (GEMM), the 

performance of the convolution operation degrades by an 

average factor of 2 when the Gemmini SA is doubled. In terms 

of hardware resource utilization on the Zynq Ultrascale+ 

ZCU104 FPGA evaluation board, the area and power 

consumption increased by 3.1× and 2.7× when the Gemmini SA 

dimension is doubled. Overall, the 8 × 8 Gemmini SA dimension 

recorded the highest performance-per-area metric making it the 

most efficient for a popular convolution configuration. 

Keywords—deep learning, convolution, FPGA, systolic array, 

hardware accelerator, Gemmini, Rocket core 

I. INTRODUCTION 

Convolutional Neural Networks (CNNs) have exhibited 
superior accuracy than humans when used in applications such 
as translation [1], video/image classification [2], and object 
detection [3]. CNNs are greatly successful because of the use 

of convolution operations in layers for feature extraction. 
Though convolution is a simple operation, it is 
computationally intensive and hence a challenge for real-time 
and high-performance processing [4]. Convolution can be 
implemented on platforms such as conventional Central 
Processing Units (CPUs), Graphic Processing Units (GPUs), 
or Domain-Specific Architectures (DSAs). Implementation in 
conventional CPUs is flexible but suffers from a lack of 
parallel processing and limitation in both power and frequency 
[5]. The parallel processing issue of the conventional CPU 
implementation can be solved using GPU which also suffers 
from low latency and enormous power consumption [6]. The 
convolution implementation issues in CPU and GPU have led 
to the design of DSAs (hardware accelerators) on FPGAs to 
improve energy efficiency and latency. 

The two common open-source hardware accelerators for 
DL algorithms are the Gemmini framework [7] and the Nvidia 
Deep Learning Accelerator (NVDLA) [8]. Both accelerators 
are based on the SA [9] architecture which is designed by 
interconnecting processing units (PEs) to form two-
dimensional arrays. Though the NVDLA accelerator is 
estimated to be 3.77× faster in running ResNet-50 [10] neural 
network, this work focused on the Gemmini framework 
because it offers a complete System-on-Chip (SoC) 
synthesizable hardware architecture for DL exploration. This 
work, therefore, studies the efficiency of the convolution on 
various configurations of the Gemmini accelerator compared 
to the synthesizable RISC-V Rocket processor core. The 
contributions of this paper include:  

• Extracting cycle-accurate performance metrics 
(execution cycles) from convolution operation on three 
SA dimensions of the Gemmini accelerator with 
comparison to implementations on Rocket processor 
core.  

• Synthesizing the hardware modules of the various SA 
dimensions of the Gemmini accelerator to extract 
resource utilization metrics such as hardware area, 
frequency, and power consumption.  

• Identifying the most efficient Gemmini configuration 
using the performance and resource utilization metrics. 

This work was carried out with the aid of a grant in the UNESCO-TWAS 
programme, "Seed Grant for African Principal Investigators" financed by 
the German Federal Ministry of Education and Research (BMBF) (TWAS-
SG-NAPI-4500474961). 
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The rest of this paper is organized as follows: Section II 
presents some background and related works, Section III 
discusses the Gemmini accelerator hardware template, 
Section IV outlines the methodology used in this research, 
Section V documents the experimental results of the research, 
and Section VI concludes the paper. 

II. BACKGROUND 

A. Convolution on Systolic Arrays 

The convolution operation in CNNs is a mathematical 
operation that serves as the building block for feature 
extraction involving an input image and kernels [11]. Fig. 1 
illustrates a simple 2D direct convolution of input A of i_dimh 
height and i_dimw width and kernel B of k_dimh height and 
k_dimw width. The output C of o_dimh height and o_dimw 
width is computed as a dot-product by sliding the kernel B 
over submatrices of input A with dimensions of k_dimh × 
k_dimw. The sliding is both vertical and horizontal with the 
sliding parameter of sh and sw respectively. 

 

Fig. 1. 4 × 4 by 2 × 2 direct convolution operation. 

One method for accelerating convolution is by using SA 
which was proposed in 1979 [12] but has recently become 
popular due to the advancement of parallel processing 
hardware architectures. The SA is made up of an interlocking 
grid of PEs with each internal architecture made up of a 
multiply-accumulate (MAC) unit as shown in Fig. 2. The 
operation of SAs starts by arranging input A, kernel B, and the 
results C from Fig. 1 into memories A, B, and C (also known 
as the accumulator) respectively. The total memory locations 
needed for A, B, and C are computed using Equations (1), (2), 
and (3) respectively. The B values are preloaded from the top 
into the SA PEs from cycle t1 to t4. From cycle t5 to t8, the A 
values are pushed from the left into the PEs for partial 
multiplication while the results are accumulated in memory C.  

 

Fig. 2. 4 × 4 by 2 × 2 convolution using systolic arrays. 

k_dimh × k_dimw (1) 

(k_dimh × k_dimw) × [(i_dimh – sh) × (i_dimw – sw)] (2) 

[(i_dimw – k_dimw) / sw] × [(i_dimh – k_dimh) / sh] (3) 

B. Related Work 

Gemmini is a component of the open-source RISC-V 
ecosystem [13] developed for DL accelerator exploration by 
researchers at the University of California, Berkeley. Since its 
inception in 2019, a number of works [14], [15] focused on 
improving some individual components of the framework. 
Few researchers explored the performance of DL building 
blocks including convolutions and GEMM on the Gemmini 
framework. The authors of [16] measured the performance of 
various convolutions on a single SA configuration (16 × 16) 
of the accelerator. They concluded that convolutions on the 
Gemmini framework are faster than implementation on a 
traditional CPU. The authors failed to explore convolution 
performance on other SA dimensions. They also failed to 
measure the effects of the generated Gemmini architecture on 
hardware resource consumption. 

This work investigates the efficiency of the convolution 
operation on different configurations of the Gemmini 
framework. The performance in terms of cycles of a popular 
convolution parameter on the various SA dimensions is 
measured using an open-source cycle-accurate simulator. The 
hardware resource utilization of the various SA dimensions of 
the framework is extracted using a commercial FPGA board. 
The efficiency of the various SA dimensions is measured 
using the performance and hardware resource utilization 
results. 

III. THE GEMMINI OPENS-SOURCE TEMPLATE 

The Gemmini configurable hardware template for 
generating DL accelerators is shown in Fig. 3. The accelerator 
comprises a configurable SA arranged as tiles. The SA is 
loaded with data from the Scratchpad which is made up of 
configurable SRAMs for storing computational data. The 
results of the computations are stored in the Accumulator also 
made up of SRAMs. The Controller is responsible for 
scheduling data to and from the SA and also sends/receives 
data from the DRAM. The accelerator can be configured to 
use components such as Transposer for transposing the kernel 
matrix, Mat-Scaler Mult for matrix scaler multiplication, 
ReLU for rectified linear unit operation as well Pool for the 
pooling operation in DL algorithms. The framework can be 
configured to use one or more RISC-V synthesizable CPUs 
including Berkeley Out-of-Order Machine (BOOM) and 
Rocket core. The CPUs communicate with the Gemmini 
accelerator by sending commands through an interface known 
as the Rocket Custom Coprocessor (RoCC). A number of 
configurable hierarchical caches including the Level 1 (L1) 
and Level 2 (L2) can be added.  
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Fig. 3. Gemmini accelerator open-source hardware template [7]. 

IV. METHODOLOGY 

This work employed both commercial and open-source 
hardware development tools to examine the efficiency of the 
convolution operation on different SA dimensions of the 
Gemmini hardware accelerator and the RISC-V Rocket 
processor core. The workflow is shown in Fig. 3.  

The flow starts by customizing and generating the 
Gemmini SoC Register Transfer Level (RTL) codes by editing 
Scala configuration files in the Gemmini repository [17]. 
Some of the customizable components in the SoC include the 
RISC-V CPU, the Gemmini accelerator, caches, and some 
peripherals. Fig. 5 illustrates the parameters used for 
configuring and generating the modules in the Gemmini SoC. 
The Gemmini accelerator is composed of one tile with three 
SA dimensions including 8 × 8, 16 × 16, and 32 × 32. The 
processor configured is the 5-stage in-order RISC-V Rocket 
core. The Direct Memory Access (DMA) controller has a data 
width of 128-bit with a total of 16 transfers per burst. The 
Accumulator has two banks with a capacity of 64 KB, while 
the Scratchpad has four banks with a capacity of 256 KB. 

 

Fig. 4. Gemmini accelerator exploration workflow. 

 

Fig. 5. Gemmini accelerator SoC generation parameters and modules. 

After configuring the Gemmini SoC, the configuration 
commands can be executed using the RISC-V open-source 
toolchain [18] which includes the Flexible Intermediate 
Representation for RTL (FIRRTL) compiler to generate the 
RTL codes in the form of Verilog Hardware Description 
Language (HDL). The Verilog files are used for both 
simulation and synthesis to extract performance and hardware 
resource utilization results respectively. 

For simulation, this work compiled bare-metal 
convolution programs that are executed in the various SA 
dimension of the Gemmini accelerator as well as the Rocket 
core. The convolution parameters include batch size 
(batch_size) of 1, input dimension (in_dim) of 224, input 
channel (in_channel) of 3, output channel (out_channel) of 7, 
kernel dimension (kernel_dim) of 3, padding of 1, stride of 2, 
and output dimension (out_dim) of 112. These are common 
convolution parameters for image classification in DL. The 
RISC-V compiler version riscv64-unknown-elf-gcc is used to 
compile the convolution programs to generate executable files 
for simulation. The executable files together with the 
generated Verilog files are fed into the open-source Verilator 
tool [18] for simulation. The Verilator tool generates 
performance results of executing the convolution operation in 
the Gemmini accelerators as well as the Rocket core. 

For hardware synthesis, Vivado version v2020.2 [19] is 
used to extract resource utilization reports on the Zynq 
Ultrascale+ ZCU104 FPGA device by feeding the tool with 
the generated Verilog files. The Vivado tool converts the 
Verilog codes into hardware gate-level netlist files for 
analysis. 

V. EXPERIMENTAL RESULTS 

This section elaborates on the results obtained by 
following the methodology discussed in Section IV to 
measure the performance and resource utilization of the 
convolution operation on various Gemmini SA dimensions. 

A. Performance 

The convolution operation with an input image dimension 
of 224 × 224 is run on 8 × 8, 16 × 16, and 32 × 32 Gemmini 
SA dimensions and the Rocket CPU core. The Verilator 
simulator with an operating frequency of 100 MHz is used to 
extract the performance results in the form of execution 
cycles. Fig. 6 illustrates the execution cycles of convolution 
on the Gemmini configured accelerators and the Rocket core. 
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Fig. 6. Convolution performance of Gemmini and Rocket core. 

The Gemmini SA of 8 × 8, 16 × 16, and 32 × 32 reported 
cycles of 199658, 259247, and 316021 respectively while the 
Rocket core reported cycles of 64583535. Overall, all the 
Gemmini SA configurations performed better than the Rocket 
core. The Gemmini SA of 8 × 8, 16 × 16, and 32 × 32 reported 
speedups of 323×, 249×, and 204× relative to the Rocket core. 

Focusing on the Gemmini configurations it is observed 
that doubling the SA dimension increases the cycles by a 
factor of 2. This observation is contrary to the operation of 
GEMM on the Gemmini SA in which the cycles are reduced 
by a factor of 2 when the SA dimension is doubled [20]. The 
reason for the increase in the cycles when the SA area is 
doubled is that given a convolution operation with a kernel 
size of 3 × 3 limits the number of PEs used for the MAC 
operation to 3. The partial results have to be pushed down and 
accumulated in the accumulator as shown in Fig. 2. When the 
SA is increased while the kernel size is fixed, the partial results 
must pass through unused PEs before reaching the 
accumulator and for that matter, the latency of cycles increase. 

B. Resource Utilization 

The hardware resource utilization of the three Gemmini 
SA dimensions including 8 × 8, 16 × 16, and 32 × 32 was 
obtained using Vivado software with Zynq Ultrascale+ 
ZCU104 FPGA device. The ZCU104 FPGA device is a high-
end hardware development board for running machine 
learning applications. It is equipped with 230400 
Configurable Logic Block Look-up Tables (CLB LUTs) with 
other modules including 312 Block Random Access Memory 
(BRAM) tiles and 1728 Digital Signal Processing (DSP) 
blocks. Table I shows the results from synthesizing the three 
Gemmini SA configurations with the selected FPGA device. 
The results include metrics such as CLB LUTs, maximum 
frequency, and power consumption. 

The hardware gates of FPGAs are grouped into CLB LUTs 
which gives them flexibility in terms of programmability. A 
CLB LUT is made up of a small RAM together with adders, 
flip-flops, and registers for storing information. From Table I, 
the 8 × 8, 16 × 16, and 32 × 32 Gemmini SA dimensions used 
90371 with a utilization of 39.2%, 245928 with a utilization 
of 106.7%, and 860052 with a utilization of 373.3% 
respectively. This shows that only the 8 × 8 SA dimension can 
fit into the FPGA device with the 16 × 16 and 32 × 32 needing 
over 6% and 273% extra CLB LUTs respectively. It can also 

be observed that doubling the SA dimension increase the CLB 
LUTs by a factor of 3.1. 

The maximum frequency metric of a digital system 
determines the critical path of the circuit which is the 
longest/slowest path a signal travels from the input to the 
output. The critical path is important because it restricts the 
speed at which the circuit operates. The longer the critical 
path, the lower the frequency. From Table I, the 8 × 8 SA 
dimension recorded the highest maximum frequency of 58.8 
MHz with a critical path delay of 17 ns while the 16 × 16 and 
32 × 32 SA both recorded a maximum frequency of 52.6 MHz 
with a critical path delay of 19 ns. 

The Vivado software consists of an in-built tool for 
analyzing the power consumption of a design. The tool reports 
both dynamic and static power consumption. The static power 
is recorded when the design is in a sturdy state. The static 
power does not change if the parameters are kept constant. The 
dynamic power on other hand is recorded when the design is 
operational. This work, therefore, reported the dynamic power 
of the three Gemmini SA dimensions as shown in Table I. 
From the table, the 8 × 8, 16 × 16, and 32 × 32 recorded power 
consumption of 0.960 W, 2.211 W, and 7.387 W respectively. 
It can be observed that when the Gemmini SA dimension is 
doubled, the dynamic power consumed is increased by an 
average factor of 2.7. 

TABLE I.  GEMMINI HARDWARE RESOURCE UTILIZATION 

Gemmini 

SA Config 

CLB LUTs 

(% Utilization) 

Frequency 

(MHz) 

Power 

(W) 

8 × 8 90371 (39.2%) 58.8 0.960 

16 × 16 245928 (106.7%) 52.6 2.211 

32 × 32 860052 (373.3%) 52.6 7.387 

C. Efficiency 

The experimental results of this work in Section V 
produced the performance in terms of execution cycles as well 
as the hardware gate count in terms of CLB LUTs of three 
Gemmini SA configuration dimensions which include 8 × 8, 
16 × 16, and 32 × 32. This section, therefore, employs the 
performance and hardware resources utilized by the various 
Gemmini SA dimension to estimate a figure of merit referred 
to as the Performance-per-Area (PPA). The PPA metric is a 
simplified method to measure the efficiency of a digital 
system. The PPA estimates how the convolution operation 
makes use of the available hardware resources (CLB LUTs) 
of the three Gemmini SA configurations. The PPA metric in 
this work is computed as the ratio of the convolution operation 
performance (execution cycles) and the resource consumption 
(CLB LUTs) of the Gemmini SA configuration. 

Fig. 7 illustrates the PPA of the three Gemmini SA 
configurations together with the execution cycles and total 
CLB LUTs utilized. From the figure, the cycles and the CLB 
LUTs increase with an increase in the Gemmini SA while the 
PPA reduces linearly. It must be noted that a high PPA value 
indicates that the convolution operation made good use of the 
available hardware resources. The Gemmini 8 × 8 SA 
configuration recorded the highest PPA of 2.2 while the 16 × 
16 and 32 × 32 SA configurations recorded PPAs of 1.05 and 
0.37 respectively. This indicates that the Gemmini 8 × 8 SA 
configuration is the most efficient for convolutions among the 
three configurations.  

 

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore.  Restrictions apply. 



2023 IEEE AFRICON 

The authors of [20] mapped GEMM operations to four 
Gemmini SA configurations including 8 × 8, 16 × 16, 32 × 32, 
and 64 × 64. They observed that, unlike this work, the cycles 
are reduced when the Gemmini SA dimension is doubled 
while the CLB LUTs are doubled as confirmed in this work. 
They concluded that the Gemmini 16 × 16 SA was the most 
efficient in running GEMM operations. It is therefore 
recommended that to get the best performance out of the 
Gemmini accelerators, the convolution operation should be 
transformed into a GEMM operation before being mapped to 
the SA of the Gemmini accelerator. 

 

Fig. 7. Efficiency of Gemmini SA configurations. 

VI. CONCLUSION 

This work studied the efficiency of convolution operation 
on the open-source Gemmini DL hardware accelerator 
template with three SA dimensions including 8 × 8, 16 × 16, 
and 32 × 32. For measuring the performance of convolution, 
the open-source Verilator simulator was used to obtain the 
execution cycles on the three Gemmini SA configurations as 
well as the RISC-V synthesizable Rocket processor core. It 
was observed that the 8 × 8, 16 × 16, and 32 × 32 Gemmini 
SA configurations offer speedups of 323×, 249×, and 204× 
relative to the Rocket core. Also, the performance of the 
convolution operation degrades by an average factor of 2 
when the Gemmini SA is doubled. For measuring the 
hardware resource utilization in terms of CLB LUTs, 
frequency, and power, the three Gemmini SA configurations 
were mapped on the Zynq Ultrascale+ ZCU104 FPGA 
evaluation board. It was observed that area and power 
consumption increased by 3.1× and 2.7× when the Gemmini 
SA dimension is doubled. The 16 × 16 and 32 × 32 SA 
configurations used over 100% of the available CLB LUTs on 
the FPGA and therefore not recommended for low-cost 
devices. The performance and resource utilization results were 
used to estimate the efficiency of the Gemmini SA 
configurations in the form of PPA. Overall, the 8 × 8 Gemmini 
SA dimension recorded the highest PPA metric making it the 
most efficient for a popular convolution configuration. 

Future work will deal with efficient methods of 
transforming convolutions to GEMM operation before being 
mapped to the Gemmini accelerator to improve performance. 
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