
HAL Id: hal-04599896
https://imt-atlantique.hal.science/hal-04599896v1

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Efficiency of Convolution on Gemmini Deep
Learning Hardware Accelerator

Dennis Agyemanh Nana Gookyi, Michael Wilson, Roger Kwao Ahiadormey,
Derek Kwaku Pobi Asiedu, Paul Danquah, Raymond Gyaang

To cite this version:
Dennis Agyemanh Nana Gookyi, Michael Wilson, Roger Kwao Ahiadormey, Derek Kwaku Pobi
Asiedu, Paul Danquah, et al.. The Efficiency of Convolution on Gemmini Deep Learning Hard-
ware Accelerator. AFRICON 2023: IEEE AFRICON Conference, Sep 2023, Nairobi, Kenya.
�10.1109/africon55910.2023.10293709�. �hal-04599896�

https://imt-atlantique.hal.science/hal-04599896v1
https://hal.archives-ouvertes.fr

2023 IEEE AFRICON

979-8-3503-3621-4/23/$31.00 ©2023 IEEE

The Efficiency of Convolution on Gemmini Deep
Learning Hardware Accelerator

Dennis Agyemanh Nana Gookyi
Institute for Scientific and

Technological Information
Council for Scientific and Industrial

Research

Accra, Ghana
dennisgookyi@gmail.com

Derek Kwaku Pobi Asiedu
Department of Mathematical and

Electrical Engineering
IMT-Atlantique

Brest, France
kwakupobi@gmail.com

Michael Wilson
Institute for Scientific and

Technological Information
Council for Scientific and Industrial

Research

Accra, Ghana
yboagengwilson@gmail.com

Paul Danquah
Institute for Scientific and

Technological Information
Council for Scientific and Industrial

Research

Accra, Ghana
pauldanquah@yahoo.com

Roger Kwao Ahiadormey
Institute for Scientific and

Technological Information
Council for Scientific and Industrial

Research

Accra, Ghana
rogerkwao@ieee.org

Raymond Gyaang

Department of Electrical and

Electronic Engineering
Bolgatanga Technical University

Bolgatanga, Ghana
gyaangraymond@bolgatu.edu.gh

Abstract—The successful use of deep learning (DL)

algorithms in a variety of applications is conceptually based on

convolutions. Though convolution is a simple operation, it

suffers from severe performance degradation when

implemented in software. Recently, with the advancement of

CMOS technology, the convolution operation in DL algorithms

has been accelerated by being delegated to specialized hardware

platforms such as Field Programmable Gate Array (FPGA)

devices. On hardware platforms, the convolution operation can

be implemented on a synthesizable processor core or custom

hardware accelerators based on systolic arrays (SA). Choosing

an optimal hardware implementation should not be done

analytically but instead employ the use of tools for fast and

accurate estimation of metrics such as execution cycles,

hardware resource utilization, and power consumption. This

work evaluates the efficiency of implementing the convolution

operation on various SA dimensions (8 × 8, 16 × 16, and 32 × 32)

on the open-source Gemmini DL hardware accelerator with a

comparison to the synthesizable RISC-V Rocket processor core.

In terms of execution cycles the 8 × 8, 16 × 16, and 32 × 32

Gemmini configurations offer speedups of 323×, 249×, and 204×

relative to the Rocket core. This work shows that, unlike the

General Matrix to Matrix Multiplication (GEMM), the

performance of the convolution operation degrades by an

average factor of 2 when the Gemmini SA is doubled. In terms

of hardware resource utilization on the Zynq Ultrascale+

ZCU104 FPGA evaluation board, the area and power

consumption increased by 3.1× and 2.7× when the Gemmini SA

dimension is doubled. Overall, the 8 × 8 Gemmini SA dimension

recorded the highest performance-per-area metric making it the

most efficient for a popular convolution configuration.

Keywords—deep learning, convolution, FPGA, systolic array,

hardware accelerator, Gemmini, Rocket core

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have exhibited
superior accuracy than humans when used in applications such
as translation [1], video/image classification [2], and object
detection [3]. CNNs are greatly successful because of the use

of convolution operations in layers for feature extraction.
Though convolution is a simple operation, it is
computationally intensive and hence a challenge for real-time
and high-performance processing [4]. Convolution can be
implemented on platforms such as conventional Central
Processing Units (CPUs), Graphic Processing Units (GPUs),
or Domain-Specific Architectures (DSAs). Implementation in
conventional CPUs is flexible but suffers from a lack of
parallel processing and limitation in both power and frequency
[5]. The parallel processing issue of the conventional CPU
implementation can be solved using GPU which also suffers
from low latency and enormous power consumption [6]. The
convolution implementation issues in CPU and GPU have led
to the design of DSAs (hardware accelerators) on FPGAs to
improve energy efficiency and latency.

The two common open-source hardware accelerators for
DL algorithms are the Gemmini framework [7] and the Nvidia
Deep Learning Accelerator (NVDLA) [8]. Both accelerators
are based on the SA [9] architecture which is designed by
interconnecting processing units (PEs) to form two-
dimensional arrays. Though the NVDLA accelerator is
estimated to be 3.77× faster in running ResNet-50 [10] neural
network, this work focused on the Gemmini framework
because it offers a complete System-on-Chip (SoC)
synthesizable hardware architecture for DL exploration. This
work, therefore, studies the efficiency of the convolution on
various configurations of the Gemmini accelerator compared
to the synthesizable RISC-V Rocket processor core. The
contributions of this paper include:

• Extracting cycle-accurate performance metrics
(execution cycles) from convolution operation on three
SA dimensions of the Gemmini accelerator with
comparison to implementations on Rocket processor
core.

• Synthesizing the hardware modules of the various SA
dimensions of the Gemmini accelerator to extract
resource utilization metrics such as hardware area,
frequency, and power consumption.

• Identifying the most efficient Gemmini configuration
using the performance and resource utilization metrics.

This work was carried out with the aid of a grant in the UNESCO-TWAS
programme, "Seed Grant for African Principal Investigators" financed by
the German Federal Ministry of Education and Research (BMBF) (TWAS-
SG-NAPI-4500474961).

20
23

 IE
EE

 A
FR

IC
O

N
 |

 9
79

-8
-3

50
3-

36
21

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AF

RI
CO

N
55

91
0.

20
23

.1
02

93
70

9

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

The rest of this paper is organized as follows: Section II
presents some background and related works, Section III
discusses the Gemmini accelerator hardware template,
Section IV outlines the methodology used in this research,
Section V documents the experimental results of the research,
and Section VI concludes the paper.

II. BACKGROUND

A. Convolution on Systolic Arrays

The convolution operation in CNNs is a mathematical
operation that serves as the building block for feature
extraction involving an input image and kernels [11]. Fig. 1
illustrates a simple 2D direct convolution of input A of i_dimh
height and i_dimw width and kernel B of k_dimh height and
k_dimw width. The output C of o_dimh height and o_dimw
width is computed as a dot-product by sliding the kernel B
over submatrices of input A with dimensions of k_dimh ×
k_dimw. The sliding is both vertical and horizontal with the
sliding parameter of sh and sw respectively.

Fig. 1. 4 × 4 by 2 × 2 direct convolution operation.

One method for accelerating convolution is by using SA
which was proposed in 1979 [12] but has recently become
popular due to the advancement of parallel processing
hardware architectures. The SA is made up of an interlocking
grid of PEs with each internal architecture made up of a
multiply-accumulate (MAC) unit as shown in Fig. 2. The
operation of SAs starts by arranging input A, kernel B, and the
results C from Fig. 1 into memories A, B, and C (also known
as the accumulator) respectively. The total memory locations
needed for A, B, and C are computed using Equations (1), (2),
and (3) respectively. The B values are preloaded from the top
into the SA PEs from cycle t1 to t4. From cycle t5 to t8, the A
values are pushed from the left into the PEs for partial
multiplication while the results are accumulated in memory C.

Fig. 2. 4 × 4 by 2 × 2 convolution using systolic arrays.

k_dimh × k_dimw (1)

(k_dimh × k_dimw) × [(i_dimh – sh) × (i_dimw – sw)] (2)

[(i_dimw – k_dimw) / sw] × [(i_dimh – k_dimh) / sh] (3)

B. Related Work

Gemmini is a component of the open-source RISC-V
ecosystem [13] developed for DL accelerator exploration by
researchers at the University of California, Berkeley. Since its
inception in 2019, a number of works [14], [15] focused on
improving some individual components of the framework.
Few researchers explored the performance of DL building
blocks including convolutions and GEMM on the Gemmini
framework. The authors of [16] measured the performance of
various convolutions on a single SA configuration (16 × 16)
of the accelerator. They concluded that convolutions on the
Gemmini framework are faster than implementation on a
traditional CPU. The authors failed to explore convolution
performance on other SA dimensions. They also failed to
measure the effects of the generated Gemmini architecture on
hardware resource consumption.

This work investigates the efficiency of the convolution
operation on different configurations of the Gemmini
framework. The performance in terms of cycles of a popular
convolution parameter on the various SA dimensions is
measured using an open-source cycle-accurate simulator. The
hardware resource utilization of the various SA dimensions of
the framework is extracted using a commercial FPGA board.
The efficiency of the various SA dimensions is measured
using the performance and hardware resource utilization
results.

III. THE GEMMINI OPENS-SOURCE TEMPLATE

The Gemmini configurable hardware template for
generating DL accelerators is shown in Fig. 3. The accelerator
comprises a configurable SA arranged as tiles. The SA is
loaded with data from the Scratchpad which is made up of
configurable SRAMs for storing computational data. The
results of the computations are stored in the Accumulator also
made up of SRAMs. The Controller is responsible for
scheduling data to and from the SA and also sends/receives
data from the DRAM. The accelerator can be configured to
use components such as Transposer for transposing the kernel
matrix, Mat-Scaler Mult for matrix scaler multiplication,
ReLU for rectified linear unit operation as well Pool for the
pooling operation in DL algorithms. The framework can be
configured to use one or more RISC-V synthesizable CPUs
including Berkeley Out-of-Order Machine (BOOM) and
Rocket core. The CPUs communicate with the Gemmini
accelerator by sending commands through an interface known
as the Rocket Custom Coprocessor (RoCC). A number of
configurable hierarchical caches including the Level 1 (L1)
and Level 2 (L2) can be added.

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

Fig. 3. Gemmini accelerator open-source hardware template [7].

IV. METHODOLOGY

This work employed both commercial and open-source
hardware development tools to examine the efficiency of the
convolution operation on different SA dimensions of the
Gemmini hardware accelerator and the RISC-V Rocket
processor core. The workflow is shown in Fig. 3.

The flow starts by customizing and generating the
Gemmini SoC Register Transfer Level (RTL) codes by editing
Scala configuration files in the Gemmini repository [17].
Some of the customizable components in the SoC include the
RISC-V CPU, the Gemmini accelerator, caches, and some
peripherals. Fig. 5 illustrates the parameters used for
configuring and generating the modules in the Gemmini SoC.
The Gemmini accelerator is composed of one tile with three
SA dimensions including 8 × 8, 16 × 16, and 32 × 32. The
processor configured is the 5-stage in-order RISC-V Rocket
core. The Direct Memory Access (DMA) controller has a data
width of 128-bit with a total of 16 transfers per burst. The
Accumulator has two banks with a capacity of 64 KB, while
the Scratchpad has four banks with a capacity of 256 KB.

Fig. 4. Gemmini accelerator exploration workflow.

Fig. 5. Gemmini accelerator SoC generation parameters and modules.

After configuring the Gemmini SoC, the configuration
commands can be executed using the RISC-V open-source
toolchain [18] which includes the Flexible Intermediate
Representation for RTL (FIRRTL) compiler to generate the
RTL codes in the form of Verilog Hardware Description
Language (HDL). The Verilog files are used for both
simulation and synthesis to extract performance and hardware
resource utilization results respectively.

For simulation, this work compiled bare-metal
convolution programs that are executed in the various SA
dimension of the Gemmini accelerator as well as the Rocket
core. The convolution parameters include batch size
(batch_size) of 1, input dimension (in_dim) of 224, input
channel (in_channel) of 3, output channel (out_channel) of 7,
kernel dimension (kernel_dim) of 3, padding of 1, stride of 2,
and output dimension (out_dim) of 112. These are common
convolution parameters for image classification in DL. The
RISC-V compiler version riscv64-unknown-elf-gcc is used to
compile the convolution programs to generate executable files
for simulation. The executable files together with the
generated Verilog files are fed into the open-source Verilator
tool [18] for simulation. The Verilator tool generates
performance results of executing the convolution operation in
the Gemmini accelerators as well as the Rocket core.

For hardware synthesis, Vivado version v2020.2 [19] is
used to extract resource utilization reports on the Zynq
Ultrascale+ ZCU104 FPGA device by feeding the tool with
the generated Verilog files. The Vivado tool converts the
Verilog codes into hardware gate-level netlist files for
analysis.

V. EXPERIMENTAL RESULTS

This section elaborates on the results obtained by
following the methodology discussed in Section IV to
measure the performance and resource utilization of the
convolution operation on various Gemmini SA dimensions.

A. Performance

The convolution operation with an input image dimension
of 224 × 224 is run on 8 × 8, 16 × 16, and 32 × 32 Gemmini
SA dimensions and the Rocket CPU core. The Verilator
simulator with an operating frequency of 100 MHz is used to
extract the performance results in the form of execution
cycles. Fig. 6 illustrates the execution cycles of convolution
on the Gemmini configured accelerators and the Rocket core.

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

Fig. 6. Convolution performance of Gemmini and Rocket core.

The Gemmini SA of 8 × 8, 16 × 16, and 32 × 32 reported
cycles of 199658, 259247, and 316021 respectively while the
Rocket core reported cycles of 64583535. Overall, all the
Gemmini SA configurations performed better than the Rocket
core. The Gemmini SA of 8 × 8, 16 × 16, and 32 × 32 reported
speedups of 323×, 249×, and 204× relative to the Rocket core.

Focusing on the Gemmini configurations it is observed
that doubling the SA dimension increases the cycles by a
factor of 2. This observation is contrary to the operation of
GEMM on the Gemmini SA in which the cycles are reduced
by a factor of 2 when the SA dimension is doubled [20]. The
reason for the increase in the cycles when the SA area is
doubled is that given a convolution operation with a kernel
size of 3 × 3 limits the number of PEs used for the MAC
operation to 3. The partial results have to be pushed down and
accumulated in the accumulator as shown in Fig. 2. When the
SA is increased while the kernel size is fixed, the partial results
must pass through unused PEs before reaching the
accumulator and for that matter, the latency of cycles increase.

B. Resource Utilization

The hardware resource utilization of the three Gemmini
SA dimensions including 8 × 8, 16 × 16, and 32 × 32 was
obtained using Vivado software with Zynq Ultrascale+
ZCU104 FPGA device. The ZCU104 FPGA device is a high-
end hardware development board for running machine
learning applications. It is equipped with 230400
Configurable Logic Block Look-up Tables (CLB LUTs) with
other modules including 312 Block Random Access Memory
(BRAM) tiles and 1728 Digital Signal Processing (DSP)
blocks. Table I shows the results from synthesizing the three
Gemmini SA configurations with the selected FPGA device.
The results include metrics such as CLB LUTs, maximum
frequency, and power consumption.

The hardware gates of FPGAs are grouped into CLB LUTs
which gives them flexibility in terms of programmability. A
CLB LUT is made up of a small RAM together with adders,
flip-flops, and registers for storing information. From Table I,
the 8 × 8, 16 × 16, and 32 × 32 Gemmini SA dimensions used
90371 with a utilization of 39.2%, 245928 with a utilization
of 106.7%, and 860052 with a utilization of 373.3%
respectively. This shows that only the 8 × 8 SA dimension can
fit into the FPGA device with the 16 × 16 and 32 × 32 needing
over 6% and 273% extra CLB LUTs respectively. It can also

be observed that doubling the SA dimension increase the CLB
LUTs by a factor of 3.1.

The maximum frequency metric of a digital system
determines the critical path of the circuit which is the
longest/slowest path a signal travels from the input to the
output. The critical path is important because it restricts the
speed at which the circuit operates. The longer the critical
path, the lower the frequency. From Table I, the 8 × 8 SA
dimension recorded the highest maximum frequency of 58.8
MHz with a critical path delay of 17 ns while the 16 × 16 and
32 × 32 SA both recorded a maximum frequency of 52.6 MHz
with a critical path delay of 19 ns.

The Vivado software consists of an in-built tool for
analyzing the power consumption of a design. The tool reports
both dynamic and static power consumption. The static power
is recorded when the design is in a sturdy state. The static
power does not change if the parameters are kept constant. The
dynamic power on other hand is recorded when the design is
operational. This work, therefore, reported the dynamic power
of the three Gemmini SA dimensions as shown in Table I.
From the table, the 8 × 8, 16 × 16, and 32 × 32 recorded power
consumption of 0.960 W, 2.211 W, and 7.387 W respectively.
It can be observed that when the Gemmini SA dimension is
doubled, the dynamic power consumed is increased by an
average factor of 2.7.

TABLE I. GEMMINI HARDWARE RESOURCE UTILIZATION

Gemmini

SA Config

CLB LUTs

(% Utilization)

Frequency

(MHz)

Power

(W)

8 × 8 90371 (39.2%) 58.8 0.960

16 × 16 245928 (106.7%) 52.6 2.211

32 × 32 860052 (373.3%) 52.6 7.387

C. Efficiency

The experimental results of this work in Section V
produced the performance in terms of execution cycles as well
as the hardware gate count in terms of CLB LUTs of three
Gemmini SA configuration dimensions which include 8 × 8,
16 × 16, and 32 × 32. This section, therefore, employs the
performance and hardware resources utilized by the various
Gemmini SA dimension to estimate a figure of merit referred
to as the Performance-per-Area (PPA). The PPA metric is a
simplified method to measure the efficiency of a digital
system. The PPA estimates how the convolution operation
makes use of the available hardware resources (CLB LUTs)
of the three Gemmini SA configurations. The PPA metric in
this work is computed as the ratio of the convolution operation
performance (execution cycles) and the resource consumption
(CLB LUTs) of the Gemmini SA configuration.

Fig. 7 illustrates the PPA of the three Gemmini SA
configurations together with the execution cycles and total
CLB LUTs utilized. From the figure, the cycles and the CLB
LUTs increase with an increase in the Gemmini SA while the
PPA reduces linearly. It must be noted that a high PPA value
indicates that the convolution operation made good use of the
available hardware resources. The Gemmini 8 × 8 SA
configuration recorded the highest PPA of 2.2 while the 16 ×
16 and 32 × 32 SA configurations recorded PPAs of 1.05 and
0.37 respectively. This indicates that the Gemmini 8 × 8 SA
configuration is the most efficient for convolutions among the
three configurations.

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

The authors of [20] mapped GEMM operations to four
Gemmini SA configurations including 8 × 8, 16 × 16, 32 × 32,
and 64 × 64. They observed that, unlike this work, the cycles
are reduced when the Gemmini SA dimension is doubled
while the CLB LUTs are doubled as confirmed in this work.
They concluded that the Gemmini 16 × 16 SA was the most
efficient in running GEMM operations. It is therefore
recommended that to get the best performance out of the
Gemmini accelerators, the convolution operation should be
transformed into a GEMM operation before being mapped to
the SA of the Gemmini accelerator.

Fig. 7. Efficiency of Gemmini SA configurations.

VI. CONCLUSION

This work studied the efficiency of convolution operation
on the open-source Gemmini DL hardware accelerator
template with three SA dimensions including 8 × 8, 16 × 16,
and 32 × 32. For measuring the performance of convolution,
the open-source Verilator simulator was used to obtain the
execution cycles on the three Gemmini SA configurations as
well as the RISC-V synthesizable Rocket processor core. It
was observed that the 8 × 8, 16 × 16, and 32 × 32 Gemmini
SA configurations offer speedups of 323×, 249×, and 204×
relative to the Rocket core. Also, the performance of the
convolution operation degrades by an average factor of 2
when the Gemmini SA is doubled. For measuring the
hardware resource utilization in terms of CLB LUTs,
frequency, and power, the three Gemmini SA configurations
were mapped on the Zynq Ultrascale+ ZCU104 FPGA
evaluation board. It was observed that area and power
consumption increased by 3.1× and 2.7× when the Gemmini
SA dimension is doubled. The 16 × 16 and 32 × 32 SA
configurations used over 100% of the available CLB LUTs on
the FPGA and therefore not recommended for low-cost
devices. The performance and resource utilization results were
used to estimate the efficiency of the Gemmini SA
configurations in the form of PPA. Overall, the 8 × 8 Gemmini
SA dimension recorded the highest PPA metric making it the
most efficient for a popular convolution configuration.

Future work will deal with efficient methods of
transforming convolutions to GEMM operation before being
mapped to the Gemmini accelerator to improve performance.

REFERENCES

[1] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformer for language understanding,”
in Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2019, pp.
4171–4186.

[2] Y. Jeong, S. Son, B. Lee, and S. Lee, “The braking-pressure and driving
direction determination system (BDDS) using road roughness and
passenger conditions of surrounding vehicles,” Sensors, vol. 22, pp. 1–
19, June 2022.

[3] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling,
“M2Det: A single-shot object detector based on multi-level feature
pyramid network,” in 33rd AAAI Conference on Artificial Intelligence,
2019, pp. 9259–9266.

[4] S. S. Park and K. S. Chung, “CONNA: Configurable matrix
multiplication engine for neural network acceleration,” Electronics,
vol. 11, pp. 1–19, July 2022.

[5] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D.
Burger, “Dark silicon and the end of multicore scaling,” in IEEE
Annual International Symposium on Computer Architecture, 2011, pp.
365–376.

[6] S. D. Manasi, S. Banerjee, A. Davare, A. A. Sorokin, S. M. Burns, D.
A. Kirkpatrick, and S. S. Sapatnekar, “Reusing GEMM hardware for
efficient execution of depthwise separable convolution on ASIC-based
DNN accelerators,” in 28th Asia and South Pacific Design Automation
Conference, 2023, pp. 475–482.

[7] H. Genc, S. Kim, A. Amid, A. A. Haj, V. Iyer, P. Prakash, J. Zhao, D.
Grubb, H. Liew, and H. Mao, “Gemmini: Enabling systematic deep
learning architecture evaluation via full-stack integration,” in
ACM/IEEE Automation Conference, 2021, pp. 1–6.

[8] NVDLA, “NVDLA open source project,” Available:
http://nvdla.org/hw/contents, Accessed on 14 March 2023.

[9] H. T. Kung, “Why systolic architectures,” IEEE Computer, vol. 15, pp.
37–46, June 1982.

[10] A. Gonzalez and C. Hong, “A chipyard comparison of NVDLA and
Gemmini,” Available:
https://charleshong3.github.io/projects/nvdla_v_gemmini.pdf,
Accessed on 14 March 2023.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, pp. 2278–2324, June 1998.

[12] V. K. P. Kumar and Y. C. Tsai, “Designing linear systolic arrays,”
Journal of Parallel and Distributed Computing, vol. 7, pp. 441–463,
June 1998.

[13] Chipyard, “Chipyard version 1.8.1,” Available:
https://chipyard.readthedocs.io/en/stable/, Accessed on 14 March
2023.

[14] K. Inayat and J. Chung, “Hybrid accumulator factored systolic array
for machine learning,” IEEE Transaction on Very Large Scale
Integration, vol. 30, pp. 881–892, June 2022.

[15] F. N. Peccia and O. Bringmann, “Integration of a systolic array based
hardware accelerator into a DNN operator auto-tuning framework,”
arXiv:2212.03034v1, pp. 1–6, December 2022.

[16] C. Viera, A. Lorenzon, L. Schnorr, P. Navaux, and A. C. Beck,
“Exploring direct convolution performance on the Gemmini
accelerator,” in 21st Brazilian Symposium on High-Performance
Computing Systems, 2020, pp. 1–12.

[17] GEMMINI, “Gemmini,” Available: https://github.com/ucb-
bar/gemmini, Accessed on 14 March 2023.

[18] VERIPOL, “Verilator,” Available: https://veripool.org/verilator/,
Accessed on 14 March 2023.

[19] AMD Xilinx, “Vivado,” Available:
https://www.xilinx.com/support/download.html, Accessed on 14
March 2023.

[20] D. A. N. Gookyi, E. Lee, K. Kim, S. J. Jang, and S. S. Lee, “Deep
learning accelerators’ configuration space exploration effect on
performance and resource utilization: A Gemmini case study,” Sensors,
vol. 23, pp. 1–26, February 2023.

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on January 22,2024 at 08:12:29 UTC from IEEE Xplore. Restrictions apply.

