
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2009

Mobile P2P Fast Similarity Search

Bocek, T ; Hecht, F V ; Hausheer, D ; Hunt, E ; Stiller, B

DOI: https://doi.org/10.1109/CCNC.2009.4785013

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-17350
Conference or Workshop Item

Originally published at:
Bocek, T; Hecht, F V; Hausheer, D; Hunt, E; Stiller, B (2009). Mobile P2P Fast Similarity Search. In: 6th IEEE
Consumer Communications and Networking Conference (CCNC 2009), Las Vegas, Nevada, USA, 10 January
2009 - 13 January 2009.
DOI: https://doi.org/10.1109/CCNC.2009.4785013



Mobile P2P Fast Similarity Search

Thomas Bocek

Fabio Victora Hecht

David Hausheer

Department of Informatics IFI, CSG,

University of Zurich, Switzerland

Email: bocek—hecht—hausheer@ifi.uzh.ch

Ela Hunt

CIS, University of Strathclyde, UK

Email: ela.hunt@cis.strath.ac.uk

Burkhard Stiller

Department of Informatics IFI,

Communication Systems Group CSG,

University of Zurich

and TIK, ETH Zurich, Switzerland

Email: stiller@tik.ee.ethz.ch

Abstract—In informal data sharing environments, misspellings
cause problems for data indexing and retrieval. This is even
more pronounced in mobile environments, in which devices
with limited input devices are used. In a mobile environment,
similarity search algorithms for finding misspelled data need to
account for limited CPU and bandwidth. This demo shows P2P
fast similarity search (P2PFastSS) running on mobile phones and
laptops that is tailored to uncertain data entry and uses available
resources efficiently. In this demo, users publish and search for
textual content containing misspellings without relying on query
logging, as done by Google, and with a minimum distributed
indexing infrastructure. Similarity search is supported by using
the concept of deletion neighborhood to evaluate the edit distance
metric of string similarity.

I. INTRODUCTION

Few of the known distributed hash table (DHT)-based

search methods support similarity search on keywords. Ap-

proximate keyword search is essential, as misspellings and

spelling variants make the localization of required information

a difficult problem. Without spelling correction, approximately

10% of all queries are not found, because of typos or mis-

spellings [3]. Mobile devices usually have a limited keyboard

for textual input, which makes misspellings more likely. Ma-

chine learning methods, as applied by Google are not always

applicable, as they require a large corpus of queries.

In DHTs, the main operations are put(key, value) and

get(key). Those operations, in most cases, require O(log n)
messages to be sent in a network with n nodes. Similarity

search algorithms for structured P2P networks have been

proposed by Ahmed et al. [1], introducing a routing algorithm

based on Bloom filters and Wong et al. [6], introducing

a routing algorithm in a keyword metric space. However,

P2PFastSS [2] is the only algorithm that supports fast sim-

ilarity searches that runs on existing DHTs without modifying

the routing algorithm.

In a real world scenario, students on a large campus publish

and index content and meta data, such as slides for the next

lecture, from a specified directory on their mobile handsets.

Content includes text files or media files with meta informa-

tion. Other students that are on the same network search for

content. Similarity search is necessary because of misspelled

content and user queries.

This demo is a practical demonstration of the feasibility of

P2PFastSS in a distributed mobile environment, and shows

that P2PFastSS has great potential for real world applications.

P2PFastSS provides a tradeoff between storage space and CPU

time. While CPU time is minimized, storage space is required

to store the deletion neighborhood. As reported in [2], the

overhead of P2PFastSS in bandwidth for searching is 5.6 and

for indexing 7 for a similar word of length 7, redundancy

factor 5 and k = 1. Due to parallel execution, P2PFastSS

is only 1.5 times slower than exact search. Thus, P2PFastSS

is suitable for mobile environments because it reduces CPU

time by using more storage space (storage space is cheap) and

increases the bandwidth by a moderate factor, while keeping

the overall search time low.

II. FASTSS ALGORITHM

Edit or Levenshtein distance (ED) [4] can be applied to two

sequences of symbols. It is defined as the minimum number

of operations which transform one sequence into another.

Operations are symbol insertion, replacement and deletion.

Dynamic programming (DP) can be used to calculate the edit

distance. However, with DP, indexing is not possible and a

similarity search is carried out with linear complexity in the

number of sequences.

FastSS uses an efficient variant of the neighborhood gen-

eration algorithm [5], adapted to use deletions only. This

produces a smaller neighborhood which is then looked up

in the index. For a given maximum ED=k, the results of all

possible deletions in a given word are indexed. Deletions are

applied recursively, and indices of deleted letters are ordered.

For a word test with k = 2, the following relationships are

indexed. Zero deletions produces test →(test); one deletion

produces est → (test,1), tst→(test,2), tet → (test,3), and tes

→ (test,4); and two deletions produce for each of the words

with one deletion four variants, for instance for est→ (test,1),

adding a deletion produces st → (test,1,1), et → (test,1,2),

and es → (test,1,3). Assuming natural language and a fixed

edit distance ED=k, FastSS performs similarity searches with

logarithmic complexity in the number of sequences [2].

Example 1: Two Deletions, Same Position Figure 1(a)

shows that d(test,1) = d(fest,1) = est. d(w,p) stands for the

transformation of word w by deletion of the letter at position p,

d(test,1)=est and d(test,2)=tst. A replacement t→f at position

1 corresponds to two simultaneous deletions, and models one

replacement, with ED(test,fest)=1.

978-1-4244-2309-5/09/$25.00 ©2009 IEEE 1



Example 2: Two Deletions, Different Positions Figure 1(b)

shows deletions at two different positions. d(test,1) = d(east,2).

In this case ED(test,east)=2.

Example 3: Single Deletion A single deletion for east,

d(east,2) produces est. In this caseED(east,est)=1. As the

deletion neighborhood is applied on the target and the source,

the edit operation can be either a deletion or an insertion (east

→ est: deletion, est → east: insertion).

(a) Replacement t→f at position
one of test to generate fest

(b) Deletion of t in test and dele-
tion of a in east produce est

Fig. 1. Deletion neighborhood for test with k=1

III. MOBILE P2P FAST SIMILARITY SEARCH AND

DEMONSTRATION SCENARIO

For P2PFastSS, the same concept of deletion neighborhood

is applied and the neighbors from the target are stored in

a DHT. Using P2PFastSS for the example test and fest in

Figure 1(a) would result in the storage of fest, est, fst, fet, and

fes using the put operation of a DHT.

The following example shows the indexing of the keyword

test pointing to the document with DocID: 0x321. Keys in get

and put operations are usually generated using a hash function

key = h(string). Node 0x1 first generates the neighbors of

test with k = 1 (test, est, tst, tet, tes). All neighbors are indexed

in the DHT. Figure III shows the indexing of est. First, node

0x1 looks for peers with an id close to the id of the neighbor

where est should be placed, h(est) = 0x123. Node 0x4 replies

in step 1 with the address of node 0x24, which is closer to

0x123. In step 2, node 0x24 replies with the addresses of nodes

0x124 and 0x122, which are closer to id 0x123. In step 3, these

nodes will store the keyword and the document reference for

test. The keyword is stored redundantly to provide robustness

even in case of node failure.

Fig. 2. Indexing of est with id=0x123

Figure III shows a query execution. Node 0x1 queries for

the keyword fest. First, neighbors are generated (fest, est, fst,

fet, fes). In steps 1 and 2, close nodes are queried for neighbor

est, with id 0x123. In step 3, neighbor 0x124 which stores an

index entry for neighbor 0x123 replies with the reference to

document 0x321. This document contains the keyword test,

and as ed(test, fest) = 1 the document or a preview of this

document is shown to the user.

Fig. 3. Querying for est with id=0x123

The demonstrated prototype of mobile P2PFastSs imple-

ments the following three layers. The top layer is the user

interface for document or content search. The undelying

P2PFastSS layer offers two operations, index and search and

carries out neighborhood generation, indexing and searching.

The underlying DHT layer offers get and put operations. The

DHT layer operates on top of Google’s Android, which can

store data persistently, play media files, and use WiFi.

In this demo, five users equipped with handsets share

audio, video, and documents in a local network. As content,

Wikipedia articles and multimedia files are used. Articles

are written and indexed by users. Indexing video or audio

requires meta information, a file name as a minimum. From

the content, which is published on the local network, keywords

are extracted and neighbors are generated. Each neighbor

holds references to other devices, subject to a timeout. A

user searches for content using keyword search. Movies, audio

and pictures are searched for by filename or meta data, while

text files are searched for by content. A keyword search may

contain misspellings up to k = 1.

Acknowledgment This work has been performed partially

in the framework of EC-GIN (FP6-2006-IST-045256) and

EMANICS (FP6-2004-IST-026854).

REFERENCES

[1] R. Ahmed and R. Boutaba. Distributed pattern matching: A key to
flexible and efficient p2p search. IEEE Journal on Selected Areas in

Communications, 25, Issue 1:73–83, January 2007.
[2] T. Bocek, E. Hunt, D. Hausheer, and B. Stiller. Fast similarity search

in peer-to-peer networks. In 11th IEEE/IFIP Network Operations and

Management Symposium (NOMS 2008), Salvador, Brazil, April 2008.
[3] H. Dalianis. Evaluating a spelling support in a search engine. In NLDB,

pages 183–190, 2002.
[4] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Doklady, 10(8):707–710, February 1966.
[5] E. Myers. A sublinear algorithm for approximate key word searching.

Algorithmica, 12(4/5):345–374, 1994.
[6] B. Wong, A. Slivkins, and E. G. Sirer. Approximate Match-

ing for Peer-to-Peer Overlays with Cubit. Technical Report
http://hdl.handle.net/1813/10826, Cornell University, May 2008.

2


