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Abstract

In this paper, we present a complete stochastic realiz#ttieory for stochastic jump-linear systems.
We present necessary and sufficient conditions for theexngst of a realization, along with a charac-
terization of minimality in terms of reachability and obeability. We also formulate a realization
algorithm and argue that minimality can be checked algonitially. The main tool for solving the
stochastic realization problem for jump-linear systems¢his formulation and solution of a stochastic
realization problem for a general class of bilinear systeritls non-white-noise inputs. The solution to
this generalized stochastic bilinear realization problerbased on the theory of formal power series.

Stochastic jump-linear systems represent a special cagenafralized stochastic bilinear systems.

I. INTRODUCTION

Hybrid systems are dynamical systems that exhibit bothigoatus and discrete behaviors.
Such systems have a wide range of applications, includistesys biology, computer vision,
flight control systems, etc. While there is a vast amount tefditure on stability, reachability,
observability, identification, and controller design foibinid systems, there are relatively fewer
results available on realization theory of hybrid systems.

Realization theory is one of the central topics of contral agstems theory. Its goals are to
study the conditions under which the observed behavior ofstemn can be represented by a

state-space representation of a certain type and to deeddopithms for finding a (preferably
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minimal) state-space representation of the observed bEhahe study of these problems is
not only of theoretical relevance, but also of practical amance in several applications such
as model reduction and systems identification. In fact, areargue that stochastic realization

theory is indispensable for the understanding of systemstiiication.

A. State-of-the-art

For the class of linear systems, the realization problenelatively well understood thanks
to the work of Kalman et al. in the sixties][ [2]. For instance, it is well known that all
minimal representations, i.e. representations suchliealimension of the state-space is minimal,
are related by a change of basis of the state-space. Alss,well known that the rank of a
Hankel matrixH formed from the output measurements is related the dimerdiall minimal
representations and that a realization of the system cartaéned from the factorization off.
Such results have lead to a huge literature on identificadfdimear systemsd], including the
well-known subspace identification method$. [

For the class of bilinear systems, the realization probleso relatively well studied thanks
to the works of Brockettd], Fliess [], Isidori et al. [7], [8], [9], Sontag [.0] and Sussmanl[l],
[17] in the 1970’s. However, realization of stochastic bilinsgstems is relatively unstudied,
except the case when input is white nois€][ [14]. On the other hand, there are a number of
papers on identification of bilinear systems with inputsahhare not white noise, see e.g.y],
[16], [17], [18. However, all these papers require a number of conditianghe underlying
system in order to operate correctly.

For more general nonlinear systems, the realization pnoldenot as well understood. There
exists a complete realization theory for analytic nonlim®etems 19, [20], [21], [22], [23], [24]
and for general smooth system$], [26]. However, the algorithmic aspects of this theory are not
that well developed. There is a substantial amount of workeatization theory of polynomial
systems 17], [28], and rational systems2§], [30], [3]1] both in continuous and discrete time.
However, the issue of minimality for polynomial systems @ that well understood.

One of the earliest attempts to characterize realizatiodedérministic hybrid systems can
be found in BZ], though a formal theory is not presented. Since then, mbshe work has
concentrated on switched linear systeris][ [34], switched bilinear systems3f], linear and

bilinear hybrid systems without guards and partially otsdrdiscrete states3f], [37], and
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nonlinear analytic hybrid systems without guards}][ The main assumptions made are that
the continuous dynamics evolve in continuous-time and fkerete events which initiate the

change of the discrete states are part of the input. Heneeditrete states may (switched
systems) or may not (hybrid systems without guards) be fallgerved. For the classes of
hybrid systems mentioned above, with the exception of neali hybrid systems without guards,
a complete realization theory and realization algorithnesaavailable. $9) contains partial results

on realization theory of piecewise-affine autonomous liybyistems with guards. In that paper
necessary and sufficient conditions for existence of azattin were presented, but the problem
of minimality was not dealt with. As far as the authors knohe tonly paper dealing with

realization theory of stochastic hybrid systems4s§]] where only necessary conditions for the

existence of a realization were presented.

B. Paper contributions

In this paper we will present a complete stochastic reatinaheory of discrete-time stochastic
jump-linear systems. Stochastic jump-linear systems laavast literature and numerous appli-
cations (see for example [] and the references therein). For simplicity, we will calesi only
stochastic jump-linear systems with fully observed diszetate. In addition, we will assume that
the continuous state-transition depends not only on theecyrbut also on the next discrete state
and that the continuous state at each time instant lives tate-space that depends on the current
discrete state. In this way we will obtain a more general roalkich we will call generalized
stochastic jump Markov linear systenisturns out that the class of classical stochastic jump-
linear systems generates the same class of output procassi® new more general class.
However, by looking at more general systems we are able tairolat neat characterization of
minimality as well as necessary and sufficient conditiomstfe existence of a realization. We will
also formulate a realization algorithm and argue that madityr can be checked algorithmically.

The main tool for solving the stochastic realization prails the solution of a general bilinear
realization problem, whose formulation and solution candbscribed as follows. Consider an
output and an input process and imagine you would like to agepecursively the linear
projection of the future outputs onto the space of produtfsast outputs and inputs. Under the
assumption that the mixed covariances of the future outyiits the products of past outputs

and inputs form aational formal power serigswve show that one can construct a bilinear state-
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space representation of the output process in the forwaravation form. The matrices of this
state-space representation are determined by the paranoétibe rational representation of the
covariance sequence of future and past outputs and inpgésrésults on realization theory of
stochastic jump-linear systems are then obtained by vigttia discrete state process as an input
process.

To the best of our knowledge, both the solution of the reabrgproblem for stochastic jump-
linear systems, and the formulation and solution of the geralinear realization problem are
new. In comparison the work of!{)] on stochastic realization of jump-linear systems, thermai
contribution of this paper is that it presents both necgssad sufficient conditions for the
existence of a realization as well as a characterizationinfinmality. In comparison to the work
of [13] on stochastic realization of bilinear systems with obsedrwhite-noise input process, the
main contribution of this paper is to solve the realizationljpem for a more general class of
bilinear systems, without requiring the input process toMbée. In comparison with the works
of [15], [16], [17], [1€] on identification of bilinear systems with inputs that a necessarily
white noise, there are two main contributions. First, tlewehentioned papers aim to identify the
parameters of the system from the measurements. In cqritrtaggoal of realization theory is to
understand the conditions, under which a (not necessaelytifiable) state-space representation
exists. Hence, establishing algorithms for finding the peaters of the system that generate the
process answers the realization problem only partiallzo8d, all the aforementioned papers
assume that the system to be identified is already in the fdnivenovation form and impose
a number of observability and stability conditions on thelentying system, which are more

restrictive than the conditions assumed here.

C. Paper outline

The outline of the paper is as follows. Sectibpresents the background material on the theory
of rational formal power series. These results will be mstental for solving the generalized
bilinear realization problem, which will be formulated asdlved in Sectionlll. SectionV
formulates the realization problem for stochastic jump kdarlinear systems and presents a

solution to it based on the results in Sectidin
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[I. RATIONAL POWER SERIES

In this section, we present several results on formal powees, which will be used for
solving a general bilinear filtering/realization problem lhe presented in Sectidfi. In turn,
the solution to this bilinear filtering/realization probiewill yield a solution to the realization
problem for stochastic jump-linear systems, as we will sio8ectionV.

The material and results in Subsectidhg. andIl-B can be found in42] and [4(], respec-
tively. For more details on the classical theory of ratiof@imal power series, the reader is

referred to {13], [44], [28] and the references therein.

A. Definition and Basic Theory

Let X be a finite set. We will refer ta&2 as thealphabet The elements ok will be called
letters and every finite sequence of letters will be callesv@rd or string over . Denote by
¥* the set of all finite words from elements b An elementw € >* of length |w| =k > 0
is a finite sequences = o105 -0} With o1,...,0, € 3. The empty word is denoted by
and its length is zero, i.d¢| = 0. Denote byX* the set of all non-empty words ové, i.e.
¥t = ¥*\ {e}. The concatenation of two words= vy ---v,, andw = o, -- -0}, € X* is the
word vw = vy -+ - V01 - - - O

Definition 1 (Lexicographic ordering)Let < be an ordering o so that¥ = {o4,..., 03}
with oy < 09 < ... < oy We define a lexicographic ordering on ¥* as follows. For any
v=uvy- Uy andw = o010 € ¥, v < w if either |v| < |w| or 0 < |v| = |w|, v # w and
for somel < |w|, v; < o, with the ordering< on ¥ any; =o; fori=1,...,1— 1.

Notice that< is a complete ordering and that = {vg, vy, ...} with vy < v; < .... Therefore,
we will call the set{v,, vy, ...} anordered enumeratioof ¥*. Notice also that, = ¢ and that
for all i € N ando € X, we havey; < v;,0. Moreover, denote by/(N) the number of all
non-empty words oveE whose length is at mosV, i.e. M(N) = [{w € X7 | |w| < N}|.
It then follows that with the lexicographic ordering definadove, the se{vg, v1, ..., va ()}
equals to the set of all words of length at madg{V), including the empty word.

A formal power seriesS with coefficients inR? is a mapsS : ¥* — RP. We will call the
values S(w) € RP, w € ¥*, the coefficientsof S. We will denote byR? <« >*>> the set

of all formal power series with coefficients IR?. Consider a family of formal power series
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U = {5, e RR<«X¥X*>| j € J} indexed with a finite index sef. We will call such an indexed
set of formal power series family of formal power series

A family of formal power seriesl will be calledrational if there exists an integet € N, a
matrix C € RP*", a collection of matricesA, € R™*" indexed byos € ¥, and an indexed set
B ={B; e R" | j € J} of vectors inR", such that for each indexe .J and for all sequences
01,...,0, €2, k>0,

Si(0105 - 0y) = CAy Ay, |+ Ao, B, (1)

Ok—1 "

The 4-tupleR = (R",{A,},ex, B, C) will be called arepresentatiorof ¥ and the number
n = dim R will be called thedimensionof R. A representationR,,;,, of ¥ will be called
minimal if all representations? of ¥ satisfy dim R,,;,, < dim R. Two representations o¥,

R = (R",{4,}sex, B,C) and R = (R",{A,}ses, B, C), will be called isomorphig if there
exists a nonsingular matrixX € R"*" such thafﬁg = A,T for all 0 € %, TEJ» = B, for all
Jj €, andC = CT.

Let R = (R",{A,},ex, B,C) be a representation of. In order to characterize whether this
representation is reachable and observable, let us detnfltbwing short-hand notation

Notation 1: A, = A, A
map A. will be identified with the identity map.

Ay forw =010, € ¥*andoy,...,0, € X, k > 0. The

Ok—1

— Recall the ordered enumeration Bf, {vg, vy, ...}, fix an enumeration off = {j1,...,jx}
and letB = [Bj BjK}- Define the following matrices.
Wa=|4uB ... Auy,_,B] )
T T 4
On = [(CA)T ... (CAu, )| - @3)

We will call the representatior? observableif ker Op = {0} and reachableif dim R =
rank Wg. Observability and reachability of representations canchecked numerically. For
instance, one can formulate an algorithm for transforming eepresentation to a minimal
representation of the same family of formal power serieg (¢€] and the references therein
for details).

Let ¥ = {S; € RR < X*>>| j € J} be a family of formal power series and defide=
{1,...,p}. We define the Hankel-matriX/y, of U as the matrix such that the following holds.
The rows of Hy are indexed by pairgu,i) whereuw € ¥* is a word overX andi is and
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integer in/ = {1,2,...,p}. Likewise, the columns offy are indexed by pairgv, j), where
v € ¥* andj is an element of the index set Thus, the element offy whose row index is
(u,7) and whose column index i&, j) is simply theith row of the vectorS;(vu) € RP, i.e.
(Ho) wyw.q) = (Sj(vu))i.
The following result on realization of formal power seriemde found in44], [2€], [47].
Theorem 1 (Realization of formal power serieget U = {S; ¢ R?» < ¥* >| j € J} be a

set of formal power series indexed by Then the following holds.

(i) W is rational <= rank Hy < +0o0.
(i) R is a minimal representation of <= R is reachable and observable= dim R =
rank Hy.

(ii)) All minimal representations ofl are isomorphic.

It is possible to compute a minimal representatiodfom finitely many data. The procedure
resembles very much the partial realization algorithmdifagar systems. One defines the finite
matrix Hy  n as the finite upper-left block of the infinite Hankel matfik, obtained by taking
all the rows of Hy indexed by words oveE of length at most\/, and all the columns of{y
indexed by words of length at mos¥. If rank Hy y xy = rank Hy holds, then there exists
an algorithm for computing a minimal representatiBy of W. The algorithm is essentially a
generalization of the well-known Kalman-Ho algorithri] ffor linear systems. The condition
rank Hy vy = rank Hy holds, if, for example/N is chosen to be bigger than the dimension
of some representation df. In practice, this means tha{ has to be an upper bound on the
estimated dimension of a potential representation?oMMore details on the computation of a
minimal representation from a Hankel-matrix can be foundliqi and the references therein.

For the purposes of this paper we will use a specific versiothefrealization algorithm. In
order to present the algorithm, we define the notiom,df-selection anr, N-selectionis a pair
(e, beta) such that

1) aCEV x{1,....,p}, BCEVN x J, ¥V ={v e ¥ | |v] < N},

2) |a| =B =
Intuitively, o represents a selection ef rows of Hy yy and 3 represents a selection of
columns ofHy v v. Let (a, §) be anr, N-selection. The proposed algorithm takes as parameter

the matrixHy 1 n and anr, N-selection(a, 8). In addition, we assume that the/N-selection
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(o, B) is such that the following holds. Lelly s be the matrix formed by the intersection
of the columns ofHy v v indexed by elements of with the rows of Hy y n indexed by the

elements ofv. We then assume thatnk Hy , g = rank Hy yy41.

Algorithm 1
Inputs: matrix Hy y41x andr, N-selection(a, ()

Output: representatiory.

For each symbob € X let A, € R™*" be such that
AUH‘II,Q,B - ZO'

where Z, is r x r matrix with row indices fromx and column indices fron# such that its
entry indexed by: € «, (v, j) € 8 equals the entry offy y -1 indexed by(z, (vo, j5)).

Let B ={B, | j € J}, where for each index € J, the vectorB; € R" is formed by those
entries of the columne, j) of Hy which are indexed by the elements ©f

Let C € RP*" whoseith row is the interesection of the row indexed (ayi) with the columns
of Hy indexed by the elements ¢f, i = 1,2,...,p.

Return Ry = (R", {As}oes, B, C).

Theorem 2 ({7, [44], [45]): If » = rank Hy yny = rank Hy, then there exists an, V-
selection(a, ) such thatank Hy . s = r and the the representatiéty, returned by Algorithri
when applied tdy n+1 v and(«, 3) is minimal representation of. Furthermore, itank Hy <
N, or, equivalently, there exists a representatibof ¥, such thadim R < N, thenrank Hy =

rank Hy n n, henceﬁN is a minimal representation of.

B. A Notion of Stability for Formal Power Series

Since our goal is to use formal power series to build a stditheesalization theory for jump-
linear systems, we will need to restrict our attention taxfal power series that are stable in
some sense, similarly to the case of linear systems. In thisextion, we consider the notion of
square summability for formal power series, and translae¢quirement of square summability

into algebraic properties of their representations.
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More specifically, consider a formal power serigs R? < >* > and define the sequence

Ly=Y_ %> |IS(a105--- %) 3. 4)

k=0 o1€X oRED
where|| - ||2 is the Euclidean norm ifR?. The seriesS will be called square summab)éf the

limit lim,,_, ., L, exists and it is finite. The familyy = {5, € R? <« £* >| j € J} will be
calledsquare summab]ef for eachj € J, the formal power serie§; is square summable.

We now characterize square summability of a family of forpaiver series in terms of the
stability of its representation. Le® = (R", {A;},cx, B,C) be an arbitrary representation of
U ={S5;, e R <« ¥* >»| j € J}. Assume that: = {o,...,04}, Whered is the number of
elements of, and consider the matrixl = Zd:AZZ_ ® AT, where® denotes the Kronecker
product. We will call R stable if the matrix jzlls stable, i.e. if all its eigenvalues lie inside
the unit disk (A\| < 1). We have the following.

Theorem 3:Consider a family of formal power serids. If ¥ admits a stable representation,
then ¥ is square summable. ¥ is square summable, then any minimal representatiod &f
stable.

Notice the analogy with the case of linear systems, wherertiménal realization of a stable
transfer matrix is also stable.

Proof of Theoren8: Assume thatl' has a stable representatiéh= (R", {4, },ex, C, B).

Then all the eigenvalues of the mattik= 5" __.. AT @ AT are inside the unit circle. One can

oey
easily see that the matrig is in fact a matrix representation of the linear mé@p R™*" — R"*"
defined as

Z(V)=) ALVA,.

oeY
This result is obtained by identifyinf"*" with R"*, as it is done in 41, Section 2.1]. As a

consequence, the eigenvalues%andﬁ coincide. Since the eigenvalues ®fare inside the unit
circle, it follows from (1, Proposition 2.5] that for each positive semi-definite matr > 0,

the infinite sum>_.° || Z¥(V)|| is convergent. By noticing that
Vo € R" 2" 25 (V)z < |lz]l3 - |25V,
we conclude thad_,” , = Z¥(V)z is convergent for alle. It can be shown by induction that

ZEV)y= > ALVA,. (5)

weX* |w|=k
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Thus, lettingV = C7C in Y2, 2" Z%(V)z, we conclude tha}_

for all z. If we setz = B, j € J, we then obtain tha} ", . ||S;(w)]|3 is convergent for all

CA,x|3 is convergent

wexr*

j € J, i.e. the familyV is square summable.

Assume now thatV is square summable and 1& = (R", {A,},ex,C, B) be a minimal
representation oft. Also, let @ = OLOr > 0, where Oy, is the observability matrix of?,
which is full rank becausé? is observable. First we show that

ixTZk(Q)x = Z eTATQA (6)
k=0

weX*

is convergent for all: € R™. To see this, notice from the reachability Bfthat anyz € R™ is a
linear combination of vectors of the form,B;, j € J, v € ¥*. Hence, it is sufficient to prove

the convergence off for = = A,B;. But the latter follow from the fact that

M(n—1)
> (BiA) ALQALAB = > Y [[S;(vwy)|]3
weX* wWEX* =0

and thaty", s IS, (w)]3, henceX", s SSMU V|8, (vww;) |3 is convergent. Next we show
that .
ZxTZk(V)x = Z eT ATV A (7)
k=0

weX*
is convergent for al: € R™ and for all positive semi-definite x n matricesV > 0. To see
this, notice that for alllV > 0 and Q > 0, there existsM > 0 such thatz”Vz < MaTQux

(4]

for all z € R™. Indeed, we can choos®/ = ‘L, where0 < m = infj,—; 27 Qz, so that

mlz||? < 27Qx and hencer? Vz < ||z|]?||V]| < MaTQz. Therefore, for any/ > 0,
ZxTZk(V)x = Z 2P ATV Ay < M Z eT ATQA,r = MZxTZk(Q)x,
k=0 wex* wex* k=0

and so) -,z Z*(V)z is convergent for al: € R™ andV > 0. This implies that

lim 2" ZF(V)z =0

k—00

for all z € R". Therefore lim,_,., Z*(V) = 0 for all V' > 0, which by [¢1, Proposition 2.5]
implies that all the eigenvalues & (and hence oﬂ) have modulus strictly smaller than i.e.
R is stable.
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Ill. STOCHASTIC REALIZATION OF GENERALIZED BILINEAR SYSTEMS

In this section we formulate and solve the realization poblfor generalized stochastic
bilinear systems (abbreviated BBS). A GBSis stochastic system which is bilinear in state and
inputs and where the inputs is an observed stochastic ocgsrmally, the realization problem
can be formulated as follows: given an output process andtippocess, find &BSwhich is
driven by the input process, and whose output process casavith the given one. Unlike in
[13], we will not require the input to be white. In particular, well allow finite-state Markov
processes as inputs, which will allow us to apply the frantéwo the realization of stochastic
jump-linear systems. Particular cases of this generall@bdear realization problem include
realization of classical linear and bilinear systems, al agethe Kalman filter. In addition, the
solution to this general problem provides a solution to #eization of stochastic jump-linear
systems, as we will show in Section

The motivation of the realization problem stems from systéemtification and filtering. The
link with system identification is quite clear: the realipatproblem can be viewed as a idealized
system identification problem. The link with filtering is gedirect. Recall that filtering one is
interested in computing the conditional expectation (ag timear projection) of the current
output onto the past outputs. The Kalman filter is an algorithat computes such a projection
recursively. If one considers stationary linear systerhentthe Kalman filter yields a linear
stochastic realization in the forward innovation form. Tisa there is a correspondence between
recursive filters and stochastic realizations in forwantbwation form.

In the case of bilinear situation, the situation is simildre main difference is that the filtering
occurs based not only on past outputs but on past inputs noparticular, the correspondence
between filters and stochastic realizations carries ovbiliteear systems. Similarly to the linear
case, the construction of the recursive filter (i.e. stotbagalization in forward innovation
form) relies on the fact that the covariances of the outpatshe represented as rational formal
power series.

The section is organized as follows. §ll-A we define the class of generalized bilinear
systems and the corresponding realization problengllihRC we present the solution of the
realization problem. IgllI-E we present a realization algorithm. The proofs of the resoft
llI-C—II-E are presented iflV.
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In what follows, we will work with random variables and stastic processes. We will use
the standard terminology and notation of probability tlyelett]. Throughout the paper, we fix
a probability spacé(2, 7, P) and all the random variables and stochastic processesdsheul
understood with respect to this probability space. Hérés a o-algebra over the se®, P is
a probability measure oif. With a slight abuse of notation, when we want to indicate tha
random variablez takes its values in a set (i.e. z is a measurable functioa: Q) — X), we
will write z € X. We denote the expectation of a random variably E[z]. Let Z be the set of
integers. Recall that a discrete-time stochastic prodeshié sequel to be referred to as process
or stochastic process) taking values in a Zeis just a collection{z(t) };cz Wherez(t) € X
is a random variable for alt € Z; z(t) is referred to as the value of the stochastic process
{z(t) }+ez at timet € Z. In the sequel, by abuse of notation, the stochastic profegs$}.cz
will be denoted byz(t): whetherz(¢) means a stochastic process or its value at tinagll be
clear from the context. A stochastic process) € R* is called zero mean and square integrable,
if the expectationst[z(t)] and E[z” (t)z(t)] exist, andE[z(t)] = 0 and E[z” (t)z(t)] < +oo.
Furthermore, recall that a proces§) € R* is wide sense stationary, if for everyt, k € Z,

the expectation®[z (¢ + k)z” (s + k)] exists and its value is independent/of

A. Stochastic Realization Problem for Generalized Biln8gstems

Let the input processbe a collection ofR valued random processés, (¢)},cx indexed by
the elements of a finite alphabEt

Definition 2 (Generalized Bilinear Systemk generalized bilinear systenmaljbreviated by
GBYS) of is a system of the form

x(t+1) =Y (Ax(t) + Kov(t))us(t)
B oEX (8)
y(t) = Ox(t) + Dv(t),

where A, € R", K, € R™*™, C € RP*", D € RP*™ y(t) is a stochastic process with values in
RP, called thestate processx(t) is a stochastic process with valuesiin, called thestate process
andv(t¢() is a stochastic process with valuesRft, called thenoise processThe dimensionof
B is defined as the number of state variables. The systeihis said to be aealizationof the
processy(t) if y(t) = y(t) for all t € Z. The GBS B is said to be aninimal realizationof y(¢)
if B is a realization ofy(¢) and it has the minimal dimension among all possiBRBS of y(¢).
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Now we are ready to state the realization problemGaSs.

Definition 3 (Realization problem for generalized bilinearstems):Given an output process
y(t) and find conditions for existence of GBS which is a realization of/(¢) and characterize
minimality for GBSs which are realizations of(t).

Notice that by choosina,(¢) in an appropriate wayGBSs include linear, bilinear, and as we
shall see later, even jump-linear systems.

Example 1 (Realization of Linear SystemB)otice that if ¥ = {¢} and u,(t) = 1, then
the generalized bilinear stochastic realization probleduces to the classical stochastic linear
realization problem.

Example 2 (Realization of Bilinear System$jotice that if¥ = {1,2}, u;(¢) = 1 andux(t)
is white noise, then the generalized bilinear stochaséiiz&tion problem reduces to the classical
bilinear realization problem1[3], [14].

Example 3 (Linear Jump-Markov systems with i.i.d discetége): Assume tha®(t) € ¥ are
independent and identically distributed random varight&®(¢) = o) = p, > 0. Consider the
generalized bilinear system with, (t) = x(6@ = o), wherey is the indicator function. In this
case the realization problem f@BSs yields the realization of Jump-Markov linear systems
where is Markov process is observable and i.i.d. In factai be shown that the realization
problem of more general type jump-linear systems can alsetieced to that 0GBSs.

Example 4 (Stochastic LPV systemkgt ¥ = {1,...,d} and letu(t) = (ui(t),...,uq(t))
be a stochastic process such thaand v are independent. The resulti@BS can be viewed
as a stochastic linear parameter-varying system (LPV)jevaglays the role of the scheduling
variable. LPV systems represent a widely applied and pomyatem class. ldentification of
LPV systems is a subject of active research. The resultsi®fptper are potentially useful for
system identification of LPV systems.

Example 5 (jump-bilinear systems with i.i.d discreteetatet () be a finite set and fix an
integerm. Assume tha#(t) € @ are i.i.d random variables?(0(¢t) = q) = p, > 0 for all
q € Q. Define¥ = @ x {0,...,m} and letu(t) € R™ be a colored noise process. Define
ugH(t) = u;(t)x(@ = q), whereu;(t) denotes thejth entry ofu(¢) for j = 1,...,m and
uy(t) = 1. With this choice of the input process, we immediately abtidie following jump-
bilinear systemx(t+1) = > ((Ag) ;% (t) + Ko ;v (1)) u;(t) andy(t) = Cx(t)+ Dv(t). That
is GBSs do not only describe known system classes, but they al$d yeav system classes.
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The examples above are intended to demonstrate the vigysatiilGBSs. GBSs can be used
not only to describe well known system classes, but alscesystiasses which have not been

studied in the literature so far.

B. Hilbert-space of square integrable random variables

In order to make the realization problem tractable, we neetdke additional assumption on
GBSs. In patrticular, in the sequel, the outputs and inputs attemg instance are mean-square
integrable random variables. Such random variables formillaetspaceH with covariance
playing the role of scalar product. SinG¢ is an Hilbert-space, we can speak of orthogonal
projection of a random variable onto a closed subspackt.oBelow we recall the framework
of the Hilbert-space of random variables in more detail.

In the sequel, we will identify random variables which diféaly on a set of probability zero. A
scalar random variable € R is said to be mean-square integrable, if the expectdtiA] exists
and it is finite. The space of scalar mean-square randomblesiforms an Hilbert-spack with
the scalar product z,x >= E[zx| and the corresponding norfz|| = \/m A sequence of
random variableg,, is said to converge to in mean-square sensg tolim,, ., F[(z—z,)?] = 0,
or, in other words, iflim,,_,, ||z, —z|| = 0 with the norm||.|| defined above. As it is customary
in Hilbert-spaces, the scalar product and the norm are moniis operators with respect to the
topology induced by mean-square convergence. That i&pjf ... z, = z andlim,,_,, x,, = x
in the mean-square sense, then,, ., F[x,z,] = E[xz| andlim,_ ||x,|| = ||x]|.

Suppose that\/ is a closed linear subset G{. The orthogonal projection of a variabie
onto M the unique element* of M which satisfies the following two equivalent conditions:
(@) ||z* —z|| < ||x—z]|| for all x € M, (a) z—z* is orthogonal tal/, i.e. E|(z — z*)x| = 0 for
all x € M. Note that if M is the linear span of finitely many elements, then it is auticafy
closed.

Consider now avector valuedrandom variablez = (z, . .., z,)” € R?. We will call z mean-
square integrable, if the coordinates : = 1,...,p are mean-square integrable scalar random
variables. Note that if we denote hy||, the Euclidean norm if®?, then mean-square integrability
of z is equivalent to existence and finitenessidf|z||3]. If z, = (z}.25,...,2]) € R?, n € N
andz = (zi,...,z,) € R’ are mean-square integrable random variables, then we say,th

converges toz in a mean square sense, if for all= 1,...,p, the sequence € R of i
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coordinates ofz, converges to théth coordinatez; € R of z in the mean-square sense.

Let M be a closed linear subspace of mean-square integsallar random variables. Let
z = (z1,...,2,) € RP be avector valuedmean-square integrable random variable. By the
orthogonal projection of. onto A/ we mean the vector valued random variable= (z7, .. ., z;)
such thatz! € M is the orthogonal projection of thigh coordinatez; of z onto M, as defined
for the scalar case. The orthogonal projectiinhas the following property£|(z — z*)x] = 0
for all x € M. If M is generated by closure of the linear span of the coordiraftessubsets
of R* valued mean-square integrable random variables, #1eéa uniquely determined by the
following property: E[(z — z*)x’] = 0 for all x € S and all the coordinates of* belong to)M.

In fact, by abuse of terminology, we will sahat z belongs toM, if all its coordinates
z1,...,%, belong to M. Similarly, let x; € R¥, i € I be a family of vector valued mean-
square integrable random variables and assume/tigaan arbitrary set. Then the Hilbert-space
generated by z; },c; is understood to be the smallest closed subspéaaf the Hilbert-space of
all square integrable random variables such thatxfori € I belongs toM in the above sense
(i.e. the components of; belongs to)M).

Assume thatz belongs toM and assume thad/ is the Hilbert-space generated by the
components some vector values varialles},;. In the sequel, we will often use the following
simple result.

Lemma 1:If the RP-valued random variable belongs tol/, thenz is measurable with respect
to the o-algebra generated by = {x;}ic;.

Indeed, by {6, Exercise 34.13], the conditional expectatidiiz | F| equals the orthogonal
projection of z to the close subspacH » generated by all thex measurable mean square
integrable random variables. Bif is a subspace of{r and hencez already belongs tG{r.
Hence, the orthogonal projection efto Hr equalsz itself. Thus,z = E[z | F] and since

Elz | F] is F measurable by definition, Lemniafollows.

C. Solution of the realization problem f@BS

Below we present the solution of the realization problem @BSs. We will only state the
results, their proofs will be presented §fv. In order to state the results, will introduce the

following notation and terminology.
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Notation 2: We fix a collection{p, > 0},cx of real numbers. For each € >* define the
numberp,, as follows:p. = 1 and if w = vo for somev € ¥* ando € X, then letp, = p,po.
The roles of{p, },cx Will become clear later on. For each wotd= o105 ---04, € X7, k > 1,

o1,...,0 € %, define the random variables
u,(t) =u,(t—k+1u,(t—k+1)---u,, () (9)

Using the notation defined above, we formulate the follonasgumptions which will be valid
for the rest of the section.

Assumption 1 (Input process): 1) > s a,u,(t) = 1 for some numbergo, € R} ex.

2) For eachw € £, all the first and second order moments of the proegss$) are finite.
We mention a number of examples wf(¢) which satisfies the assumptions above.

Example 6 (Bilinear systems.§]): > = {0,1}, ug(t) = 1, uy(¢) is a white noise Gaussian
process. In this casey, = 1, a; = 0.

Example 7 (Discrete valued inputpssume there exists a proce®g) takes its values from
a finite alphabet: and letu,(t) = x(0(t) = o). Then E[|u,(t)|*] = E[u,(t)] = P(0(t — k) =
o1---0(t—1) =o0p) and witha, =1, >~ ug(t) = 1.
Next, we define a class of stochastic processes which wyl @laimportant role in the rest of
the paper. Let(t) € R* be a stochastic process and define for each ¥+

A1) =t~ wl)alt — 1) (10)

w

In the sequel, the procesg (t), obtained from {0) by choosingr(t) = y(¢) will play a central
role. For this reason, we introduce the following notation
Notation 3: In the sequel we denote by, (¢) the procesy (t).
Below, we will define a number of propertiesjf(¢) and we will require that the noise, state, and
output processes(t), v(t) andy(t) of a GBS are such thatX (¢), zy (t) andz? (¢) satisfy those
properties. Intuitively, these properties say thatt) is a wide-sense stationary stochastic process
if w is also viewed as multidimensional time. To this, we introglthe following definitions.
Definition 4 (Admissible words)A set L C X7 is aset of admissible wordgdf the following

conditions hold.

1) ¥ C L and for allw € £*\ L, u,(t) = 0 almost surely.
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2) There exists a sef C X x X, such that the wordy = o, ---0, € X7, 04,...,0, € X,
k > 1 belongsL if and only if (0;,0;,.1) € S foralli=1,... k— 1.
For the rest of the papear will denote a fixed set of admissible words. The motivatiohibé
introducing the sef is that for certainw € ", we might wish to sek,,(¢) to zero. This will
be the case when we try to use realization theorydBiSs for jump-markov systems. A simpler
motivating example is presented below.

Example 8 (Jump-markov systems with restricted switchi@gnsider the system described
in Example3 but with the following modification. We no longer assume thas$ an i.i.d process.
Instead we assume that there exists a$e&t () x () describing the admissible discrete state
transitions, and(t) is a stationary Markov process such th(t +1) = g2 | 6(t) = ¢1) = py,
if (¢1,q2) €S andP(O(t+1)=¢q2|0(t)=q)=0Iif (¢1,q2) € S. In this case, they,(t) =0
almost surely forw ¢ L, where L is as defined ir

Definition 5 (Recursive covariance property) processr(t) is said to haveecursive covari-
ance property (abbreviated HRC) if it satisfies the following conditions.

1) The processe&:(t),{z"(t) | w € X*}) are jointly wide-sense stationary, that is, for all

t,k € Z, and for allw,v € ¥* we have thatZ[r(t)] = 0, E[z},(t)] = 0, and

Ele(t + k)(z,(t + k)] = Ele(t)(z,(1))"] and  Blzy,(t + k) (z(t + k))'] = Elzy,(t)(z4(1))"]-

2) Denote by
T}, = Blz,(1)(2,(t))"] and Aj, = Elr(t)(2},(t))"]

w

Then for anyw,v € ¥+, 0,0" € ¥, T, » = 0 for 0 # 0’ and

T, if o=0¢ andwo € L orvo € L

o= ’ and (12)
’ 0 if 040
(AX)T ifo=0
"= . (12)
0 if o #0o

3) In addition, T}, = 0if w ¢ L orv ¢ L. If wo € L then for allve ¢ L, T, = 0, and
similarly, if vo € L, then for allwo ¢ L, T}, = 0.

Remark 1:It can be shown that Pa& of Definition 5 is by the other conditions.
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Remark 2:1t is clear that ifr(¢) € R" is anRC process, then for any matrik € R>", [ > 0,
the process(t) = Fr(t), t € Z, is RC.

Intuitively, if r is RC, then the processes, obtained by multiplyingr(¢) with future inputs
u,(t+|w|) are zero-mean wide-sense stationary, moreover, the eoeas?’; , have a specific
recursive structure. This recursive structure can bepneéed as wide-sense stationarityyifis
viewed as a time instant on the multidimensional time axis This property coincides with
the property required of multidimensional positive kesnet [47] and a special instance of
this property was also used in4], [13]. This property (Par3 of Definition 5) is crucial for
developing stochastic realization theory, especiallytfa realization algorithm.

Example 9 (Examples &C processes)Assume thatL = X, r(¢) is a zero-mean wide-
sense stationary process{) andu, (¢ + k), k > 0 are independenty, (¢) are i.i.d andE[u?] =
Doy @Nd {u,, (t) }iez, {us,(t) ez are uncorrelated for alby, # o9, i.e. Efu,, (t)u,, ()] = 0,
l,t € Z. Moreover, assume that,(t) satisfies Assumptiof. and that for allw € X*, E[r(t —
lw|)u,(t — 1)r?(¢)] is independent of. Thenr is aRC process.

One particular examples of the situation is wheyit) is a zero mean i.i.d Gaussian process.
Another example if whert> = {0,1}, uo(t) = 1 and u,(¢) is an i.i.d zero mean Gaussian
process with variance,. This latter example is the one which occurs in bilinear Iséstic
systems. Finally, consider,(¢) is as in Example’. Assume, moreover tha#(t) are i.i.dp, =
P(0(t) = o). Then withL = ¥*, r(¢) is anRC process.

Although Example9 covers a lot important cases, the example below demonstthte RC
processes where, is not an i.i.d process also plays an important role.

Example 10:Consider the proces8 from Example8 and assume tha@(¢t +1) | I > 0}
andr(t) are conditionally independent w.r.t. §@(¢t — ) | [ > 0}. Assume that(¢) is wide-
sense stationary, square integrable and zero-mean. riheis a RC process withL defined in
Example8.

Now we are ready to formulate the assumptions we are goingalcerabouiGBSs.

Assumption 2:In the sequel, we will only considégeBSs which satisfy the following condi-
tions.

1) The noise processg(t) have theRC property.

2) For everyw,v € 37, w # v, z¥(t) andzY,(t) are orthogonal, i.eE[zY,(¢)(zY (t))"] = 0.

v

3) The statex(t) belongs to the Hilbert-space generated by the entridzYft) | w € X},
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4) The matrix¥,csp, AL @ AL is stable, i.e. all its eigenvalues are inside the unit eircl

5) Foralloy, 00 € %, if 0102 ¢ L, thenA,,A,, =0 and A,, K, T, , = 0.
Intuitively, Part1 of Assumption2 requires that the state and noise process are stationary and
that they are very loosely correlated with future inputstt$a—1 of Assumption2 say that
the noise processes are uncorrelated. Pasintuitively express the assumption thatt) is
the result of starting at zero initial state abo and allowing the system to be driven by the
noise process alone. The stability assumption is there @aoagitee that this can be done. In fact,
Assumption? yields the following.

Lemma 2:1f B of the form @) satisfies Assumptioa, then[ ] is anRC process,
and hencex(t) is an RC process. Moreovery,v € X,

uncorrelated, i.eE[zX(t)(zY(t))’] = 0, and

(2

VEEZ:x(t) = > > VPowAuwBozy,(1). (13)

wEX* geEX

Here we used Notatiofh for the matrix productd,,, w € ¥* and convergence is understood in

zX(t) and zY(t) are

the mean-square sense.
In fact, we can also show that under some mild conditions,tithectories ofB converge to
x(t) ast goes to infinity.

Lemma 3:With the assumptions of Lemm3 if x(¢) is a process which satisfies the first
% o = BIR(O)X(0)u, (w] -
X oz = ERO)KT(0)u2(0)]p,

equation of 8) and for allw,v € ¥*, 0,00 € ¥, |w| = |v|, T,
u,(|v| — 1)] is such thatl’™® = 0 if oyw # oyv and T,

o1W,02V

otherwise, then
lim B[||x(t) — x()][}] = 0

If x(0) is independent of1,(¢), t > 0, o € ¥ and Elu,(Jw| — 1)u,(Jv| — 1)] = 0 for w # v
andp, = Elu,(lw| — 1)u,(Jv] — 1)] = 0, then the assumptions of Lemn3aare satisfied. In
particular, the assumptions of Lemr3aare the standard ones made for the systems described
in Examples1-3. Finally, note thatx(¢) is wide-sense stationary and the following holds.

Lemma 4:Consider aGBS B of the form @) and assume thdB satisfies Assumptiong.
Consider the equation

Po=p,( Y Ag Py Al + K, Qs KL) (14)

o1€X,010€L
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whereQ, = E[v(t)v (t)u(t)] and {P,},co is a family of matrix-valued indeterminate. Then
(14) has a unique solution determined By = E[x(t)x” (t)u2(t)], o € X.

The proofs of Lemm&—-Lema4 require certain technical results, for this reason we pmostp
them to§lV-A. The Lemma2 says that the state af is the one which one would obtain by
starting the system at zero abo. Lemma3 says that if we pick any initial state which satisfies
some mild conditions, then the resulting state trajectdry-owill converge to the stationary
trajectoryx(t). In fact, the existence of the right-hand side @B)(does not require Paff of
Assumption2. Hence, Lemma& — 3 can be interpreted as stating that if the systérmatisfies
Assumption2, except ParB, then it has a state trajectory which satisfies Barhoreover any
state-trajectory of converges to that particular one. The situation is simitathtat of for
stable linear systems: asymptotically, a the state-tr@jgof a stable linear system is stationary.
Finally, Lemma4 provides a formula for the state covariance as a solution lofagpunov-like
equation. Note that similar formulas are well-known for theear 48] and even bilinear case
[13], [14]. The formula of Lemmad represents a generalization of those well-known results.

We present a number of examples of systems which satisfymysisons?2.

Example 11 (Linear systemsk stationary stable Gaussian linear system with the stahdar
assumption can be viewed asGBS which satisfies Assumptio@. In this caseX = {0},
ug(t) =1, A is stable,L = X%, v(¢) is an i.i.d process which is Gaussian and zero mean. If
we assume that the initial state of the system at timevas zero, then it is easy to see that the
resulting GBS satisfies Assumptio@.

Example 12 (Bilinear systemsX.he bilinear systems fromlp], [14] satisfy Assumptior2.

In that caseX = {0,1}, uy(t) = 1, u,(t) is a white noise Gaussian procesg/) is also a
white noise Gaussian proceds, = 0 and the random variables(t) andu,(t + 1), [ € Z are
assumed to be independent (thalgebra generated by them is independent). Moreover, it is
assumed thak(t) is zero-mean, wide-sense stationary and satisfigs (n fact in [13], [14]

it was not explicitly assumed that(t) satisfies {3), but from the discussion after Lemn2ait
follows that this can be assumed without loss of generalityreover, the state process of the
realization constructed by the algorithm3], [14] does satisfy the assumptions of Lemia

Example 13 (Jump-linear systems driven by i.i.dCpnsider jump-linear systems driven by
an i.i.d process as described in ExamBlen this case,L = . Assume thatf{0(t)},., are

independent, identically distributed, = P(0(t) = o) > 0, 0 € ¥. Assume that the noise
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process is{v(t)}.,cz is independent of8(t)},c» and thatv(t) is a wide-sense colored noise
process i.e.E[v(t)u,(l — )vI(D)] = 0,1 > t, w € 3T, |w| =1 —t+ 1, E[v(t)] = 0,
Elv(t)vI(t)] = Q > 0. Assume that Par8, Part4 and Part5 of Assumption2 holds. Then

the system satisfies Assumpti@nNote that the assumptions we made are quite mild, they are
similar to the ones of49].

The examples above represent a special case of the follaviaisg ofGBSs.

Example 14 GBS with independent inputs)Consider aGBSB such thatv andu,, o € X
satisfy Exampled. That is,u, is an i.i.d processE[u%(t)] = p,, and thes-algebras generated
by {v(t —1)}°, and{u,(t +1) | c € ¥,1 > 0} are independent for anyy Assume moreover
thatv is a zero mean wide sense stationary processiEndt — [)v?(t)] =0, > 0, w € &7,
lw|=1,teZ Let L =X" and assum&___,,p, AL ® Al is a stable matrix. Assume that the
statex(t) is obtained by starting the system in zero initial state meti-oo. ThenB satisfies
Assumption2.

Examplesl1-13 represent special cases of Exampie Examplel4 can also be used to obtain
bilinear jump-markov systems as described in Exanipl&/nfortunately, Exampléd.4 does not
cover the case of jump-markov linear systems where theeatesstate process is not i.i.d. Below
we show that even such cases can be cast into our framewor&.iteonly present a special
class of jump-markov linear systems, the general case is Wéh in Srefsect:real.

Example 15 (Jump-markov linear systems with restrictedckimng): Consider the input pro-
cessu,, o € ¥ described in Exampl8. Consider aGBS with this input process, such that the
following holds. Denote byD; the o-algebra generated b{f (/) | | < t}. Assume thaw(¢) is a
wide-sense stationary zero mean process, suchvitigandv(l), [ # t arev(t) andv(l), [ <t
are conditionally uncorrelated with respect to thalgebraD,, , generated by{0(¢)}!;", i.e.
E[v(t)vT(l) | D;;—1] = 0. Moreover, assume that thealgebras generated byo(t + 1)},
and {v(t — [)};°, are conditionally independent with respectZ. In addition, assume that
Part 3, Part4 and Part5 of Assumption2 holds. Then the resulting system will again satisfy
Assumption2. The GBSs described above can be thought of as a special class of nuaniev
linear systems, where the transition probabilities of tiseréte state process are either zero or
depend only on the final state.

Next, we state a number of assumptions on the output prog&gswhich will guarantee

existence of aGBS realization ofy. To this end, recall that, () denotes the process,(t).
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When constructing &BS realization ofy, we will compute the orthogonal projection of the
future outputs onto the Hilbert space formed by the pastuistand inputs. In order to simplify
the discussion about orthogonal projections, we will useftllowing notation.

Notation 4 (Orthogonal projectiort;): Let Z be a set ofRP-valued mean-square integrable
random variables. Let € R¥, £ > 0, be another mean-square integrable random variable. We
denote byF,[z | Z] the orthogonal projection of onto the subspac/, where) is the closure
of the linear space spanned by the coordinates of the elenoéiit.

One can interpret;[z | Z] as the best approximation (prediction) »fin terms of (infinite)
linear combination of elements &f. Next, we define the forward innovation process jor

Definition 6 (Forward innovation):The forward innovation procese of y is defined as
e(t) =y(t) — Eily(t) | {zu(t) | w € ZT}]. (15)

That is, the forward innovation is the difference betweea phedicted output and the actual
one, if the prediction is based on linear extrapolation dftpautputs. The forward innovation
process has all the properties required of the noise ®B8&. Below we define a class @&BSs
wheree is the noise.

Definition 7 GBS in forward innovation form):Let B be GBS of the form @). ThenB is in
forward innovation formif D = I,,, v(t) = e(¢) for all t € Z, andB satisfies Assumptiof.
That is, if ¥ is in forward innovation form, then the noise equaland Cx(¢) equals the linear
projection ofy(t) to the spacgz,(t) | w € X7}, i.e. Cx(t) is the best linear estimate gf(¢)
in terms of{z,(t) | w € ¥"}. Moreover, due to Par of Assumption3, the statex(t) of X
belongs to the Hilber-space generated by the variapie$t) | w € X1}. Hence, a realization
in forward innovation form is its own Kalman-filter, and itrcée viewed as a system which is
driven by the past outputs and inputs.

As we have mentioned before, for realizability BBS, the covariances of the outputs and
inputs should form a rational formal power series. Below,deéne these formal power series.
Definition 8 (Family of formal power serieg,): Foreachj € [ = {1,...,p}, 0 € X, define
the formal power serieS|; ,) € R? <X*> asS(; ) (w) = (AY,,) ;, where(AY ) ; denotes the
jth column of thep x p covariance matrix\¥_ = Ely(t)z. (t)]. Define the family of formal

power series
Uy ={Sjo) | j €L, 0 €T} (16)

October 8, 2018 DRAFT



23

We can now state the following assumptions which guarantetemce of aGBS realization.
Assumption 3:The procesy is RC and the family ofly, is is square summable and rational.
In addition, we will use the following assumption. Define tlamdom variables/ (¢), w € ¥,

2l (t) = Y7 (¢ + ]y (t + o] — 1>%. 17)

w

Assumption 4:For eachw € ¥*, assume that the variablg (¢) is square integrable.
Remark 3:In many important cases, Assumptidnis automatically satisfied i satisfies

Assumption3. We present below a number such cases.

1) u,(t) is essentially bounded for alt € >, t € Z,,, i.e. there exists a constaif > 0
such thatju,(t)| < K almost everywhere. This is the case when for examplerises
from a discrete valued process, as described in Exampl€hen E|[(z/ (t))z/ (t)] <
ElyT(t+k)y(t + k)]KQP—lw < 400, k= |wl.

2) If y(t), u,(t) have finite fourth order moments, then by Holders inequalif(z/ ())7z/ (t)] <
(E[(y"(t + k)y(t + k)}E[u (t + k)])'/? < +o00, k = |w|. In particular, this assumption
was made in13].

Now we can state the main result on existence GBS realization.

Theorem 4 (Stochastic realization BBSs: existence):Assume thaty satisfies Assumption
4. Theny has a realization by &BS which satisfies Assumptio if and only if y satisfies
Assumption3. Moreover, ify has a realization by &BS which satisfies AssumptioB, then it
has a realization by &BS in forward innovation form.

Recall that by Remark, in many cases Assumptighfollows from Assumptior?.

Corollary 1: Assumeu,(t) = x(0(t) = o) where@(t) is a X-valued process wittP(0(t) =
o) = p, > 0. Theny has a realization by &BS which satisfies Assumptio® if and only if y
satisfies Assumptiof3.

Theorem4 is an easy consequence of TheorBm 6 which will be stated below. Theorem
implies that the condition of Theoreis necessary for existence of a realization, and Theorem
6 implies that this condition is sufficient. In order to stateedbrems — 6, we need the following
definition.

Definition 9 (Full rank process)We will say thaty is a full rank, for eachc € X the
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covarianceE[e(t)e” (t)u?(t)] is of rankp, hence strictly positive definité.
Strictly speaking, the concept of a full rank process is retessary for Theored. However,
it plays an important role in formulating a realization aigfom. For this reason, we prefer to
state Theorem5—6 in such a way, that the concept of a full rank process is ajremsed.

Next, we relateGBSs and rational representations.

Definition 10 (Representation associated W@BS): Consider the unique collection afx n
matrices{ F, } ,cx; Which satisfy (4). Define, the matrices

1

B, = —(A,P,CT + K,Q,D"). 18
\/p_a( QsD") (18)

Define therepresentation associated with as Rg = (R", {/psAs}oes, B,C), where B =
{B,;|oceX,j=1,...,p} and B, ; denotes theth column of B,.
Theorem 5 (Necessary condition for existendé)B is a realization ofy and B satisfies

Assumption2, then the following holds.

« The procesy is RC.

. The representatiors well defined, stable, an®y is a representation o¥,,.

« y satisfies Assumptiof.

. If, in addition, for allo € 3, DE[v(t)vT(¢t)u?(¢)|DT > 0, theny is full rank.

Remark 4:The definition of Rg implies that it is completely determined by the matrices
(C, D, {As, Koy Qo) Yoex)-
The first two statements of Theorebnstate that ify has a realization by &BS B, theny is
RC and Rg is a stable representation Wf,. The third statement, i.e. thgtsatisfies Assumption
3, is an easy corollary of the previous ones and TheoBerepresent necessary conditions for
realizability. Theorenb not only shows that Assumptia® represent a sufficient condition, but
it also described how to obtain a stable representationeofamily of formal power serie¥,,.
The last statement of Theorebsays that under some mild assumptions the output@B8& is
full rank. This is important, because it shows that the regyuent thaty is a full rank process
is not an unnatural one. In turn, this assumption allows usrépose a realization algorithm.

Next, we present the result stating the sufficient condifmmexistence of a realization.

INote that the concept of a full rank process already has ablestted definition 48], which is slightly different from the
one used in this paper. In the linear case, i.e. whes {z} andu. = 1, the two definitions coincide. Hence, our definition

represents a slight abuse of terminology.
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Theorem 6 (Sufficient condition for existencH):y(¢) satisfies AssumptioB, then it has a
GBS B in forward innovation and thi&BS B can be obtained from a minimal rational repre-
sentation of¥,, as follows.

x(t+1) = Z(%on(w + Kye(t))u, (1)
B oex 7 (29)
y(t) = Cx(t) + e(t)
where

e R = (R" {As}sen, B,C), B = {Byo) € R" | 0 € ¥, = 1,...,p} is a minimal

representation of.

. Let Og the observability matrix of:. Define the random variablg, () as

T
Yt)=[e(t) ... 2 (20)

VM(n—1)
wherez/ (t) = y*(t) and for allw € ¥*, z/ is as defined in44). The variableY, () can be
thought of as the products of future outputs and inputs.deéatiat? is observable, hence
the matrixOp is has a left inverse, which we will denote I6y;,'. Then the state(t) is
define as

e For eachs € X,
1

K0<poToo - CPO'CT) = (BO'\/ZTO - AO'PO'CT> (21)
’ \/]9_0
where P, = E[x(t)x* (t)u,(t)u,(t)], and
By = |Bu) By s Bum| ER™. (22)

If, in addition, y is a full-rank process, thetp,7,, — CP,C") is invertible and

1
Kcr = (Bcr\/p_o -

AJPOCT)(pOTU,U - CPO'CT>_1' (23)
Do
Moreover, theGBS B constructed above satisfies Assumptibn

Remark 5 (Algebraic Ricccati equationBy Theorem®, if y is full rank, then the combina-
tion of (23) and (L4) yields an equation of whick P, },cs is a unique solution. This equation
is analogous to the well-known algebraic Riccati equatmmnlihear systems.

Theorem6 not only gives a sufficient condition for existence dBB8S realization, but it serves as
a starting point of a realization algorithm. Moreover, itkaa the relationship between realization

theory and filtering more precise. In particular, Rem&rknd Theorent imply that the data
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contained in a rational representation\f (i.e. of covariances of outputs and inputs) contains
all the necessary information for constructingG8S realization ofy in forward innovation
form. As it was mentioned before, suchGBS can be viewed as recursive filter for computing
the best linear estimates of future outputs based on pagtitsutfTogether with Theorem and
Theoreml it yields an algorithm for computing such a filter from an #mdniy GBS realization

of y: we first compute the representati®p associated with &BS realizationB of y, then we
use Theorent to obtain aGBS in forward innovation form.

Theorem5 — 6 imply the following characterization of minimality.

Definition 11 (Minimality): A GBS B which satisfies Assumptiof is said to be aminimal
realizationof y(¢) if it realizesy(¢) and it has the minimal dimension among all possEB&S
realizations ofy(t¢) which satisfy Assumptior2.

Theorem 7 (Minimality olGBSs): AssumeB is a GBS which satisfies Assumptio@ and
which is a realization of. The GBS B is minimal if and only if Rg is minimal. If the GBSs
B, andB, are both minimal realizations gf and they both satisfy Assumptidh then Ry, and
Rg, are isomorphic.

Remark 6: The isomorphism ofRg, and Rp, can be directly translated into a relationship
between the matrices d3; and B,. If B; is of the form @) and the corresponding matrices
of B, are A,, K, andC' and D, then isomorphism of?s, and Ry, implies that there exists a
non-singular matrixd € R™*" such thatCS—* = C',Vo € & : SA,S~! = A,. Note that we do
not claim thatSK, = K,, o € X or thatD = D. In fact, in general it will not be true.

Remark 7 (Checking minimality)srom Theoren® it follows that Rz can be computed bases
solely on the matrices oB and the covariance of the noise. From Theorgrnt follows that
minimality of Rz can be checked effectively, by checkingif; is reachable and observable.

Hence, minimality of &GBS can be checked effectively, based on the knowledge of thaaeat
(C7 D7 {Acn Kcn Qo)}UGE)

D. Realization theory for subclasses GBSs

We have argued before th&BSs include a large number of system classes such as linear,
bilinear stochastic systems and even jump-markov linesiegsys. However, the solution of the
realization problem folGBSs does not directly yield solutions to the realization peoh$ for

those system classes. The reason for this is quite obviduke the necessary conditions remain
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valid for subclasses dBBSs, the sufficient conditions need not remain valid. After iltould
easily happen that even j§f has a realization by &BS belonging to a certain subclass, the
realization prescribed by Theorehdoes not fall into that subclass. Nevertheless, the results
obtained for generalGBSs can be used to solve the realization for the various sugsetaof
GBSs described above. Below we will discuss this topic in moreitle

We start with specializing the results ®BSs described in Exampl&4. We will call such
GBSs GBSs with i.i.d. inputs We will show that the following conditions are necessaryl an
sufficient for existence of &BS realization with i.i.d inputs.

Assumption 5: 1) {y(t),z.(t) | w € X*} is zero-mean, wide-sense stationary.

2) The o-algebras generated by respectivély(t — 1)}°, and {u,(t + 1)}°,, 0 € X are

independent.

3) The family ¥y, is square summable and rational.
We obtain the following corollary of Theorerh

Corollary 2: A processy has a realization by &BS with i.i.d input if and only ify satisfies
AssumptionS. If y satisfies AssumptioB, then theGBS realization ofy described in Theorem
6 is a GBS with i.i.d input.
Indeed, ify satisfies AssumptioB, theny is RC and hence it satisfies Assumpti@nHence, by
Theorem6, Assumption5 implies existence of &BS realizationB of y in forward innovation
form. The noise process of thiSBS is then the innovation processt). By Lemmal, since
the coordinates oé(¢) belong to the Hilbert space generated foy(¢),z,(t) | w € X7}, itis
measurable w.r.t to the-algebra generated bly (¢t — (), u(t — [ — 1)};°,. The lattero-algebra
is independent of the-algebra generated bju,(t + 1)}7°,, sinceu is an i.i.d process angt
satisfies AssumptioB. Hence, ther-algebras generated He(t — 1)}, and{u,(t +1)}2, are
independent. Hencé3 is a GBS with i.i.d inputs. Conversely, iy has a realization by &BS
with i.i.d inputs, then by Theorerd y satisfies Assumptio3. Moreover, sincex(t) and hence
y(t) belongs to the Hilbert-space generated{®(t),z" (¢) | w € ¥} and the latter variables
are independent af,(t + [), [ > 0, from Lemmal it follows that thec-algebras{y(t — 1)},
and{u,(t +1)}2,, o € ¥ are independent. Hencg, satisfies Assumptiof.

Corollary 3: Theorem7 remains valid if we replac&BSs by GBSs with i.i.d inputs.
Indeed, from Theoren? it follows that a reachable and observal@®S with i.i.d inputs is

minimal. Conversely, by Theoreimthe GBSrealization ofy described by Theoref@is minimal,
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and by Corollary2 it implies that if aGBS with i.i.d inputs which has the minimal dimension
among all theGBSs with i.i.d. inputs, then it has the smallest possible disi@m among all the
GBSs realizations of7. Hence, minimalGBSs with i.i.d inputs are also reachable and observable.
Moreover, there is a minimabBS realization ofy with i.i.d inputs. Finally, isomorphism of
minimal GBS realizations with i.i.d. inputs follows directly from Thesm 7.

Recall the linear systems (Examplé), bilinear stochastic systems (Examgl® and jump-
markov linear systems with i.i.d discrete state (Examiig arise fromGBS with i.i.d inputs
by a specific choice of the input process, o. If we apply Assumptiorb to the case of linear
Gaussian systems, then we obtain the classical resultsatizatéon theory of linear systems.
Notice that the last part of Assumptidn when applied to the linear case, reduces to requiring
that the power spectrum is stable and rational. If we applgufAgption5 to bilinear stochastic
systems, then we obtain the conditions of][ [14]. Note that in [L3] only the sufficiency of
the condition was shown, not the necessity. Furthermdrg,deals with weak realization (see
Definition 12) and it assumes that the output equation does not containsa term. If we
specialize Corollary?-3 to jump-markov linear systems with i.i.d state process wiobthe
following results. We will call theGBS of the type described in Example jump-markov linear
systems with i.i.d switching (abbreviated by JMLSIID)

Corollary 4 (Realization of JMLSIID):The process has a realization by JMLSIID if and
only if the following conditions hold:

1) {y(t),z.(t) | w e ¥} is zero-mean, wide-sense stationary,

2) theo-algebras generated Hy (¢t — 1) }°, and{0(t + 1)}, are independent,

3) the family ¥, is square summable and rational.

If y satisfies the conditions above, then it has a minimal JMLSi#alization in forward
innovation form described in Theoref Moreover, TheorenY holds if we replaceGBSs by
JMLSIID.

To the best of our knowledge, Corollatyrepresents a new result. That is, the framework of
GBSs not only extends existing results on bilinear stochagstesns, but also yields, as a special
case, new results on a completely different system class.

Finally, we show how the results above specialize to the cagemp-markov linear systems
with restricted switching (abbreviated by JMLSR&@scribed in Examplé5.

Assumption 6: 1) {y(t),z.(t) | w € X"} is jointly zero-mean, wide-sense stationary,
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2) theo-algebras generated Ry (t — )}, and{0(t + 1)}, are conditionally independent
w.r.t to theo-algebraD; generated by{0(t — [ — 1)},

3) The family ¥y, is square summable and rational.

Corollary 5 (Realization of JIMLSRS)fhe processs has a realization by a JMLSRS if and
only if it satisfies Assumptior®. If y satisfies Assumptio®, then it has a minimal JIMLSRS
realization in forward innovation form described in Thaaré. Moreover, TheorenY holds if
we replaceGBSs by JMLSRS.

The proof of this corollary is similar to the proof of Coraa2. First, if y has a realization by
a JMLSR, then, since a JMLSR is@BS satisfying Assumptior®, y satisfies Assumptiof.
Moreover,y(t) belongs to the Hilbert-space generated{loyt),zY (¢) | v € X}, wherev is the
noise process of a JMLSR realization. From Lentniethen follows thaty (¢) is measurable with
respect to ther-algebra generated By (t—1), (t—1—1)}:°,. By the definition of IMLSRS and
the well-known properties of conditional independenc@lgebras generated Ry (t—1) }°, and
{0(t +1)}2, are conditionally independent w.r®;. This, together with Assumptio8 implies
thaty satisfies Assumptiofi. Conversely, Assumptio@implies Assumptior8. Then there exists
a minimal GBS realizationB of y in forward innovation form. The noise process is then the
innovation procese ande(t) belongs to the Hilbert-space generated{lpyt), z,(¢) | w € 3T }.
Using Lemmal it then follows thate(t) is measurable w.r.t. to the-algebra generated by
{y(t—1),0(t —1—1)};°,. The lattero-algebra and the-algebra generated byf(t + 1)}°,
are conditionally independent w.r.t ©; by Assumption6. Hence, ther-algebras generated by
{e(t—1)}2, and{6(t +1)}2, are conditionally independent w.rR;. That is,B is a IMLSRS
and it is a minimal one among all tHeBS realizations. Hence, if a JIMSRS is minimal among
all the JMLSRS realizations gf, then it is minimal among all th&BS realizations ofy. Then
the last part of Corollarp is a direct consequence of Theoré@m

The result of Corollarys is new, to the best of our knowledge. This result is anotheofr

of versatility of theGBS framework.

E. Weak realization and realization algorithms

Below we present a realization algorithm 8BSs. We only state the algorithm and the related
results, the proofs are presentedixi. Theoremt proposes a procedure for constructioBBS

realization ofy using the knowledge of and{u, },cs. In this construction, the noise and the
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state processes are constructed explicitly usirand {u, },cx. Unfortunately, this procedure is
not effective. In fact, it cannot be made effective, sincerésumes the knowledge of stochastic
processes and {u,},cx. The latter objects cannot be represented by finite nhumbetatt
points. Note however, that for many application the knogkedf the state or noise process is
not required, instead it is sufficient to know the matricesh&fGBS and covariance of the state
process. These matrices can be approximated from finitelyyrdata points. This prompts us
to introduce the notion of aveak realization

Definition 12 (Weak realization)A collection ({A,, K,, Py, Qs }ses, C, D), WhereA,, P, €
R™" K, € R Q, € R™™ ¢ € X, C € RP*", D € RP*™ is called aweak realization
of y, if there exists aGBS Y of the form @), such thatY is a realization ofy and X
satisfies Assumptio? and E[x(t)xT (t)u2(t)] = B,, E[v(t)vI(H)u2(t)] = Q,, 0 € X. The
data({A,, K., P, },ex, C, D) is said to be a weak realization gfin forward innovation form,
if the GBS X above is a realization of in forward innovation form.

By a slight abuse of notation, we will identify. with the data({A,, K,, P,, Qs }sex, C, D)
and writeX = ({A,, K,, Py, Qs }oex, C, D).
That is, aGBS X is said to be a weak realization 9f if there exists &5BS realization ofy with
the same matrices, state and noise covariance as thaseltofurns out that the construction of
Theorem6 can be used to compute a weak realizatiory dfom finite data.

As the first step, we construct approximations of the stateremise processes from Theorem
6 based on finitely many random variables. More precisely, efind a sequence of candidate

state-variables (¢) and noise variablesy (t) as
xn(t) = B[O (YVa(1) [ {zu(t) | w € BV}

ex(t) = y(t) = Bily(t) [ {zu(t) | w € BV}
Recall thato = {w € 7 | |[w| < N}. Recall that the original construction &ft) ande(t) the
projection of future outputs to the space generated by tefinmany past outputs and inputs.
In contrast,xy(t) andey(t) determined by projections of future outputs to finitely marast
outputs and inputs. Intuitiveli y (t) andey (t) are approximations aof(¢) ande(t) respectively.
In fact, the following result holds.
Lemma 5:limy oo xn(2) = x(1), limy_o en(t) = e(t), limy_ o Xy (H)us(t) = x(t)u, (1),

and limy_,o ex (t)u, (1) = e(t)u, (t).

October 8, 2018 DRAFT



31

It turns out that an analog ofLl®) holds forx,.
Lemma 6:There existr x p matricesk’Y, ¢ € ¥ such that
X1t 1) = 3 (= A (1) + K en(t))us ()
oex VPe (24)
y(t) = Cxn(t) + en(t).
If PN = E[xy(t)xy(t)uz(t)], and (p,T,, — CPNCT) is invertible, thenk™
1
VDo

In fact, we will show later on thaP, = limy_,., P¥ andK, = limy .., K~. Hence, if we know

Ky = (\/ps By — A,PYCTY (poTye — OPNCTY L. (25)

PN and K, then Lemmab yields an approximation of the wedkBS realization described in
Theorem6.

The computation of?¥ and K requires the knowledge of the random varialles(t) | w €
¥¥}. In practice, however, one has only data, i.e. samples ofahéom variablegz,,(t) | w €
¥V}, Below we present a formula on approximatiffg’ (and hencek’Y) from such a sample.
To this end, notice thaty(¢) belongs to the space spanned by the entrieft) | w € ©V}.
Recall thatM (N) = |V andv;, < vy < -+ < vy IS an enumeration oE" based on

lexicographic ordering. Then there exist§ ¢ R*MW) such that
xn(t) = o Zy(1), (26)

T
whereZy (t) = [zT t) ... 2T ()] €ReMI)>1 f we define

V1 UM(N)

Tn = E[Zn(t)Z%(t)] and Ay = E[Ozjzl(yn(t +1)Zy(1)],

then by the well-known properties of orthogonal projectiar is determined byN\N and Ty.
In fact, if T is invertable, thermvy = /NXNTjgl. From @6) and the assumption thgtis RC it
then follows that

PN = pyanyTyDal,. (27)

where D is a diagonal matrix such that thth diagonal entryD;i is 1 if u;o € L or it is zero

otherwise. It then follows that the knowledge f&)i; and Ty yields ay and PY. Note that/~\N

can be computed from a minimal representatioof ¥, as follows: Ay = Ay ... A

UM(N) |?

whereA,, = A,B, with B, = |B,, ... B,,| foralvey*, oe¥.
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The discussion above yields the realization algorithmemesd in Algorithm?2. In Algorithm
2 we assume that we measure the finite time seigs), u,(t) | c € ¥,t =0,..., N+ M} for
someN, M > 0 and that we have &, n)-selection(«, ) at our disposal.
Theorem 8 (Correctness of Algorithil: Assume that the following holds:
1) The processy, {u, | w € X*}) is ergodic and the time seridg(t), u,(t) | 0 € X,t =
0,1,...,} are such that for all, w € ¥7.

Ely(t)z,(t)] = Nh_lgoﬁ Z
- (28)
Ela(zh(0)] = Im + Y a():l0)

r=max [w],|v|
2) Then,n-selection(c, ) is such thatank Hy, . = rank Hy, < n.
3) The representation returned by Algorititnwhen applied toHy, 41 and(a, 3) is of
the form R = (R", {A, },ex, B, C).
4) The procesy satisfies Assumptiofis, Assumption4 and it is full rank.
Let ¥ be theGBS realization ofy from (19) and letQ, = E[e(t)e’ (t)u?. Identify > with the
corresponding weak realization = ({A,, K., P,, Qs }sex, C, I,). Then the following holds
1) For large enoughV, M, Ty, and QY- are invertable and Algorithri is well posed.
2) limy oo Svr = ({As, KY, PN QNY,ex,C, 1), where QY = Elex(t)ex(t)u2(t)] and
PY and K are defined as Lemm@a
3) lmpy oo impsyoo Sy s = 2
Informally, Theorem8 says the following. If we letV/ go to infinity, then the weak realization
Xn.um returned by AlgorithmB corresponds to the approximate realization described mrha
6. In that realization, the state procesg) is approximated by (t), the latter being the (linear
combination of) projection of future outputs to finitely nyapast outputs and inputs. If we let
N go to infinity too, thenXy 5, will converge (as a tuple of matrices) to the weak realizatio
which corresponds to th&BS described in Theorerd. Theorem8 and Algorithm?2 open up
the possibility of formulating subspace-like realizatialgorithms forGBSs and for analyzing

existing ones 0], [18], [15], [16]. Pursuing this direction remains future work.
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Algorithm 2
Input: data{y;, u.(t) |t =0,...,N + M,o € ¥} and(n.n)-selection(c, ).

Output: weak realizationy y; = ({M F,,, KN-M pNM _QNMY o MA T).

1. Approximate the covariances,, w € ¥*"~!, and the covariances,, ,, for v;,v, € &V

from the time-series using the formula:

A NAJ\/[ def 1 M+2n—1
T I D TOEN()
t=2n—1
N+M+1
def 1
Toron # T, = 7 PN GENG!
t=N

where for anyw = o1+ 0, € 2% oy, ... o €8, k> 2n—1, 2,(t) = y(t — k)ug, (t —
k)---ug (t—1).

2: Construct the finite Hankel matrik/y! ., , by replacing the covariance¥),, w € ¥*"*
in the definition of Hy, ,, .41 by the estimates\)/, w € X"~ !.

3: Choose an, n-selection(a, #) such thatrank Hy, . g = rank Hy yn. Apply Algorithm
1 Sectionll to H\I]meﬂ,n and then, n-selection(a, 5) to obtain a representatioR,, =
(R™, {MF,}es, MG, M H).

4: Use the estimates) , vi,v, € £V to construct the matrify 5;: the matrixTy,,, has the
same structure &by, but instead of the covariancés, ., we use the approximations)’, .

5. Define /N\NM in the same wayAy, but using” F,G, instead ofA,,, where MG, =

MGy, L MG,
6: Assume thatly ,, is invertable, and find

e -1
ON M = AN,MTMM

NM _ T
P, = paCYN,MTN,MDOéN,M

QY = p (T3 =~ P

KNM = (p MGy — —}MFapvaMHT)(pUTQ{, —MEpYMM Ty

a

Here D is a diagonal matrix such that thth diagonal entryD;; is 1 if v;o € L or it is zero
otherwise.

7. Return the weak realizationy ,, = ({MF,, KN-M pNM QNMY o MH L),
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V. PROOF OF THE RESULTS ON REALIZATION THEORY OKSBSs
A. Technical preliminaries and the proofs of Lem@xal

Below we will present a number of technical resultsR@ processes. These results will allow
us to prove Lemmag&—4 and the main theorems.

Notation 5: Let I, denote thek x k identity matrix.

Let r(¢) € R" be anRC process.

Notation 6: Denote byH the Hilbert-space generated by the entriedgf(¢) | w € X7 }.

Lemma 7:With the notation above, ifif C Hf,,, r(t) € Hf,,.

Proof of Lemma7: From Assumptionl it follows that > _. a,u,(t) = 1 for any

ceX
t € Z, and hencer(t) = > v a,r(t)u,(t) = > vz,(t +1) € Hy, . Similarly, z} (t) =
ZUEZ oy, (t)us (1) = dez oZn,o(t +1) € Hipy. u

Lemma 8:Letz(t) € R? be a process such that the entriez@f belong toH; for anyt € Z
r(t)

z(t)

and thatF|z(t + k) (2%, (t + k))T] = E[z(t)(2%,(t))T]. Then the proces is RC.

w

For the proof of this lemma we will need the following results
Lemma 9:1f z € R is a mean-square integrable random variable and it belangsetlinear
span of the components af(t), v € L, then E[z*u?(t)| < p, E[z?].

Proof of Lemma9: Assume that for some finite subsétC L, z = ) _oa,z,(t) for

veES
someq, € R™?. DefineS; = {v € S;vo € L}, Sy = {v € S,vo ¢ L}. Then, by noticing
that E(z,(t)zL (t)u2(t)] = Elzw(t + 1)zl (t + 1)] = T\swe and taking into account Pa& of

w (e}

Definition 5 and that7)L . = T, ., = 0 for vo ¢ L, we obtain

E[Z2uc2r<t)] = Z pcraUTTvo,wcrag = Do Z O‘vTv,wag (29)
v,WES] v, WES
On the other hand, by PaBtof Definition 5, if v € S; andw € Sy or other way around, then
Ty = 0. Moreover, (T, .,)vwes, 1S pOsitive definite, i.e.zwes2 a,T,.,al > 0. Hence, by
noticing thatS = S; U S,,
E[z2] = Z aUTw,UQZ = Z aUTv,wag + Z aUTv,wag > Z avTvvwag (30)
v,WES v,WEST V,WES2 v,WEST

Combining @9) and @0) yields the statement of the lemma. [ |

October 8, 2018 DRAFT



35

Lemma 10:Assume thatzy € R is a sequence such thaf; is a finite linear combination
of zI (t), w € ¥t andz = limy_,., zy in the mean-square sense. Then for eaclkk X,
zu,(t) = limy_,o Zyu,(t). in the mean-square sense.

Proof of Lemmadl.0: If z = limy_,, zy in the mean-square sense, thenji, (¢) converges
to zyu,(t) in mean sense. Indeed, from Holders inequality it follohet ]|z yu, (1) —zu,) || =
Ell(zy — 2)|[us(1)]] < E[z — 2x/?]\/E[u,(t)?]. On the other hand, it can be shown that

zyu,(t) is a Cauchy-sequence in the mean-square sense. Noticeythantma9, zyu,(t)

is in fact mean-square integrable. Considegr, x — zy for any K > 0. Sincezy, x — zy
belongs to the closed linear spadéy,x generated by the entries gk, }.<y, by Lemma
9, El|lznirxu,(t) — zyu,(t)]?] = Ellznix — zn|*v2(t)] < p.Ellzy.x — zn|*]. Sincezy is
convergent, it is then a Cauchy sequence and hence by thealitgcabove so i%yu,(t). But
by Jensen’s inequalityy[|zx (t)u, (t) — h|] < /Ellzn(t)u,(t) — h
of zyu,(t) in the mean sense as well. It then follows from the uniqueégske limit in 1,

2], and henceh is the limit

sense that = zu,(t) almost surely. Henceju, (t) = h is indeed the limit ofzyu,(¢) in the
mean-square sense. u

Proof of Lemma8: From z(t) € H, it follows that z(¢) = limy_,. zy Wherezy =
D west jwl<n CwZi,(t) for somea,, € R™". Definezy (k) = 3 cn y<n @525 (k) for all k € Z.
From E[z(t)z%(t)] = Elz(t + k)z&(t + k)], it follows that E|||z(t + k) — zn(t + k)||?] =
E|||z(t) — zn(t)||] and hencez(k) = limy o zy(k), t, k € Z. For everyv € ¥, denote by
zy(t) the finite sumz} (t) = > s+ o<y @525, (). By repeated application of Lemni) we
obtain that

z2(t) = lim z3(t)

N—oo

SinceE[z%(t)(z= (t))!] and B[z (t) (2% (t))T] are the limits ofE[z% (t)(z%(t))T] andE[zy (t) (2% (t))T]
respectively. Hence, if(¢) satisfies Parfl of Definition 5, i.e. {r(t),z.(t) | w € X7} is zero
mean wide-sense stationary, then so{#$t),z%(t) | w € ¥*}. That isz satisfies Partl of
Definition 5. Finally, in order to prove thak(t) satisfies Par of Definition 5, notice that

1% . isis the limit of linear combinations of” . fors,he X7 If o # o', then by virtue

h
of r satifying Part2 of Definition 5, 7%, =0.If o = o andwo,vo € L, Finally, if wo ¢ L
(respectivelyvo ¢ L), then for alls € X7, swo ¢ L (respectivelyhvo ¢ L for all v € ¥1) and

henceT™*

swo,hvo

= 0. By combining the results above and taking limits we readiyclude that
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z(t) satisfies Par2 of Definition 5. Finally, as it was remarked in RematkPart3 of Definition
5 follows from Parts1-2 of Definition 5. [ |
Notation 7: For everyw € ¥*, denote byH;,, the Hilbert-space generated by the entries of
{z},(t) | v € ¥} and denotefl;, the Hilbert-space generated by the entriedaf, ()" | v €
¥*}. Clearly, Hf,, € Hy,,.
Lemma 11:With the notation above, for every,,o, € %, 0 # 09, H;, and H;; are

t,o1 t,o2

orthogonal and hencH;, and Hy

t,o2

are orthogonal. Moreover, if € H, thenzu,(t) € Hf, ,.
Proof of Lemmall: The first statement of the lemma is an immediate consequeince o
the fact thatE |z}, (t)(z,,,(t))"] = 0 for all w,v € ¥F, 01 # 05 € . The second statement

wes
follows by noticing thatz;, (t)u,(t) € Hf,,,. If z € Hf, thenz = limy_,o 7, Wherery is a
finite linear combination o}, (t), w € ¥7. It then follows thatyu,(t) € Hf,, ,. From Lemma
10it follows thatz = limy_, 7nu,(t) and hencex € Hy, | . [ ]
Lemma 12:Leth(t) € R!, z(t) € R? be processes such thdt) = (z%(¢), h’(¢))? is RC and
the coordinates of(t) are orthogonal td7} for all ¢ € Z. Then for allw € 3, the coordinates
of z% (t) are orthogonal td7p,, for all t € Z.
Proof: It then follows thatz(t) = C;s(t) andh(t) = C;s(t) for suitable matrices”;, Cs.
Note E[z(t)(zh(t))"] = C1ASCT and E[z%(t)(zh,(t)"] = CiT5 ,,,C3 . t € Z. Sinces(t) is RC,

TS o = NS if vw € L andT% = 0 otherwise. HenceFE|[z% (t)(z,(t))"] = Elz(t)(z2(t))7]

w,vw w, VW vw v

if vw € L and E[z%(t)(z2,(t))T] = 0 otherwise. Since by the orthogonality assumption

VW

Elz(t)(z2(t))T] = 0, it then follows thatE[zZ (t)(z,(t))] = 0 for all v € &+ |

v VW T
Proof of Lemma2: It is clear that ifs(t) = [VT(t), XT(t)} is RC, thenx(t) =
T
[0, In} s(t) is RC too. The claim that[vT(t), XT(t)] is RC follows directly from Part
3, Assumption2, and Lemma8, if we can show tha#[x(¢)(zY (¢))*] does not depend onfor

anyv € X*. For anyk > 0,
x() = Y VeeAwzs )+ DY VDewAuwBezy, (1) (31)
weLT,|w|=k weT* |w|<k—10€X
If k& = |v], then it follows thatE[zX (¢)(zY (t)*] = 0. Indeed, by Parg, Assumption2 and Lemma

10, zX(t) belongs to the Hilbert-space generated by the component¥, ¢f), s € . Since,

lw| = |v| =k, sw # v for all s € X*. Hence,zY(t) is orthogonal to the latter Hilbert-space.
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Hence, fork = |v|,
Ex@) @)= Y. > VPowAuBoTYuu
weS* |w|<k—1o0€X
and the latter expression does not depend.on

Using Part3, Assumption2 and Lemmall, the coordinates ot (¢) belong to the Hilbert-
spaceHy,, generated by the coordinates z¥f, (¢), s € ¥*. Since,

v| < |w| =k, sw # v for
all s € X7, and henceF[zY,(t)(z¥(t))T] = 0. That is, the coordinates of'(¢) are orthogonal
to Ay, and hence ta(t).

In order to show13), we go back to1). We will show thatr,(t) = >, csi+ o=k vPuwAwZiy (1)
converges to zero as — oco. Sincex(t) is RC, E[zX(t)(zX(t))"] = 0 for anyw # v or w =
vé L, |lw=|v] =k, and for allw € L, E[zX(t)(z%(t))T] = piaE[x(t — k)xT(t — k)u(t — k)],
wherew = os for o € ¥ ands € ¥*. Denote byP, = E[x(t — k)x* (t — k)u?(t — k)]. Note
that by virtue ofx(¢) being RC, the definition of P, does not depend ohand k. Moreover,

from Part4 it follows that A,A, =0 if s € ¥* 0 € X, 0s ¢ L. In then follows that

Elr(trf ()] = > > pA AP, ATAL (32)
seX* oex
DefineS =Y . A,P,AL and define the linear maR on the space of matricé®™*" as

R(V) = p,A VAL

ey

Then E[ry(t)r{ (t)] = R*1(S). Notice that}" _. p,AL ® AT is just the matrix representation
of R(V) in the basis described i, Chapter 2]. Hence, by Part of Definition 2 and
[41, Proposition 2.5]lim;,_,., R¥(S) = 0. Hence, it follows that the limit ofE|[||r,.(¢)||*] =
traceE[ry(t)rf ()] equals zero aé — oo, which is a equivalent to saying that the mean-square
limit of r,(t) is zero ask goes tocc. u

Proof of Lemma3: In order to prove the statement of the lemma, we use the prbof o
Lemmaz2. Notice that 81) remains valid for = £, if we replacex by x. The assumptions of the
lemma ensure thaB@) remains valid fort = k, wherery(k) = >_, cx+ ui=k VPwAuzi(k) and
P, = E[x(0)x(0)Tu2(0)]. With the argument as above, it then follows thiat;, .., 7, (k) = 0
in the mean-square sense. Notice Ref) — X(t) = >_ s 51 Doesy/PovAvBozy, (1) — 1:(t).
The first terms converges to zero in the mean-square sense>asoo, since the series on the

right-hand side of 13) is convergent in the mean-square sense. It was shown thatettond
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termr;(¢) converges to zero @s— oo. Hencex(t) —x(t) converges td in mean-square sense.
[
Proof of Lemma4: First, we show that there exists at most one solutionlt).(To this
end, assume that there are two soluti¢@s },cx, and { P, },cx, to (14). Define P, = P, — P..
By subtracting th equationi§) for P, and P.,
P,= Y peAs P, AL (33)
o1€X,010€L
Using the equation above and the fact thgtd,, = 0 for o0 ¢ L, we obtain

AUPUAZ; = Z pUAO'AO'1 pal Azl AO’ (34)

01€Y
Consider the mag : R"*" — R™*" defined asZ(V) = }___y,p- A,V AL. It is easy to see that
> oex Do AL @ AL is a matrix representation &f. Hence, from Par# of Assumption? it follows
that all the eigenvalues & are inside the unit circle. Defing = > __,. AUPUAZ and notice that
(34) implies thatQ = >~ .y o Ao (3, v, Aoy Pr AL )AL = Z(Q). Sincel is not an eigenvalue
of Q, it implies thatQ = 0. But if Q = 0, then @4) implies thatA4,P, AT = p,A,QAT = 0.
Applying (33) yields P, = 0, and henceP, = P, for all o € X.

Next, we show that a solution ta4) exists and it is determined by, = E[x(t)x(t)Tu2(t)] =
po B [zX(t)(zX(t))"]. By Lemma8 x(t) is RC. From Part3 of Assumption2 it also follows that
for everyw,v € X%, |w| > |v|, zX(t) andzy(t) are orthogonal. Indeed by Lemnid®, zX (¢)
belongs to the Hilbert space generatedzly(¢), s € ¥ and by Assumptior, zy (¢) andz},, (¢)
are orthogonal, since clear|yw| > |w| > |v|. Notice the identities?, = p, E[zX(t + 1)(zX(t +

INHE Pl 25, (t+1) = \/plg_lgx(t —Dug, (t=1u,(t), 2", (t+1) = \/I)%Tv(t —1u,, (t—
1)u,(t) and

25+ 1) = D Py, (A2, (t 1) + Koy 25,, (4 1), (35)

O1EX

Notice that B[z} ,(t)(z%,,(t))"] equals zero, ifoy # oy OF 0y = 09,000 ¢ L, and p,P,,

o0

otherwise. In a similar fashio; [z}, (t)(zY,,(t))"] equals zero, it # 0y Or 0y = 09,010 ¢ L

andp,Q,, otherwise. In additionE[z} ,(t + 1)(zy,,(t +1))"] = 0, 01, 09,0 € . By noticing
P, = p,E[zX(t + 1)(zX(t + 1))T], and applying §5), it follows that{ P, },cx satisfies {4). =
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B. Proof of Theoren®b

We prove the claims one by one.

Proof that y is RC From Lemma2 it follows thats(t) = |v7(t), x7(t) T, and as Notice
y(t) = Ox(t) + Dv(t) = [c, D} s(#), it then follows thaty is RC.

Proof that Rp is well-defined and that it is a representation of¥,. From Lemma4 it
follows that (L4) has at most one solution.

Next, we show thafRy is a representation of,. By induction on|w| we obtain that for all

w e ¥,

[x(t — k)x" (t — k)u?], (36)

o

pw w (o

wherep,, is defined as in NotatioB. Indeed, forw = ¢, zX(t) = ;0 x(t—1)u,(t—1) and using
that x(t) = >, cs /Do (AszE(t) + Koz)(t)) and E(zY (t)(2zX(t))"] = 0 for all 01,0 € ¥ (see
Lemma2) , we obtain 86). If w = vg, then usingx(t) = >~ . \/po(As 2% (t) + Ko 2}, (1)),
the induction hypothesis, and the equalitiel (t)(zX,,(t))"] = 0 if oy # 6 or ové ¢ L, and
Bz, (1)(2,, (1)) = VB Elx(t — 1)(z5,(6)7) for w = ové € L, and Elzg, (1)(25,,(1))"] = 0
(see Lemma2), and usingA,A, = 0 if ow ¢ L, we again readily obtain3¢). In a similar

fashion, we can show that

Blx(t) (s, ()] = { e VPeAelieQe v el

0 otherwise
where Q, = E[v(t)vT(t)u?(t)]. Finally, notice thatz,(t) = CzX(t) + DzY(t), andv(t) is
orthogonal to the variables (¢) andz? (). Using the definition\y , = E[y(t)zl (t)], AuA, =
0, A,K,Q, =0 for cw ¢ L, and @36), we derive

N, = CE[x(t)(zX(t)"CT + CEx(t)(zY,(t))"] D" = \/puCAu \/7(,4 - P,CT + K,Q,D")

That is,AY,, = CA,B,, i.e. R Iis a representation ob,.

Finally, from Part4 of Definition 2 it follows that Ry is a stable representation.

Proof that y satisfies Assumptior8 From the discussion above it follows thats RC and Ry
is a stable representation f,. Hence,¥,, is rational and by Theore® ¥, is square-summable
too.

Proof that y is full rank To this end, notice that,(t) = CzX(t) + Dzy (t). Part3 of
Assumption2 and repeated application of Lemra implies the coordinates of (¢) belong to

October 8, 2018 DRAFT



40

HY, C HY andH} C Hy. Let H;" be the orthogonal complement & in H. From Definition
2 it follows that E[v(t)h] = 0 for any h € HY. Hence,v(t) is orthogonal tof;'. Notice that the
entries ofx(t) belong toH) and hence it can be written &st) = x;(t) + x2(¢) such that the
entries ofx,(¢) belong to#;-. It then follows thatE;[x(t) | {z.(t) | w € ¥T}] = x;(¢) since
for all w € X7, E[x2(t)zL(t)] = 0 and henceE[x(t)zL(t)] = E[x;(t)zL(t)]. Then E;ly(¢) |
{z,(t) | w € X} = Ox4(t), sinceE[y(t)zL(t)] = CE[x,(t)zL(t)] and the entries of'x; (t)
belong toH;. Moreover, from Lemma it follows that (y? (¢),xI(¢))? is RC. Similarly, since
v(t) is orthogonal tof/Y, by Lemmal2 v(t)u,(t) is orthogonal tofy, , ,. Since by Lemmad.1
the entries ofx;(t)u, (), i = 1,2 belong to/7y,, , it then follows thatx;(t)u,(t), i = 1,2 and
v(t)u,(t) are orthogonal. Notice thai(t) = y(t) — Cx;(t) = Cxay(t) + Dv(t). Hence, for all
o €%, Ele(t)e” (t)u(t)] = CE[xa(t)x2 (t)uz(t)|CT + DE[v(t)vT (t)u(¢)])DT > 0, i.e.y is

full rank.

C. Proof of Theoren®

The proof of the theorem is organized as follows. First, wespnt a number of properties
of the state process(t) and the innovation processt). Then we show the existence of the
matrix K,, o € 3. Finally, we prove {9).

Properties of x(t) and e(t) Below we present some important propertiesx¢f) and e(t)
constructed above. The exposition is organized as a sefriesnmas.

Lemma 13:For eachw € ¥* ando € ¥ such

where B, = [31,07 e Bp,a]'
Proof of Lemmal3: Notice that because of the properties of orthogonal prigjedt holds
that Vo € ©F : E[x(t)zl(t)] = E[Oz'(Y,(t))zL(¢)]. Notice that the entries of?[Y,,(t)zX (t)]

are of the formE|[(z/ )" (t)z (¢)] i =0,..., M(n — 1). By writing out the definition ofz/ and

(2

z,(t), it follows that for anyv, s € X7,

E((z{)"(t)z, (t)] = Bly(t + Dz (t + )] = AY,-

Hence, applying the result above to= ow and noticing that\¥, = CA, A,B, we ob-

tain E[Y,(t)z..,(t)] = OrA,B,. From this, by taking into account thaf[x(t)zl, (t)] =
OR'E[Y,(t)z.(t)], the statement of the lemma follows. u
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Lemmal3 explains the relationship between states of the would-bermgdized bilinear realiza-
tion and the states of the rational representafibof V.. In particular, it yields the following
corollary.
Corollary 6: With the notation of Lemmd3, Cx(t) = Ejly(t) | {z.(t) | w € XT}].
Proof of Corollary6: Indeed, from Lemmad.3 it follows that for anyv € X" of the form
v = ow for somew € ¥*, 0 € ¥ E[Cx(t)zL, (t)] = CA,B, = AY,, = E[y(t)zL,(t)], and
hence for any € XF, E[(y(t)—Cx(t))zL (t)] = 0, i.e. the entries of (t) — Cx(t) are orthogonal
to the Hilbert-space generated ¥y, (t) | v € X*}. Since the entrie€'x(¢), obviously belong
to that Hilbert-space, the corollary follows. [ ]
The corollary above says thétx(t) is the projection of the current output to past outputs and
inputs.
Lemma 14:The processes(t) ande(t) = v(t) satisfy Partl-2 of Assumption2. Moreover,
() = [x"(1).y7(0),¢"(5)] 1S RC.
Proof of Lemmal4:
From Lemmal3 it follows that F[x(¢)(zY(¢))*], v € ©* does not depend oh By noticing
that the entries ofk(¢) belong to H} and applying Lemma&, it then follows thats;(t) =

I, O
T
[xT(t), yT(t)] is RC. By noticing thats(t) = | 0 I, | si(t), it follows thats(t) is RC.
-C I,

Proof of Part 1 of Assumption 2 Sincex(t) ande(t) are components of(¢), it follows that
x(t) ande(t) areRC.

Proof of Part 2 of Assumption 2 Assume thatv,v € X*. Assume first thatw| > |v| and
w = sv for somes € X+, Since the coordinates af(t) belong toH,, from Lemmallit follows
that the entries of () belong to H},, € H},. From the construction o&(t) = y(t) — Cx
it follows that z¢, (1) = z,(t) — Cz}(t). Hence, as the coordinates of(¢) belong to [/,
the coordinates ok, (t) belong to H},. Note that the coordinates ef(t) are orthogonal to
HY. Moreover, recall thas(t) = [XT(t), el'(t), yi(t) ! is RC. By applying Lemmal2
to z(t) = e(t), h(t) = y(t), it follows that z$(¢) is orthogonal toH},. Hence, it follows
that F[z8(t)(z¢(t))"] = 0. If |w| > |v| but w does not end withy, then from the fact that

w

e(t) is RC and Part3 of Definition 5 it follows that E[z°(¢)(z2 (¢))T] = 0. If |w| < |v],

w

then E[z8(t)(zS (t))!] = 0 follows from the discussion above by considering the trasspof

w
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Bz (t)(z8(1)T]. If |w| = |v| butw # v, E[z8(t)(z2(¢))"] = 0 follows from the fact thae(t)
is RC, by repeated application of Pa3tof Definition 5 to r(¢) = e(t). u
Lemma 15:For anyw € ¥+ ando € X such thatvo € L, E[x(t)zL (t)u2(t)] = p, E[x(t)zL(t)].

Proof of Lemmal5: From Lemmas8 it follows that s(t) = (x7(t),y?(¢))T is a RC
, = A3 for wo € L. Since E[x(t)zL (t)u%(t)] and E[x(t)z.(t)] are the

w

process and hencg; ,
sub-matrices op, 13, and respectivel\?,, the statement of the lemma follows. u
Definition of K, In order to definekK,, we need the following auxiliary result.

Lemma 16:

H =P H, P <elthu,(t) > (37)

€Y €Y
where&p denotes the direct sum arde(t)u,(t) > denoted the Hilbert-space generated by the
entries ofe(t)u,(t). Here we used Notatiof-7.

Proof of Lemmal6: Indeed, from the definition off) ; and LemmeéB it is clear thatH}’
is the closure of the space, ..(H},+ < e(t)u,(t) >). From Lemmall it follows that [},
and H)', are orthogonal for alb, & € . From Lemmal2 it follows that H,; ,, < e(t)u,(t) >
are orthogonal. Finally, we will show thdt,,,,, < e,us;(t) > are orthogonal fow # &. To
this end, notice that for alb, 6 € %, e(t)us(t) € H))\ , and HY,, , € H}}) . From Lemma
11 it then follows that};; , and H}/ , are orthogonal for each, 5. Hence,e(t)us(t) is
orthogonal toH},, , € H}} . Since all the involved spacel},, , and < e(t)u,(t) > are
mutually orthogonal, the closure of their sum equals the®a sum. [ |
From Lemmalé it follows that

x(t+1) =Y B[O (Yot + 1) | HY]+ B[O5' (Ya(t + 1) [< e()u,(t) >]  (3g)
oEY

Define nowK, as an x p matrix such that
EJOR' (Ya(t + 1)) |< e(t)uy(t) >] = Ke(t)u,(t).

If y is full rank, thenk, is unique andx, = E[O3' (Y, (t+1))e! (t)u,](Ele(t)e’ (t)u(t)])~ .

Proof of (19) The second equation ofL9) follows directly from the definition ofe(t) =
y(t) — Cx(t). We will concentrate on the first equation. To this end, wd shiow that
1

EOx' (Ya(t + 1)) | H},y ) = EAJX(t)ua(t)- (39)
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From this and from 8) the first equation ofX9) follows. From Lemmall and the fact that the
entries ofx(t) belong toH, it follows that the entries ok(t)u,(t) belongs toH},, ,. Hence,
by Lemmalé6 in order to show that39), it is enough to show that € X", ¢ € X,

1

EOR*(Yu(t+ 1))zl (t+1)] = A E[x(t)u, (t)zL (t +1)]. (40)

Po

If wo ¢ L, thenz! (¢t + 1) = 0 and hence40) trivially holds. Hence, in the sequel we assume
thatwo € L. Then from Lemmal5 and Lemmal3 it follows that

1 T = !
—5 AEIOu (07, 4+ 1) = —=

where ¢ is the first letter ofw. By applying Lemmal3 to ¢ + 1 instead oft, we obtain

B[Oz (Y, (t + 1))zl (t +1)] = A, A,Bs. Hence, by combining this with4(), (40) follows.
Proof of (21), (23) Notice that on the one hand, by Lemrbd E[x(t + 1)zZ(t + 1)] = B,

and on the other hand, if we usg&,

1

Ao (/Do BIx(t)24,(1)]) = Ay Ay B (41)

Ex(t+1)zl(t+1)] = A E[x(t)uyzl (t+ 1)] + K, Ele(t)u, (t)zL (t + 1)]. (42)

Po

Here we used the corollary of Lemni® that x(¢)u,(¢), e(t)u,(t) are orthogonal ta, (¢t + 1)
for 6 # o, 0,6 € ¥ and thatx(t)u,(¢) ande(t)u,(t) are orthogonal. Indeed, from Lemmnié it
follows thatx(¢)u,(t) ande(t)u,(t) are orthogonal. From Lemmil it follows that the entries
of x(t)u,(t) belong toHy,, , € M}/, , and the entries 0é(t)u,(t) = y(t)u,(t) — Cx(t)u,(t)
belong to#)} ,. The entries ofz (¢ + 1) belong to#}, ,. From Lemmall it then follows
that the space#{};’, ,, H], , are orthogonal. Using this remark and the equadityt + 1) =
1 _ 1 H

ﬁy(t)ug(t) = ﬁ(Cx(t)ug(t) + e(t)u,(t)), we obtain
1

P,CT. (43)

a

Elx(t)us(t)z, (t +1)] =

In addition, from the discussion above it follows thAf, = Elz,(t)z.(t)] = -CP,C" +
—Ele(t)e” (t)uz(t)]) and hence

o

Ele(t)e” (t/u2(t)] = po Ty, — CP,C7. (44)

Combining @3),(44) and @2) yield

1 1
BO’ = _AO'PO'CT + KO’(pUTO',O' - CPJCT)a

a g
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from which 1) follows easily. Ify is full rank, then the existence of the inverse(pf7, , —
CP,CT) follows from (44) and the invertibility of E[e(t)e” (t)u?(t)]. If the inverse of(p, T, , —
CP,C7) exists, thenZ1) implies 23).

Proof that the system satisfies Assumptior2 We have already shown that Pafts2 of
Assumption2 are satisfied. Since€? is a minimal representation of, and ¥, is square-
summable, from Theore it follows that}"__,, A ® AL is stable, i.e. Par# of Assumption
2 holds. In order to show that Pastof Assumption2 holds, leto;, 05 € ¥ such thatooy ¢ L.
Notice that for allo € ¥, v,w € ¥*, CA, Ay, Ag, Ay Bs = Aguo,0.0- NOtiCe that ifoyos ¢ L, then
ovoroew ¢ L, and henc&' A, A,, Ay, Ay By = Agyo, 000 = 0. Sincew is arbitrary, it then follows
that A,, A,, A, B, € Og. As R is observable, i.e0r = {0}, it follows that (A,,A,,)A,B, = 0.
Sincewv and o are arbitrary, the latter implies that,, A, Wr = 0. As R is reachable, i.e.
Wgr = R", it then follows thatA,,A,, = 0. With a similar reasoning, we can show that if
o109 ¢ L, then for anyw € ¥*, CA, Ay, By, = Ayy0pw = 0. Hence, observability of implies
A,,B,, = 0. Finally, from 1), A,,A,, =0, A,,B,, =0 it follows that A,,K,,Q,, =0 and
thus by recalling thafy, , = iQ”“ Part5 of Definition 2 follows.

It is left to show that Par8 of Assumption2 holds. To this end, we have to show that for all
v,w € XY, Jw| > |v], E[z%(t)(z8(t))"] = 0. In order to show that for alb,w € %, |w| > |v],

v

Ezx(t)(z8(t))T] = 0, we proceed as follows. Sincev| > |v|, w = st for somes € X*,

w v

T
v € X, [0 = |v]. From Lemmal4 it follows thatr(t) = |x”(t), eT(t)] is RC. Moreover,
B[z (t)(2z5(t))"] is a suitable sub-matrix of};, . If 0 # v, then from Par83 of Definition 5 it

w v

follows thatT?; , = 0 and henceE [z} (¢)(zS(t))"] = 0. Assume now that = 0, i.e. w = sv.
Recall that he entries @f(¢) are orthogonal tdi} (sincee(t) = y(t)— Ei[y(t) | H]]). Moreover,
from Lemmal4 it follows that (y”(¢),e”(¢))” is RC. Hence, the conditions of Lemni® are
satisfied forz(t) = e(t), h(t) = y(t). Therefore, the entries of;(t) are orthogonal tad},.
Since the entries ok(¢) belong to H;, from Lemmall it follows that the entries ofX (¢)
belong toH},,. Notice that ifw = sv, then HY,, C H},. Hence in this case the entries zif(?)
are orthogonal td7},, and thus to the entries af(¢). Using thate(t), x(¢) areRC, (19) holds
and v(t) = e(t) satisfies Par of Assumption2, and}_ .. AL ® Al is stable and that the
system satisfies Padt of Assumption2, we can show that

x(t)=lim Y > A,BzS,(t), (45)

k—o0
weR* |w|<k—10€X
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where the limit is taken in the mean square sense. FenRart 3 of Assumption2 follows.
In order to show 45), we can use a reasoning similar to the proof of Lenindo this end,
notice that 19) implies that
x(t)= Y Azt + D ) AKzY, (1),
wesT,|w|=k wES* |w|<k—10€D

Hence, it is enough to show tha(t) = Zwez+7lw‘:ksz’;(k) converges to zero in the
mean square sense. Like in the proof of Lem@&ait can be shown tha[r,(¢)rl ()] =
D sene jslmkh1 2w AsSAT = ZM1(S), whereS = 3 A, T, AL, whereZ is the linear map
onR™" defined byZ(V) =" _ A,VAL. Since}"__, AT ® Al is the matrix representation
of Z with respect to the basis defined inl] Section 2.1], 41, Proposition 2.5] implies that

limy, o0 E[||7%(8)]]?] = limy_yo0 trace E[ry, (t)rf ()] = limy_, o traceRy_1(S) = 0.

D. Proof of Theorenv

Assume thaB is a minimal minimal realization of andB satisfies Assumptio. Then by
Theorem5, Rg is a representation of, andy satisfies Assumption3 Assume that?s is not
a minimal representation of,. Consider a minimal representatidghof ¥,. From Theorent
it then follows that there exists@BS realizationBy of y such that the dimension &f; equals
dim R and By satisfies Assumptio. From the construction oRy it follows that dimB =
dim Rg, hencedim B < dim R = dim Bg. This contradicts to the minimality aB, henceRg
has to be minimal. Conversely, assume tRatis minimal, and consider &BS realizationB,
of y such thatB; satisfies Assumptio@. Thendim B; = dim Rp, < dim Rg = dim B. Since
B; was an arbitrary realization gf, it then follows thatB is a minimal realization ofs. The

second statement of the theorem is a direct consequence éfshone and of Theorerh

E. Proof of the results related to the realization algorithm

Below we present the proofs of Lemmas- 6 and Theoren8. To this end, we will need the
following auxiliary result.

Lemma 17:Let My be a sequence of closed subspaces suchMhatC My, and letM be
the closure of the spadg),-, M. Let h be a mean-square integrable scalar random variable,

and letzy = Ej[h | My] andz = Ej[h | M]. Thenlimy_,., zy = z in the mean-square sense.
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Proof of Lemmal7: Itis clear that iflimy_,., zy exists and equals, thenz = Ej[h | M].
Indeed,z = E;[h | M] if and only if h — z is orthogonal toM. If z = limy_, zy, then, since
h — zx is orthogonal toM y, it follows thath — z is orthogonal toM y for all N. Hence,h — z
is orthogonal to), as the latter is the closure pfy_, My.

In order to show thaky is convergent in the mean-square sense, it is enough to diedw t
zy is a Cauchy sequence. To this end, defire= ||h — zy|| and notice that for any € My,
dy < ||h — s||, due the the well-known properties of orthogonal projedi@nto M. Since
My C My, it then follows that0 < dy; < dy, and hence the limiimy_.., dy = o exists.

Notice that< (h — zy.x),zyy >= 0 for all 0 <1 < k. Hence,
[|h — zn k|| =< h — Zyyp b — 2y >=< h — Znyp, h >=< h — zZn4p, h — 2x >,

and thus
1zn41 — Zn]]* = [|(Znse — h) + (h = 2w)I]* = [|h — 2zw]|* = ||k — Zxsa]]®
dy — di
Sinced? is convergent, it is a Cauchy sequence, and hence for any there existsV, > 0
such that for anyV > N, and for anyk > 0, 0 < d3, —d%,, < €, and henceé|zy,, —zy||* <,
i.e. zy is indeed a Cauchy sequence.
[
Proof of Lemmab: From Lemmal? it follows thatlimy .., xy(t) = x(¢). From this and
ey(t) =y(t) — Cxn(t) ande(t) = y(t) — Cx(t) it follows thatlimy_,.. ey(t) = e(t). Finally,
My oo XN (1) Uy (1) = x(1) 0y (1), imy_o en(t)u,(t) = e(t)u,(t) follows from Lemmall. m
Proof of Lemmab: The proof is analogous to the proof df9). More precisely, we define
HY as the linear space generated hy(t), w € XV, and defineH" as the linear space
generated by, (t)u,(t), w € V. Similarly to Lemmals, it then follows that
HT' =P H o @ < en(t)u,(t) > (46)
o

oEY
and hence

xyai(t+1) = Y (E[OR' (Ya(t + 1)) | H7V] + E[OR' (Ya(t + 1) [< en(t)us () >]).  (47)

oeY

Define K such that
BlOR'(Ya(t +1)) [< en(t)us(t) >] = K en(t)us(t). (48)
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If we show that

ElOR (Y, (t+1)) | HPY] = %Agxmwug@), (49)

then combining this with48) and @7) we obtain @4). It is left to show that 49) holds. To this
end, notice that[xy 1 (t+ 1)zl (t+1)] = A,Bs wheres is the first letter ofw, w € ¥+, The
proof of this equality is analogous to that of Lemma The proof of 47) is then analogous to
that of 39). Finally (25) follows from (47) in a way similar to the proof of43). [ ]
Lemma 18:If y is a full-rank process and satisfies Assumptioand Assumptiont, then for
large enoughV, Ty is invertable.
Proof of Lemmal8: Since the underlying assumption of this section is that Agsion
3- and Assumptiord hold, it follows thaty has aGBS realization of the form X9). From
y(t) = Cx(t) + e(t), Vt € Z it follows that z,(t) = Czl(t) + z°(t), Vt € Zp,. Ty =
CE[zx(t)(zX(t)T)CT + Elz8(t)(z8(t))']. Hence, Ty = Ry + Qn, Where Ry is the block

matrix Ry = (CE[zX (t)(z} (t))"]CT); j=1...mv) @and Qy is the block-diagonal matrix, whose

ith diagonalp x p block, i = 1,..., M(N) equalsp,, E[e(t)e” (t)uZ (t)], v; = 0,0;. Sincey is
full rank, it then follows thatQ)y is strictly positive definite. Notice thak is positive semi-
definite by definition (as a covariance matrix @&y, (¢))", ..., (3, (£))")"). Hence,Ty is
strictly positive definite. [ |
Proof of Theoren8: From Partl of assumptions of the theorem it follows thah ;.. T v =
Ty andlimy; ., QYY" = QY. Since by Lemmal8 Ty is invertable, it follows thafly s is
invertable for large enough/. Moreover, sincdimy_,., QY = Q, > 0, for large enoughV
and M, QY™ is invertable for allo € . Hence, Algorithm2 is indeed well posed.
Moreover, Part implies thatlim,; ., AM = AY for all w € X and hencéim;_, . H{I,nym,mrl =
Hy, nn+1. Hence, for large enougld/, rank Hq%,aﬁ = rank Hy, o3 = rank Hy, = n.
From Algorithm 1 it is clear that its outcome is continuous in the input matiy y n.1,
i.e. limy oo MF, = Ay, limy oo MG = B, limy e M H = C. Hence,limy oo Ayr v = Ay
and hencelimy; .., an .y = /N\NTjgl = ay. This and 27) yields thatPY = limy;_,., PMY.
Using @5 yields limy; ., KXY = KY. Moreover, notice thatimy; ... Qv = (Tpo —
CPNCT) and the latter equal&[ey (t)ek (t)ui(t)] = QY. Finally, from Lemmab5 it follows

o

thatlimy o PY = P, limy_,o QY = Q,, and by virtue of 25), limy_,., K = K. u
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V. JUMP MARKOV LINEAR SYSTEMS

The goal of this paper is to present a realization theory folaas of discrete-time stochastic
hybrid systems known as jump Markov linear systems (JML&E].[In reality, however, we
will look at stochastic hybrid systems of a slightly more geal form than the ones defined in
[41]. The reason is that the more general class generates thee dass of output processes as
classical JMLS, but it is easier to establish necessary afiitisent conditions for the existence
of a realization for the more general class.

Definition 13 (Generalized jump Markov linear system):generalized jump Markov linear
system(GJMLS), H, is a system of the form

x(t+1) = Mo e@r1X(t) + Bow.ewryVv(t) . (50)
y(t) = Comx(t) + Dov(t)

Here 0, x, y and v are stochastic processes defined on the whole set of infdgers € Z.
The procesd is called thediscrete state procesand takes values in theet of discrete states
Q =1{1,2,...,d}. The proces® is a stationary ergodic finite-state Markov process, wigtest
transition probabilitie; ; = Prob(8(t + 1) = j | 6(t) = i) > 0 for all 7,j € (). Moreover,
the probability distribution of the discrete sta#¢t) is given by the vectorr = (7, ..., mq)7,
where ; = Prob(8(k) = i). The process is called thecontinuous state procesand takes
values in one of the&ontinuous-state spacek, = R"¢, ¢ € (). More precisely, for any time
t € Z, the continuous state(t) lives in the state-space componety,). The procesy is the
continuous output procesnd takes values in theet of continuous outpufR?. The process
is the continuous nois@nd takes values iR™. The matrices\/,, ,, and B,, ,, are of the form
Mgy, 4, € RM2*™a and B, ,, € R"=*™ for any pair of discrete stateg, ¢, € (). Finally, the
matricesC, and D, are of the formC, € R?*"« and D, € RP*™ for each discrete staige ().
We will make a number of assumptions on the stochastic psesesivolved.

Assumption 7:Let D; be thes-algebra generated b§f(t — k) }x>0, and letD,, ;,, t; > t, be
the o-algebra generated b§g(¢)};-,,. We assume that for all € Z,

1) v(t) is mean square integrable, it is conditionally zero meawery®, ;. for all k£ > 0,
i.e. Elv(t) | Dix] = 0, and for alll > 0, v(t) and v(t — [) are conditionally un-
correlated giverD,, 4, i.e. for alll > 0 E[v(t)v'(t — )T | D;y,] = 0. Moreover,
Q, = E[v(t)vT(t)x(0(t) = q)] does not depend oh
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2) Theo-algebras generated by the random varialjeg — /), > 0} and{@(t +1),l > 0}
are conditionally independent giveby.
3) For anyt € Z, x(t) belongs to the Hilbert-space generated by the variables k) x(0(t —

k) =qo,...,0(t) =q) forall qo,...,q € Q, k > 0.
4) The Markov proces§ is stationary and ergodic. Therefore, for alE @

Z TsPs.q = Tg- (51)

5) Letn =n;+ny+ -+ ng. The matrix

p1,1M1T71®M1T71 p1,2M3€2®M1T72 pl,dMlT,d@)MlT,d
M = pQ’lMZT’l, @ M, p272M27:2. e pz’szT’d_ M| gt (52)
_pd,lngl ® Mg:1 pd,zMgg ® ngz T pd7dMg:d X Mg:d_

is stable That is, for any eigenvalug of M, we have|)| < 1.
6) For eachy € Q, the matrix D,Q, D], whereQ, = E[v(t)v"(t)x(0(t) = q)], is strictly
positive definite.
Assumption?7 implies that future discrete states interact with pastes&nd continuous states
only through the past discrete states. It also implies thiaaify fixed sequence of discrete states,
the noise process is a colored noise and the future noisehendutrent continuous state are
uncorrelated. In addition, Assumptigrimply that the state procesgt¢) is wide-sense stationary
and the following holds.
Lemma 19:If Assumption7 holds, then there exists a unique collectionmgfx n, matrices
P, with ¢ € @, such thatP, satisfy
Py =" pgu(M P.M!, + B, Q. qBL,), (53)
sEQ
whereQ,, = E[v(t)v(t)Tx(0(t) = s,0(t + 1) = ¢)]. In addition P, = E[x(t)x” (t)x(0(t) = q)
for all ¢ € Q andt € Z.
We present the proof of LemmiD later on in the text. In fact, Lemm&0 follows from Lemma
4 and the relationship between GJMLSs a@®Ss which will be presented in the sequel.

realization by a GJLS system as follows. Next, we define th®nmf dimension for GIMLS.
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Definition 14 (Dimension of a GJMLS)fhe dimensionof a GJMLS H with discrete state
processd taking values or) = {1,2,...,d} is defined as

dimH =ny +no+ -+ ng, (54)

wheren; is the dimension of the continuous state space associatéddigcrete state, i.e.
n, = dim &, for ¢ € Q.

Remark 8:Notice that two GJLSs can have the same dimension even ifithengions of
the individual continuous components are completely chffie
The main motivation for the definitions above is that it aldows to formulate a neat charac-
terization of minimality. In addition, it is intuitively gpealing, as the definition of dimension
reflects the amount of date which is required to store thes stdbrmation. Next, we define
when a GJMLS is a realization of a given process. For ease tatian, in the sequel we will
keep the discrete state proceBdixed and whenever we speak of a GIJMLS realization of the
processy, we will always mean a GJMLS ¢f with discrete state proceds. More precisely,
let y be a stochastic process taking valuesRin

Definition 15 (Realization by GIMLS)fhe GIJMLS H with discrete state procegkis said
a realization of y, if the output process off equalsy. We call a realizationd of y minimal
wheneverdim H < dim H’ for all GIMLSs H’ that are realizations of.
This section will be devoted to the solution of the followirgplization problem for GIJMLSs
with fully observed discrete states.

Problem 1 (Realization problem for jump-markov systen@iuen a procesy and find con-
ditions for existence of a GJMLS which is a realizationyofand characterize minimality of
GJMLS realizations ofy.

A. Relationship between JMLS and GJMLS

Note that the classical definition of discrete-time JML&][differs from (50). The main
difference is that in our framework the continuous stataditéon rule depends not only on the
current, but also on the next discrete state. More spedificalJMLS according to41] is a

GJIMLS system of the form
x(t+1) = Agwyx(t) + Boyv(t) . (55)
y(t) = Cg(t)X(t) + De(t)V(t)
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wherex(t) € R" is the state process,(t) € R™ is the noise process;(t) € R? is the output
process and4, € R"*", C, € RP*", B, € R*™*™ and D, € R?*™ for all ¢ € Q = {1,...,d}.
In other words a JMLS is just a GMLJS of the forfa0f such thatr, = » for all ¢ € ) and
My, 4 = Ay, 1.€. M, 4, depends only o, for all ¢;, ¢ € Q. In case of JMLS, one does not
speak of state-spaces belonging to different discretesstatd the most natural candidate for the
state-space of a JMLS is the spaceR™. Therefore, the most natural definition of dimension
for a JMLS is the dimension of its state-space.

The classes of GIMLS and JMLS are equivalent in the folloviegse. First, it is clear that
a classical JMLS also satisfies our definition. Conversel@JMLS of the form $0) can be
rewritten as a classical JMLS with the same noise and outmaegses, but with the continuous
state process and the system matrices are replaced by aumugi state process and system
matrices living in the continuous spad&: "2 *"4Maore precisely, ifH is a GIMLS of the
form (50), then define the JMLS

~

X(t+1) = Agpx(t) + Be(t)v(t)

S(H) : . ) (56)
y t) = Cg(t)f((t) + De(t)V(t)
T

wherex(t) = |%7(t), ..., &L(t)| . xT(t) = M gu-1)x(t—1)+ Byoq—1yv(t—1), ¢ € Q, and

01,¢Mia, O24Mi 2, Oa,q M ) B, ‘1-

Aq _ 51 qM2 1, 52,(]]}4272’ 5d qM2 d Bq = BQ 7

[01.4May, 024Mag, ... ddqMaa [ Bag

éq = 517(]017 527(]02, [N (5d7qu )

whered; ; = 1if ¢ = j and¢;; = 0 if < # j for all 7,5 € Q. It is easy to see that the output of
Sy and H coincide, i.ey(t) = y(t). Hence, a process can be realized by a GIJMLS if and only
if it can be realized by a JMLS. In addition, notice that is wefide the dimension of a JMLS
as the dimensiom of its state-space, thetim S; = dim H. In other words, the definition of
the dimension for a GIJMLS becomes the natural definitionedhe GIJMLS is converted to a
JMLS. This is a further argument in favor of the definition aihénsion of GIMLS adopted in
this paper.
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§V-B presents conditions for the existence of a realization d¥IIC8 and a characterization

of minimal GJMLSs. The proofs dfthe results ofv-B are presented igV-C.

B. Solution to the realization problem for GJIMLS

Below we will present the solution to the realization prablédor GIJMLS. We will only
state the results, their proofs will be presentecVAC. We start with formulating conditions
for existence of a realization by a GJMLS. To this end, we fixracpssy(t) € R? GIMLS
and a Markov-procesé(t) € Q = {1,...,d}. We will formulate sufficient and necessary
conditions fory(t¢) to admit a GJMLS realization. In order to formulate the asstioms ony
which characterize realizability, we will recall the temology of Sectionll and we will try to
interprety(¢) as a potential output process ofz8BS. More precisely, we define the alphabet
to be the set of pairs of discrete states, Le- @) x Q. For each lettefq, ¢2) € X let the input

processes oB3 be defined as

Ugy 40)(t) = X(O(t + 1) = q2,0(1) = q1). (57)

Define pg, ¢.) = Pq1,q.- NOtice that Assumptiord holds witha, = 1 for all o € X. We define

the set of admissible sequencegsee Definitiond) as

L=A{w=(q1,0)(q2,03) - (@e—1,q) | k> 0,q1,¢2,...,qx € Q}. (58)

Notice that ifw = 0y05---04, ¢ L, thenu,, (t — k) ---u,,(t) = 0. Using the correspondence
described above, we can interpret the procgds) defined in (0), i.e. if w =0 -0 € 2T,
O1,...,0r € 5, With 0; = (¢2i-1,¢2i), fOr Goi_1,q0; € Q, i = 1,...,k, then ifw ¢ L, i.e.
G2i 7 @oir1 for somei =1,... k, thenz,(t) =0, and if go; = qo;41 foralli =1,... k, i.e. if
w € L, then

2V (t) =yt —k)x(Ot —k)=s1,...,0(t) = s)

wheres; = ¢»;_1,7 =1, ..., k. In accordance with Notatio® we drop the superscrigt and we
denotezy (¢) by z,(t). The terminology above allows us to apply Definitiérto y and speak
of y being full rank.

Now we can formulate the assumptions which are necessargufidient for existence of a
GJIMLS realization ofy.
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Assumption 8: 1) {y(t),z.(t) | w € X} is jointly zero-mean, wide-sense stationary, i.e.
Ely(t)] =0, E[z,(t)] = 0 for all t € Z and the covarianceB|z,,(t)z! (t)], Ely(t)zL(t)],
w,v € X are independent of € Z,

2) theo-algebras generated Hy (¢t — ) };°, and{0(t +1)};°, are conditionally independent
w.r.t to theo-algebraD; generated by 0(t —1)}7°,

3) y(t) if a full rank process.

In fact, Assumptior8 not only guarantees existence of a GJMLS realization, lalsd guarantees
existence of a GJMLS realization which is its own Kalmarefili.e. the best possible estimate
of its state based on observable is the state itself. In aodstiate the existence of such a GIMLS,
we need additional terminology.

Definition 16 (GJMLS in forward innovation form)©e will call a GIJMLS H of the form
(50) a GJIMLS inforward innovation form if the noise process(¢) equals the innovation
processe(t) = y(t) — Eiy(t) | {z.,(t) | w € ¥7}] and D, is thep x p identity matrix for all
q € Q.

With the definitions above, we can state the main result cfterce of a GMJLS realization.

Theorem 9 (Existence of a GIJMLS Realizatiohlte procesy satisfies Assumptio8 if and
only if there exists a GIJMLS/ of the form 60) which is a realization oy and which satisfies
Assumptions/. Moreover,H can be chosen to be in forward innovation form.

From the discussion ifV-A and Theoren® we can also deduce the following condition for an
existence of a realization by JMLS.

Corollary 7: Theorem9 remains valid if we replace the word GJMLS by JMLS.

The second claim of Theorer is important for filtering. Notice that ifH is a GJMLS
(respectively JMLS) is in forward innovation form, then gt éasy to see thai(t) = Ej[x(t) |
{zu(t) | w € £7}], i.e. the Kalman-filter of the7 is H itself. Recall that Kalman-filtering of
JMLS is a well-established topiet{].

Theorem9 follows from Theorem¥ by establishing a correspondence between GJMLSs and
GBSs. This correspondence is interesting on its own right. Meee it will help us to formulate
the characterization of minimality for GJMLSs. The defimitiof this correspondence will also
explain our choice of working with GIJMLSs rather than JML8® correspondence is much
simpler for GIMLSs than for JMLSs. For this reason, we widgent this correspondence below.

We will use the following notation.
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Notation 8 (Identity and zero matrices)n the sequel, we denote b9, ; the k x [ matrix
with all zero entries and we denote liy the k£ x & identity matrix.

In addition, we will introduce amuxiliary output procesg (t) € Rr¢ which is defined as follows

V() = [yT(t)X(O(t) =1), y'O)x(0(t) =2), ..., y (t)x(6(t) = d)]T (59)

Below we will show that GIMLSs realization gfyield GBSs realizations ofy and vice versa.
Moreover, these transformations preserve minimality aamiorphisms. This will enable us
to use the existing results on existence oGBS realization and its minimality to prove the

corresponding results for GJMLSs. Notice that for
E = [Ipv . Ip] c Rpxpd’

y(t) = £y(t). Hence, ifB of the form @) is a realization ofy(¢), then by replacing the matrices
C and D of B with £C' and£D, we obtain aGBS realization ofy.

In fact, from the definition ofy we can conclude the following.

Lemma 20:If the processy satisfies AssumptioB, theny also satisfies Assumptio® In
addition, if we defines(t) = y(t) — Ei[y(t) | {z%,(t) | w € X*}], then

Moreover, the Hilbert-space spanned by the entrie§zgft) | w € ¥+} coincides with that of
spanned by the elements §£Y (¢) | w € X7 }.
Next, we associate a generalized bilinear syskemwith a GBJMLS H.

Definition 17 GBS associated with a GIMLS)Assume that/ is a GJLS of the form50)
and H satisfies Assumptions. We will define theGBS By, referred to as th&BS associated

with H as follows.

X(t+1) =Y (AX(t) + Kov(t)u,(t)
BH oex (60)

y(t) = Ox(t) + Dv(1),
In order to define the parameters 8f we definen = n, 4+ --- + ny and for eachy € ) define
the matriced, € R"*", S, € R™*dm

Sq = [Omv(q—l)mexm’ O (@-gm

T
L= [Oums o Oupnrs Tu Onpir O,
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Using the matrices above, we define the parameteisofs follows.
T
State x(1). X(t) = |x"(Ox(0() = 1), ..., X'()0(t) = )| ER"n=ni+ - +n,
T
Noise ¥(t). ¥(t) = [V (t)y(8(t) = 1), ..., vI(H6(t) = d)] €R™

Matrices A, ). Define for eachy, ¢, let A,, ,, be then x n matrix

A(QLQQ) = qu Mq I

1,927"q1

The matrix K, ). Then x md matrix K, ,,) is defined as
Kg1,00) = 10:Bg1,4254:-

Matrix C. Thep x n matrix C' is defined by

T
C= Ilcf, Igcg, ey Ing
That is,C is a diagonal matrix, such that for alle @ its diagonal block indexed by row indices
i=(¢—1)p,...,qp and column indiceg = [ny +---+n,1+1,...,n1 +---+n,] equalsC,,.
Matrix D The p x md matrix D is defined by

p=|[stpr, sipf, ..., sipi|
Lemma 21:The output process @fy equalsy. If H satisfies Assumptions thenBy satisfies
Assumption2. Moreover, if we define) = €D = [Dl, o Dd], then for anyo = (q1, ¢2) €
2, DERT ()% (t)x(8(t) = q1,0(t + 1) = g2] DT is strictly positive definite.
Remark 9:If the GIMLS H is a jump-Markov linear system of the type studied 4r]] i.e.

x(t+1) = Foupyx(t) + Gowv(t) (61)

y(t) = Hg(t)x(t) + Lg(t)V(t)
where F, ¢ R™*", G, € R, H, € R*", G, € RP*™, ¢ € ©, then we can directly construct
a GBS

X(t+1) =Y (AX(t) + K v(t))u,(t)
B = (62)

y(t) = CX(t) + Dv(t),

whose output isy. In this caseﬂ(qm) is and x nd matrix, all elements of which are zero,

except then x n block at location(q;, ¢2) which equalF,,. Similarly, [?(qm) is annd x md
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matrix, all elements of which are zero, except the m block at location(q;, ¢2) which equals
Gy,. That is,

O, () F1 0 Oa)(qrae) Fa O (ara)G1  0(1,d),(q1,02) G
Z(qhqz) - : : : ) fg(qlm) - : : :

O e F1 O a0 Fa O () G1  Odd) (1,02 G
where ;= 1 if k =i andj = [ and ;)4 = 0 otherwise. The matrice§’ and D
areC = [Cl, C Cd]T, D= [L1, . Ld]T. The processes andv are defined ag(t) =
[XT(t)X(O(t)zl), xT(t)H(t):d)}T,V(t): [vT(t)x(e(t)zl), VT(t)H(t):d)]T.

If H satisfies Assumptionsg, thenB defined above satisfies Assumptian
We can reverse the construction above, by associating wéhy&BS B a GIMLS H.
Definition 18 (GJMLS associated witBBS): Let B be aGBS of the form
X(t+1) =Y (Ax(t) + K,&(t))u,(t)

oey

y(t) = Ox(t) +e(t)

wheree(t) is the innovation process of(¢) defined in Lemma20. Define theGIMLS Hp
associated witlB as follows.

X(t + 1) = Mps1y00%(t) + Kour1)omelt)
HB : (63)

y(t) = Cowx(t) + e(t),
where In order to define the parametersiff, we use the following notation.
For eachq € @, define the matrixM, € RP*?? as

M, = [Op,p(q—l)v Iy, Opm(d—q—l)] '

For eachqg € () define X, C R" as the subspace spanned by all the elements belonging to
ImA g, ) AwK (oML, andImK,, oML for all g1, ¢2,q5 € Q, w € ¥*, 0 € 5,0 =1,...,p.
Let n, = dim X,. LetII, € R"*" be such that the columns o, are orthogonal and they span
X,, i.e. IITTI, = I,, andImIl, = X,. ThenIl, is the matrix representation of the inclusion
A, CR" and H'*qr is the matrix representation of the projection of elemeffitR® to .

1) Continuous state-space fqre Q: R", n, = dim X}

2) State processThe continuous state processt) of the GIMLS is obtained from the

continuous statex(t) of the generalized bilinear systei® as follows. Then letk(t) =
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Hfg(e)(x(t)), i.e. x(t) is obtained fromx(t) by viewing it as an element ofty,, and
identifying it with the corresponding vector iR™ for ¢ = ().

3) System matricedzor eachq,, ¢, € ) the matrix)/,, ,, € R"2*"x is defines as
MlIMIz = HZ;A((]L(H)H(]l

i.e. My, 4, is the matrix representation of the maf, > » — A, 4, )z € X,,. For each
q € @ the matrixC, € RP*"™ as
C, =M,C1],.

4) Noise gainK,, ,, Let K,, 4, = 1% Ky, 4y ML .

Lemma 22:Assume thaf3 is in forward innovation form, it satisfies AssumptioBdsand it
is a realization ofy. Assume moreover that satisfies Par? of Assumption8. Then Hg is also
a realization ofy, it is in forward innovation form, and it satisfies Assumpisa’. Moreover, if
the representatiois associated with3 is reachable and observable, theh = 1c0 Xa and
hencedim B = dim Hp.

Remark 10:In fact, we can convert angBS B of the form

Bt +1) = (AX(t) + K, (t))u,(t)

oeEY

y(t) = Cx(t) + Dv(t)
to a jump-Markov linear system of the type defined 4r][

x(t+1) = Foyx(t) + Gouv(t)

. (64)
y(t) = Hg(t)x(t) + Lg(t)v(t)
T
Wherex(t) = [le(t% . ,zg(t) , Zq(t) = A(q’g(t_l))i(t — 1) + K(qﬂ(t_l)ﬁ(t — 1), qc Q, and
L,=D
Hq = 6{1,107 6q7207 6q,dC
(610401, OagAng, - dagAua] (K1
F = 51,&(271)7 52,#%(272)7 5d,qfl1(27d) G, - K(.Zq)
01,4A@1), 02442, - OagAa | K(d,q).
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whered; ; = 11if i = j andd;; = 0if i # j for all 7, j € Q. If B satisfies Assumption3, and
it is a realization ofy, then H is also a ealization of and it satisfies Assumptions

Recall the notion ofminimality of a linear system realization. In particular, recall that a
realization by a linear system is minimal if and only if it isachable and observable. In this
subsection, we will formulate similar concepts for GJIMLShiully observed discrete. We first
define the notions of reachability and observability for M&$. We then show that a realization
by a GIJMLS is minimal if and only if it is reachable and obsétea

In order to formulate the conditions more precisely, we wékd to introduce some notation.
In particular, we need to define reachability and obseritgbitatrices for GIJMLS. To that end,
let H be a given GIJMLS of the fornb() that satisfies Assumptions Let N be the dimension

of H, i.e. N =dim H, and for all (¢;, ) € Q@ x Q = X let
Gy =By (t = 1)x(0(t) = ¢2,0(t = 1) = q1)] =
:pqhqz(MququqlC; + By Qo D;) € R®*P.

Recall the definition ofL C @ x @ = X from (58).
Notation 9 (Matrix products):We define the following notation for the products of matrices

(65)

M, 4 € R*a*"2 For any admissible wordh = (¢, ¢2) - - - (qx—1,qx) € L, wherek > 2 and

qlu"'quEQu |et
M

Qk—2,qk—1

M

q1,92

M, =M,

qk—1,9k

€ R *Man (66)

If w = ¢, thenM, is an identity matrix, dimension of which depends on the ernit is used
in. If w ¢ L, thenM,, denotes the zero matrix.

Notation 10: For eachq € @, LY(N) be the set of all words im € L such thatjw| < N
andw = v(qy, q) for someq; € Q andv € L.

Definition 19 (Reachability of a GIMLSYor each discrete statec (), define the matrix

RH,q - [Mqu17q2 | q1 € Qa q2 c Q? (qb QQ)U € LQ(N)] S anX\Lq(NHp. (67)

We will say that the GIMLS is reachable if for each discrete statge @, rank (Ry,) = n,.

Notice that the matrix?y , is analogous to the controllability matrix for linear syste
Notation 11: For eachq € @, let L,(/N) be the set of all words i of length at mostV

that begin in some pair whose first componeng,is.e. L,(N) is the set of all words inv € L

such thatjw| < N andw = (¢, ¢2)v for someg, € @ andv € L.
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Definition 20 (Observability of a GIMLS)ror each discrete statec (), define the matrix
O = (Co. My)" | @1 € Q, a1 € Q, v(qu—1, ) € Ly(N)]" € RIFa(N)lpxng (68)

We will say that a GIMLSH is observableif for each discrete statge @, rank (O ,) = ny.
Notice that the matribOy , plays a role similar to the observability matrix for linearstems.

Recall from @0) the definition of theGBS By associated with a GJL%. Recall from
Definition 10 the definition of the representatioflz,, associated with th€&BS By. We will
denoteRg,, by Ry and we will call it the representation associated with th&1G3 H. Recall
the definition of reachability of a representation alonghwithe definition of the spacépy,,
defined in B). Observability and reachability of a GIJMLE can be characterized in terms of
the observability and reachability of the correspondingresentation?; as follows.

Lemma 23:The GIJMLSH is reachable if and only iR is reachable, andf is observable
if and only if Ry is observable.

The lemma above implies that observability and reachghilita GJIMLS can be checked by
a numerical algorithm.

Definition 21 (Morphism of GIJMLSs):et H be a GIMLS of the form50) and let H is
another GJMLS realization gf given by

X(t+1) = Moy.o0r1)%(t) + Bow oV (t) ©)

() = Cowx(t) + Do v(t),
where the dimension of the continuous state-spacH @brresponding to the discrete statés

fq- A morphism fromH to H is a collection of matrice§” = {7, € R"*"a} ., such that for

all g1, 92 € Q.
quMq17q2 = Mq17q2Tq1v CQl = Cq1Tq1v quGq1,q2 = Gq1,qzv (70)

whereG,, ,, is defined in 65), and

N

Go = \/pq1,q2(Mq1,q2Pq1C£ + Bq1,q2Qq1D;’1> (71)

where P, = E[x(1)X" (1)x(8(t) = )] and @, = E[v ()" (1)x(8(1) = a1)].
T will be called an isomorphism, if for alf € Q, n, = n, and T}, is invertible.
Note that7 = (7;) is an GIMLS isomorphism, if and only if the m&f- : Ry — Ry is a

representation isomorphism, whee = >° _, LTI

q€Q
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We are now ready to state the theorem on minimality of a GJMaaization.

Theorem 10 (Minimality of a realization by a GJMLS)et the GIJIMLSH be a realization
of y of the form 6£0) and assume thall satisfies Assumptior. Then, the GIJMLSH is a
minimal realization ofy if and only if it is reachable and observable.Af is another minimal
GJIMLS realization ofy such that/ satisfies Assumptiof, then 4 and H are isomorphic.

Remark 11:Notice that in {0) we do not require any relationship betweBp ,, and K,
This is consistent with the situation for linear stochasiistems.

Remark 12 (Realization Algorithms)t is clear that reachability and observability, and hence
minimality, of a GJLS can be checked numerically. It is alssyeto see that the Algorithra

can be adapted to obtain a weak realizatidrof y.

C. Proofs of the results on realization theory of GJIMLSs

Below we present the proofs of the statements presentéd-i. In addition, we present the
proof of Lemmal.
Proof of Lemma20: We show thaty satisfies the parts of AssumptioBsone by one and
then we show that the statement of the lemma for the innavatiocess ofy is true.

y is an RC processDefine the matrixM, € RP*% as

M, = [Op,(q—l)pv Iy, Of”v(d_q‘l)p] '

It then follows thatz¥,(t) = MZzZ(t) if w = (¢,q)v for someq,q € Q, v € £*. Moreover,
notice thaty (¢)(z3,(t))" = MLy (t)zL(t)M,, whereg € Q is the first component of the first letter
of w andg, € @ is the second component of the last lettervolt is then easy to check thatyfis
aRC process, then so 8. In order to see that is anRC process, notice that the first requirement
of Assumptior8 implies thaty satisfies Part of Definition 5. Thaty satisfies Par2 of Definition

5 can be shown as follows. i ¢ L, thenu,(t) = 0 by definition of L. Let w,v € X* be
such thatwo,ve” € L and |w| > 0. It is clear thatz,,(t)z,(t) contains a termu, (¢)u, (t)

and the latter term is zero, if # o'. Assume that: = o' = (qy, ¢2). Then, using the definition

of 2y, (t), 2u(t), El2ue(t)2y,(1)] = - —Elzu(t — Dz, (t — )x(0(t — 1) = ¢1.0(t) = ¢)].
Here, forv = ¢, z,(t — 1) = y(t — 1). Using the assumption on conditional independence,
Elzy(t = )z, (t = D)x(0(t — 1) = 1,0(t) = @2) | Dia] = E[x(0(t — 1) = 1,0(t) = ¢2) |

Dy ] Elzy(t— 1)z (t—1) | D,_y] = pq1q2x( (t—1) = q1)Blzo (t— 1)z (t—1) | D,_,]. Note that
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Elz,(t—1)zl (t—1)] = E[E[z,(t—1)zL (t—1) | D;-1]]. Moreover,wo € L, |w| > 0 implies that
¢, is the last component of the last letteriofHencez,, (t—1)x(0(t—1) = ¢1) = 2z, (t—1). From
the properties of conditional expectation it follows thbatty (0(t—1) = ¢;) E|z,(t—1)zL (t—1) |
D] = Elzu(t — D)x(0(t — 1) = ¢1)z!(t — 1) | Do) = Elza(t — Dot — 1) | Deyl.
Combining all these remarks, it follows thatz,, (t — 1)zl (t — 1)x(0(t —1) = ¢1,0(t) = ¢)] =
Par.n Bz (t—1)zL (t—1)] and henceF [z, (t)z!, (t)] = E|z,(t—1)z! (t—1)]. That is,y satisfies
Part2 of Definition 5. By Remarkl, y then satisfies Pa@@ of Definition 5 too.

Uy is rational and square summable
From the discussion above it follows thatWf; = {T(,, | 0 € X,i = 1,...,dp}, then for all
qe Q1 =1,...,p T,,4-1+(v) can be written as follows. If is the first components of
o, thenT, 14 (v) = ML S,,(v)M, for all v € ¥* whereov = s(q1,¢2) for somes € ¥*,
@1 € Q. If g is not the first components of, thenT, -1 (v) = 0. It is not difficult to
construct a rational representation\d§ based on such a representationigf. Indeed, assume
thatR = (R”, {A,},cx, B, C) is a representation df,. DefineX = R% and defined,, € R"*™
by

H, = [O"v(q—l)m In, O"v(d_q_l)"} '

Let A, o) = HL Ay 0 Hays Blayas)par—1)+i = Hoy Blargn)in i = 1,...,p and letByy, g, = 0
for all | # p(q, — 1) + i for somei = 1,..., p. Finally, defineC' = [H{CT, o HdTCT]T,
i.e. C'is a block diagonal matrix, whosgy, ¢)th p x n block equalsC'. It is then easy to see
that R = (R™, {A,},ex, B,C) is a representation ofy. Square summability ofty follows
easily from that of®y, by taking into account the relationshif} ,,,—1)4:(v) = ML S, (v)M,,
veX,l=1,...,p,q € Q, o €%, qis the first letter ofs.

Proof of the formula for €(t)
Finally, from the discussion above it follows that the Hilbspace spanned by the entries of
{z,(t) | w € ©*} coincides with that of spanned by the element$af(t) | w € X }. If z(t) =
Bly(t) | {z(t) | w € S+, then defines(t) = [ () (8(t) = 1), ..., 2" (Ox(6() = )] -
We claim thats(t) = Ej[y(t) | {zX(t) | w € XT}]. Indeed,s(t) belongs to the Hilbert-space
spanned by the entries ¢&Y (¢) | w € $*}. Moreover, ifq is the first component of the first
letter of w and ¢, is the second component of the last letterwaf then E[y (¢)(z¥,(t))’] =
M? Ely(t)zL(t)]M, = ML E[z(t)zL(t)]M, = E|[s(t)(z(t))"]. From this, the claim of the

w w
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lemma regardin@(t) follows easily. u
Proof of Lemma2l. First, we show thaB is well-defined and the output @, equals

y. For this, we have to show thai¢) indeed satisfy §0). From this and the definition of(¢)

it follows easily that the outputs off and By are equal. We show that the various parts of

Definition 2 hold one by one. First of all, Assumptioh on ergodicity of@ means that the

framework of Sectiorill can be used as it was explained before.

v(t) satisfies Partl of Assumption 2
First, we will show thatv is an RC process. From Part, Assumption7 it follows that
zY (t) is zero-mean. Moreover, for any,v € X7, |w| = k < |[v| = [, EzY(t)(zY(t))!] =

w v

E[E[zY(t)(zX ()T | Digy]. If v = ss' for somes,s € ©F, |s'| = |w| andw # s then

w v

clearly u,(t)u,(t) = 0 and henceE[zY,(t)(z)(t))"] = 0. Otherwise, ifw = s’, then notice
that u,(t) is a product of variables(0(t — r) = ¢) for someq € @ andr = 0,...,l — 1
multiplied by a constant. Hence, by Parof Assumption? E[zY (t)z) (t) | Di—| = p%E[uv(t) |
Dy y|Elv(t—k)v(t—1)" | D;_1;] = 0. Hence,E|zY, (t)(zY(t))T] = 0 for anyw # v, |w| # |v].

v

If w # v but |w| = |v], the u,(t)u,(t) = 0 and henceF|zY,(t)(z¥(t))T] = 0. Finally, if

v

w = v and|w| = |v| = k, then using Assumptiod, Part2 yields E(zY,(¢)(zY,(t))" | Di—xs] =

S Eu(t) | D Ev(E = k)T (t — k) | Diy] = x(0(t — k) = @)E[v(t — k)v'(t — k) |
Di 4] = Elv(t — k)vI(t — k)x(0(t — k) = q) | Di_x+] where is assumed to be of the form
w = (q,q1)s for someq,q; € Q, s € X*. Hence, E[zY,(t)z),(1))T] = E[E[zY,(t)(zy(t))" |
Dy _1.4)] = E[v(t — k)vT(t — k)x(0(t — k))] and the latter does not dependby Assumption?,
Part2. Hence, we have shown that[zY (t)zY (t))’] does not depend oh Finally, notice that

w

Ev(t)(zY ()T |Dyrs] = \/%uw(t)E[v(t)vT(t — k) | Di—4] = 0 does not depend ot and

henceE[v(t)(zY (t))"] = 0 also does not depend dnHence,v(t) satisfies Parl of Definition
5. Finally, from the discussion above it follows tha}, , = 0 for w # v, and7,,, = 0 for
w¢ LandT,, = E[v(t)vI(t)x(0(t) = q)] whereq € @ is such thatw = (¢, ¢:)s for some

¢ € Q, s € ¥*. This implies that Par? of Definition 5 is satisfied. By Remark this already
implies Part3 of Definition 5. Hence,v is indeed arRC process. Next, we show thatis anRC
process too. It follows that all the entries ©f () are zero except the one which corresponds to
the gth block of p rows, wherey is the first components of the first letter @f The latter entry
equalszy (1), It is then easy to see that Parbf Definition 5 hold. Consider any twa, v € T,

and let the first component of the first letterwofand v be respectively;, ¢ € Q. Then non-
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zerop x p block of E[v(t)(zY,(t))"] is the one indexed by, ¢;). Similarly, the only non-zero

w

p x p block of E[zY(t)(zY(t))"] is the is the one indexed hy x ¢,. Here, we viewed both
matrices asl x d matrices ofp x p block. The respective non-zero entries & (t)(zY,(¢)"]
and E[zY (t)(z,(t))"]. Sincev is RC, it follows thatv satisfies Par® and 3 of Definition 5.

v(t) satisfies Part2 of Assumption 2
The orthogonality ofz¥ (t) andzY (t) for w # v follows from the proof that(¢) satisfies Part
1 of Assumption2.

x(t) and v(t) satisfy Part 3 of Assumption 2 The first statement of Pa#& of Assumption
2 is a direct consequence of P&rbf Assumption7 and the fact that the sum of entriesft)
equalsv(t).

Part 5 of Assumption 2 holds From the construction ofi,, ,,) it follows that the only non-
zero column ofA, ,4,) is the one indexed by = (371 "ng) +1,..., o=y ng, and the only
non-zero rows are the ones indexediby (372, "ng) +1,. e - Hence, Ay, 0 Agr.a0)
is necessarily zero if; # ¢3. The latter condition is equwalent @1, 42)(q3,q4) ¢ L. Similarly,
the only non-zero rows ol‘{q1 ) are the ones indexed by= (Zqz L ng)+1,. 2 ng SO
again A, .. K(q1 o) = 0 for g3 # ¢o.

Part 4 of Assumption 2 holds It is easy to see thaz (a1,g2)ex Pas, q2A7;h o) ® A%;m)
and hence Part of Assumption2 follows directly from Part5 of Assumption?.

Proof that DE[VT (t)v(t)x(0(t) = q1, 8(t+1) = ¢,)]DT > 0. Notice thatD E[v7 (t)v(t)x(0(t) =
q1,0(t+1) = )] DT = D, Ev(t)v7 (t)x(0(t) = q1,0(t + 1) = g,)] DL.. From Partl it follows
that E[v()v" (t)x(8(t) = q1.0(t + 1) = g2) | D] = Efv(EV" ()x(0() = @) E[x(0(t + 1) =
) | D | D1 = py o EV(OVT()x(6(t) = ) | D] and hencet[v(t)v7 (£)x(B(t) = g, 81t +
1) = 02)] = P EVOVT ()X (O() = 0)] = Doy, Q- HENCE,DQg1.40) DT = Pyo Dy @y DL,
Sincep,, 4, > 0, by Part6 of Assumption7, the above matrix is strictly positive definite. m

Proof of Lemma22:. The first, we argue thatly is well-defined and its output equays
The only non-trivial thing is to prove that(t) is well defined and that the output éfg is y.

First, notice that LemmaO0 implies that

Ko o@+1€(t) = Kow,o+1) Mo e(t)
It then follows that
X(t+1) = Mgy X(t + 1) = Moy Ao o)X (t) + Moy Kowoenet)  (72)
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Note that from Lemma2 it follows that x is an RC process and that(¢)x(€(t) = q) be-
longs to X, = ImlIl, almost surely. Hencello() 115, x(t) = x(t) and thusAg1),e¢)x(t) =
Ag+1),000loX(t). Substituting this into{2) yields that

%(t+1) = Morn,002(t) + Koen.owe(t).

Hence, the first equation affz holds. Notice thatMg,y(t) = y(t) and Mge(t) = e(t).
Moreover, by the discussion above it follows ti@k(t) = Cllgyx(t). By multiplying y(t) =
Ci’(t) —|—€(t) with M@(t) we obtain

y(t) = Couyx(t) + e(t).

That is,y is indeed the output off.

Next, we show that/y satisfies each of the assumptions of Assumpfion

Part 1 of Assumption 7 Sincey(t) is the output ofB, by Theoremd it is RC. Moreover,
becauseB satisfies Assumptiof, the innovation process RC too. HenceE[zS (t + |w|)] = 0
for any w € X%, which implies thatE[e(t) | Diyx] = 0 for any & > 0. Notice that for any
w e X,

w| = [ the variablesu, (¢ + 1) generate ther-algebraD;_;,. Notice that for any
weXt, lw=1-1,0e€X Ele(t)e’ (t — Duy,(t +1)] = /Puo L[z (t +1)(22,,(t + 1))"] = 0.
Hence, Ele(t)e” (t — 1) | Dy,] = 0. Finally Ele(t)e” (t)x(0(t) = q)] = > ,c0 Elzf, . (+
1)(z, 4, ( + 1))7] and the latter does not depen buue to the fact thag(t) is RC.

Part 2 of Assumption 7 Let F; be theo-algebra generated by the variablgegt — 1) },>, and
denote byF; Vv D, the smallest-algebra which containg; and D;. Let F;, be theo-algebra
generated by @(t+1)},~o and notice that by assumptiofy and.F; are conditionaly independent
w.r.t. D,. From the elementary properties of conditional independeand the fact thaF; and
JF» are conditionally independent w.r®; it follows that 7; v D, and F; are also conditionally
independent w.r.tD,.

Hence, it is enough to show that for> 0, e(t — 1) is F; V D, measurable. From this and
the discussion above it then follows that thealgebra generated bfe(t — 1) }°, and F, are
conditionaly independent w.IT2,. Notice thate(t — ) belongs to the Hilbert-space generated by
{y(t—1),z,(t—1) | w € X1}, and hence by Lemma e(t —1) is measurable w.r.t the-algebra
generated by{y(t —1),z,(t — 1) | w € ¥T}. The latterc-algebra is contained itF; vV D, and
hencey is F; V D, measurable, as required.
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Part 3 of Assumption 7 This is a direct consequence of Parof Assumption2.

Part 4 of Assumption 7 This a direct consequence of Assumpti&an

Part 5 of Assumption 7 It then follows thatM,, ,, ® M, ,, = (IIL, ® 117 )(A(g .4
Agrgn) Iy, ® 1) Let P = (Py,...,P;) ad tuple of matricesP, € R"*" such that if
Jeo 2 vector ¢(P), then M7 ¢(P) = \¢(P) for some) € C. It then
follows that AP, = 3", .o prgM. P M7, Notice that with P, = IT,P,ITI = (TI, @ T1,)$(P),
APy =30 pT7quTA(T7q)]5TAaq)Hq. By applying from the leffiI, and from the rightI! to both
sides of the equation, we gar, = 3", o p, JL, 117 A P - Al 11T . Notice thatX;, = ImlI,
and thatd, » X, C X,. Hence A, »II, = II,S for someS € R"*". By exploitingII]II, = I,,,,
it follows thatII,IT7 A, » 11, = Aa,q)Hr. Thus, by taking into account that. = I, P17, r € Q,

P is interpreted as &

APy =Y prgAg PrAL,
re@

Note that A(. oI, = 0 for ry # r, since A, q|x.,, = 0, since X, belongs to the linear

span of elements ofmA,, 4 andImK,, ., ¢ € Q, and Part5 of Assumption2. Hence,
if P =3 ,oP thenA,,PAl = = A, PA] . Denote byZ the linear mapR™>"*
Z(m)EQXQprqu(m)VA(m). From the discussion above it follows th&tis an eigenvector of
corresponding to the eigenvalue From (11, Chapter 2] it follows) . 5.0 PraAeg) ® Arrg)

is just a matrix representation &. Then Partd of Assumption2 implies that the eigenvalues
O trpcoxa Pradee @ Awa)” = i gcoxqPradieg © Al all inside the unit disk. Since
takings transposes does not change the eigenvalues, ifdhews that all the eigenvalues of
> rg)coxq Praiog ® Aqg), and hence of, are inside the unit disk as well. Sindewas an
arbitrary eigenvalue of”, and M and MT have the same eigenvalues, it follows that Part
of Assumption? holds.

Part 6 of Assumption 7 A direct consequence of Pastof Definition 2.

Proof that R" = P, ., X,

Consider the matrix3, of B defined in (8). It then follows thatK ;, ¢,)Q(41.¢2) = Bg1.02) —
Ay Pl CF - WhereQ,, 4, = E[€(t)e” (t)x(0(t) = ¢1,0(t + 1) = ¢2)]. From Lemma20 it
follows thatQ,, 4, = ML Ele(t)e” (t)x(0(t) = q1,0(t + 1) = ¢2)|M,,. Sincee(t) and(t + 1)
are conditionally independent givén, it follows that Efe(t)e” (t)x(0(t) = q1, 0(t+1) = ¢2)] =
Ele(t)e” (t)x(0(t) = q1)]pq,.qe» > 0. Notice, moreover, thaM, M = I . Hence, by multi-

plying K(qhqz)Q(qhqz) = Bgp) — A(qhqz)P(qhqz)CT by Mg(E[e(t)eT(t)X(e(t) =q)])” lp(;llqz
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from the right, we obtain thak’y, ,,)M{ belongs to the linear span of elements of the form
ImBg, 4,) @and Ay, g2, 2 € R™.

Also notice thatM,C' A, B, = E[y(t)(zY,(t))T] = 0, if the last component of the last letter
of ow is notg € . SinceB is reachable, any € R" is a linear combination of vectors
from ImA, B, for somew € ¥*, o € ¥. Hence,M,CA, 4,) = 0 and M,CB,, 4, = 0 for
all ¢1,¢2,¢ € @ such thatg, # ¢. Combining this with the definition oft,, ¢ € ) and the
fact derived above thak(y, ., is spanned by elemenisnA, 4,), ImB, 4., it follows that
M,Cx =0 forall z € X, ¢1 #q.

We are now ready to prove th&" = @qu AX,. From the discussion above, it follows that
X, N X, ={0}. Indeed, ifx € X,, N X,,, then forq # ¢;, M,Cz = 0, and sincey; # ¢, and
r € Xy, M, Cx = 0. Hence,C'z = 0. Moreover, notice that, C ker A, ,,) for ¢ # g3, since
AganKasq = 0 and Ay, ) Agse = 0 for all g5 € Q. By applying this result tay = ¢; and
q = o, it follows that A, ,)z = 0 for any ¢;, ¢, € @ and henced,,xz = 0 for any w € X+,
That is, CA,x = 0 for all w € ¥*, i.e. 2z € Og,. SinceB is observable, it then follows that
xz=0.

It is left to show thatR" = > _, A,. To this end, consider the definition df. As it
was already mentioned(t)x(0(t) = ¢) belongs toX, for ¢ € @ almost everywhere. Hence,
the columns ofP, ,,) = E[x(t)x"(t)x(6(t) = ¢1,0(t + 1) = ¢)] belong to X,,: take any
M e R" "> such thatX, = ker M; then Mx(t)x(6(t) = ¢q) = 0 almost everywhere,
and henceM P, ,,) = 0. It then follows thatlmA,, 4,)Pg1,4)C" € X,,. From the previous
discussion it follows that<(y, 4,)Q(¢1.42) = Par.asK (1.0 M1 Ele(t)e” (£)x(0(t) = ¢1)]M,, and
hencelmK g, ¢)Q(q1,4) € Ay- Combining all this with the definition of? it follows that
ImBg, 4,) C Xyy. SiNCEA(g 4. (X;) C A, We obtain thalmA,, B, 4,) always belongs tet,
whereq is the last component of the last letter @f, ¢.)w. From reachability ofRg we then
obtain thatR" = > _, A,, as claimed. |

Now we can also easily prove Lemmni&. In fact, we will prove first a technical result, relating
state covariances dff and By. From this Lemmal9 follows easily.

Lemma 24:Assume thatf satisfies Assumption. Let P, ,, = E[x(t)x” (t)x(0(t) = q1, 0(t+
1) = ¢)]. Then for P, = E[x(t)x (t)x(0(t) = q)],

~

P,

_ T
.22 = Pargo s PQ1Iq1‘
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Similarly, it Gy, .. = BR()90X(6(1) = 1,6(t + 1) = gu)], and@,, = Elv(tyv" ({)x(6(t) =
¢1)], then
Qq1,q2 = Pq1,92 SZ; qu Sq1-

Proof of Lemma24: The second statement of the lemma was already shown in tloé pro
of LemmaZ21, while showing thaB; satisfies Parb of Assumption2 holds.

We proceed with the proof of the first statement. From the ttooson of x(¢) it fol-
lows that P, ., = L, Ex()x(t)x(0(t) = q.,0(t +1) = ¢)]I] . Hence, it is enough to
show that E[x(t)x” (t)x(0(t) = q1,0(t + 1) = ¢)] = py.ePy- To this end, notice that
Elx(t)x"(t)x(8(t) = q1,0(t + 1) = q2)] = B[Ex(t)x" ()x(8(t) = q1.0(t + 1) = g2 | D]].
Also notice that from ParB of Assumption7 it follows that x(¢) is measurable w.r.t. the-
algebra generated by (¢ — () };>0. Indeed, ParB of Assumption7 and Lemmal implies that
x(t) measurable w.r.t. to the-algebra generated biw (¢ — ) };>o.

From Part2 of Assumption? it then follows thatx(¢) and@(t), 8(t+1) are conditionally inde-
pendent giverD,. HenceE [x(t)x” (t)x(0(t) = q1,0(t+1) = q2) | Di] = pyy .o E[x(t)xT (£)x(0(t) =
q1) | D;]. Combining this with the discussion above yields tidk(t)x? (¢)x(0(t) = ¢, 0(t +
1) = @)] = g, Ex()x" ()X (0(t) = a1)]. u

Proof of Lemmal9: Consider theGBS By associated with. From the construction of
the matrices oBy it follows that the solutions to53) and those of14) interpreted folB = By
can be related as follows. Suppose tha}},co is a solution to $3). From Lemma24 it follows
that Qg.s) = Par.ewSE Qi Is,, - Define Py, ) = pyygp1e Py I . Notice thatI’I, = I, and
S¢SI = I,. If we multiply (53) by I, from the right and byI" from the right, then using the
discussion above and the definition 4f,, ,,), K,, ., we readily obtain thaf Py, 4, }a1.a0c0x0
satisfies {4). In addition, notice that the correspondence betwgen F,, and P, ,.) is injective,
sincel,, is full column rank for allg; € @). Since by Lemmat (14) has precisely one solution,
this implies that $3) has at most one solution.

Next, we show thatH3) has a solution. To this end, notice that the unique solutib(iL4)
is of the formﬁ(qlm) = Ex(t)xT(t)x(0(t) = q1,0(t + 1) = ¢2)]. Notice that the only non-zero
block of P(qm) is the one which corresponds tg, ,, E[x(¢)x” (¢)x(0(t) = ¢1)]. Define now
P, = Ex(t)x"(t)x(0(t) = q)], ¢ € Q. From the discussion above and Lemi®a and the

definition of the matricesi,, 4,y and K, 4,) it is easy to see thatP, },c satisfies §3). =
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Now we are ready to present the proof of Theorém
Proof of Theoren®: Necessity
If y has a realization by a GIJMLS which satisfies Assumpiipthen by Lemma21, y can
be realized by a&BS which satisfies Assumptio@. By Theorem5, the latter implies thay
satisfies Assumptioi. Moreover, the second statement of Lem#iatogether with Theorend
implies thaty is full rank. Hencey satisfies the first part of Assumpti@h
Finally, the validity of Part2 of Assumption8 can be obtained as follows. L& be the
o-algebra generated b (t —1)},<o. Let D, be thes-algebra generated byd (¢ +1)};>0. From
Part3 of Assumption7 andy (t) = Cyg)x(t) + Dev(t) it follows thaty(t) is measurable with
respect to the joint-algebra’; vV D;. Hence, ther-algebrat#; generated byy(t — ) };>0 is a
sub-algebra ofF, vV D;. Since by Par? of Assumption7 F, andD;" are conditionaly independent
given D,, from the well-known properties of conditional indepencert follows thatF; v D,
and D;" are conditionally independent too. Hend¢, and D," are conditionally independent
given D,
Sufficiency Assume thaly satisfies Assumptio. From Theoren# it follows thaty admits
a GBS X realization in forward innovation form which satisfies Asgution 2. From Lemma
22 it then follows that the GIJMLS{y, associated witht is a realization ofy and it satisfies
Assumption?.
[
Proof of Lemm&3. Consider theGBS BSy associated withf from (60). Then it is easy
to see thatRy = (R", {\/psAs}oes, B,C), whereB = {B, ;) | 0 € 3,5 =1,...,p} and with
By = |Boy ... Bay|,
By = \/Ps(As P,C" + K,Q, DY)

where P, = E[x(t)xT (t)u(t)]. From Lemma24 it then follows that

(e}

T
B(Ql,ln) = VPQ17€I2Iq2GlI1,lI2MlI17

whereM, = [Op,p(q—l)v Iy, Opm(d—q—l)] € Ry,

Note thatRRy is reachable if and only the elements lofi,/p A, B, ), w € (Q X Q)
lw| <n—1, (q1,92) € Q x Q, span the whole space. Notice th&t B, 4,) = 0 if (q1,q)w ¢ L
and thatB,, 4, € Iml,, and A, B, 4, belongs tolmI,, if w ends in a letterqs, ¢). Hence,

reachability ofR; is equivalent to requiring that the span of columnslof,.)., Bq, 4.)» B(g,q.) fOr
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all ¢1, 42,93, q4, |lw| <n—2,w e L equalslmlI, for all ¢ € ). Notice thatM, is full row rank,
hencelmA g ¢)wBgi.¢2) = IMIgMg 000 Ggr,0Mgr = ImIgM(g.0)0wG(g1,40) @NA ImBg, o) =
ImI,G,, M, = ImI, Gy, , for all g1, g2, g3, qs, |w| < n—2, w € L. It then follows that the span
of those vectors equalsnl, Ry ,. Sincerank I, = n,, reachability of Ry is indeed equivalent
to rank Ry, = n, for all ¢ € Q.

From the definition ofR; andBy it follows thatM, C' A, A, 1, = 0if (¢1, ¢)w does not end
in a letter(gs,7), g2 € Q, and M, C A, A, 1, = Cr- My, o Otherwise, for anyr, ¢1,q € Q,

w € ¥*. Hence,ker CA,I, = ker C.M,, for all w € L such thatw ends in(gs, 7). Notice
that C1, = C,. Finally, we remark thatv ¢ L, thenCA,, = 0 and if w does not start with
a letter of the form(q,¢:), thenCA,I, = 0. From the discussion above it then follows that
Or, NImI, =1,(0On,).

Assume now thaf?; is observable, i.e0g,, = {0}. Sincel, is full column rank, we then get
that Oy, = {0}, ¢ € Q. Conversely, assume thét, , = {0} for all ¢ € Q). It then follows that
Ogr, NImI, = {0}. Letz = (27,...,2])T € R, z, € R™, g € @, and assume that € Og,,.
Notice thatCz = [(Clxl)T, (G| andC, = M,Cyr, = Ly, q € Q. Hence,
Cz = 0 is equivalent toC,z, = 0. Moreover, for anyg,, ¢, € Q, A(g,4)T = Agr,92)1q1 74, aNd
Agrqnlgrg = 0 for ¢ # ¢q,. Hence,x € Og,, implies thatC'A,,I,z, = 0 for anyq € Q, w € ¥*,
|lw| < n—1. Hencel,z, € Og, NIml,. Since we have shown above t@t,, NImI, = {0}, it
follows thatl,z, = 0, ¢ € Q. Sincel, is full column rank, it follows that:, = 0 for all ¢ € Q.
Hence,z = 0. [ ]

Proof of TheoremlO:

Minimality — reachability and observability. Assume that? is a minimal realization of
and assume that it is not reachable or observable. Conbkiel&BS B associated with/. From
LemmaZ21l it follows that By is a realization ofy. From Lemma23 it follows Rg, cannot be
reachable and observable. Then by TheoreR); cannot be minimal. Take a minimal realization
B of y in forward innovation form. Thedim B < dim By = dim H. Construct the GIMLS3/
associated witi3. By Lemmaz22, Hy is a realization ofy anddim Hg = dim B < dim H. This
contradicts to minimality off and hence a contradiction.

Reachability and observability = minimality Assume that? is reachable and observable
but it is not a minimal realization of. Consider the associat€8BS B;. From Lemma23 it

follows that Ry = Rg,, is reachable and observable. From Theoréeind Lemma21l it then

October 8, 2018 DRAFT



70

follows thatBy is a minimal realization ofy. Assume that7 is not minimal. Then there exists

a GJMLS H such thatdim / < dim H, H is a realization ofy and it satisfies Assumption

7. From Lemma22 it then follows thatB,, is a realization ofy. Sincedim // = dim B, and

dim A = dim By, it follows thatdim B, < dim By, which contradicts the minimality db .
Minimal realizations are isomorphic If H and H are two minimal realizations of such that

they both satisfy Assumptior then by Lemma&1theGBSs By andB, are minimal realizations

of y which satisfy Assumptior2. From Theorem? it then follows that the representations

Ry = Rp, and Ry = Rp,; are isomorphic and they are both reachable and observable.

Consider this isomorphisr8 : Ry — Ry. It is easy to see tha is then an isomorphism

betweenH and . n

VI. DiscussioN ANDCONCLUSION

We have presented a realization theory for stochastic jlin@ar systems. The theory relies
on the solution of a generalized bilinear filtering/rediiaa problem. This solution represents
an extension of the known results on linear and bilinearhststic realization/filtering.

We would like to extend the presented results to more gemtmakes of hybrid systems. In
particular, we would like to develope realization theory fomp-linear systems with partially
observed discrete states. Necessary conditions for exestef a realization by a system of this
class were already presented i) Another line of research we would like to pursue is to use
the presented theory for developing subspace identificatigorithms for stochastic jump-linear
systems. Note that the classical stochastic bilinearza&#n theory gave rise to a number of
subspace identification algorithms, séeé|[ [18], [17], [15]. It is very likely that the presented
results will lead to very similar subspace identificatiogaalthms.
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