
ar
X

iv
:1

41
2.

50
20

v4
  [

m
at

h.
O

C
]  

5 
Ju

l 2
01

6
1

Realization Theory of Stochastic Jump-Markov

Linear Systems

Mihály Petreczky, Reńe Vidal

Abstract

In this paper, we present a complete stochastic realizationtheory for stochastic jump-linear systems.

We present necessary and sufficient conditions for the existence of a realization, along with a charac-

terization of minimality in terms of reachability and observability. We also formulate a realization

algorithm and argue that minimality can be checked algorithmically. The main tool for solving the

stochastic realization problem for jump-linear systems isthe formulation and solution of a stochastic

realization problem for a general class of bilinear systemswith non-white-noise inputs. The solution to

this generalized stochastic bilinear realization problemis based on the theory of formal power series.

Stochastic jump-linear systems represent a special case ofgeneralized stochastic bilinear systems.

I. INTRODUCTION

Hybrid systems are dynamical systems that exhibit both continuous and discrete behaviors.

Such systems have a wide range of applications, including systems biology, computer vision,

flight control systems, etc. While there is a vast amount of literature on stability, reachability,

observability, identification, and controller design for hybrid systems, there are relatively fewer

results available on realization theory of hybrid systems.

Realization theory is one of the central topics of control and systems theory. Its goals are to

study the conditions under which the observed behavior of a system can be represented by a

state-space representation of a certain type and to developalgorithms for finding a (preferably
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minimal) state-space representation of the observed behavior. The study of these problems is

not only of theoretical relevance, but also of practical importance in several applications such

as model reduction and systems identification. In fact, one can argue that stochastic realization

theory is indispensable for the understanding of systems identification.

A. State-of-the-art

For the class of linear systems, the realization problem is relatively well understood thanks

to the work of Kalman et al. in the sixties [1], [2]. For instance, it is well known that all

minimal representations, i.e. representations such that the dimension of the state-space is minimal,

are related by a change of basis of the state-space. Also, it is well known that the rank of a

Hankel matrixH formed from the output measurements is related the dimension of all minimal

representations and that a realization of the system can be obtained from the factorization ofH.

Such results have lead to a huge literature on identificationof linear systems [3], including the

well-known subspace identification methods [4].

For the class of bilinear systems, the realization problem is also relatively well studied thanks

to the works of Brockett [5], Fliess [6], Isidori et al. [7], [8], [9], Sontag [10] and Sussman [11],

[12] in the 1970’s. However, realization of stochastic bilinear systems is relatively unstudied,

except the case when input is white noise [13], [14]. On the other hand, there are a number of

papers on identification of bilinear systems with inputs which are not white noise, see e.g., [15],

[16], [17], [18]. However, all these papers require a number of conditions on the underlying

system in order to operate correctly.

For more general nonlinear systems, the realization problem is not as well understood. There

exists a complete realization theory for analytic nonlinear systems [19], [20], [21], [22], [23], [24]

and for general smooth systems [25], [26]. However, the algorithmic aspects of this theory are not

that well developed. There is a substantial amount of work onrealization theory of polynomial

systems [27], [28], and rational systems [29], [30], [31] both in continuous and discrete time.

However, the issue of minimality for polynomial systems is not that well understood.

One of the earliest attempts to characterize realization ofdeterministic hybrid systems can

be found in [32], though a formal theory is not presented. Since then, most of the work has

concentrated on switched linear systems [33], [34], switched bilinear systems [35], linear and

bilinear hybrid systems without guards and partially observed discrete states [36], [37], and
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nonlinear analytic hybrid systems without guards [38]. The main assumptions made are that

the continuous dynamics evolve in continuous-time and the discrete events which initiate the

change of the discrete states are part of the input. Hence, the discrete states may (switched

systems) or may not (hybrid systems without guards) be fullyobserved. For the classes of

hybrid systems mentioned above, with the exception of nonlinear hybrid systems without guards,

a complete realization theory and realization algorithms are available. [39] contains partial results

on realization theory of piecewise-affine autonomous hybrid systems with guards. In that paper

necessary and sufficient conditions for existence of a realization were presented, but the problem

of minimality was not dealt with. As far as the authors know, the only paper dealing with

realization theory of stochastic hybrid systems is [40], where only necessary conditions for the

existence of a realization were presented.

B. Paper contributions

In this paper we will present a complete stochastic realization theory of discrete-time stochastic

jump-linear systems. Stochastic jump-linear systems havea vast literature and numerous appli-

cations (see for example [41] and the references therein). For simplicity, we will consider only

stochastic jump-linear systems with fully observed discrete state. In addition, we will assume that

the continuous state-transition depends not only on the current, but also on the next discrete state

and that the continuous state at each time instant lives in a state-space that depends on the current

discrete state. In this way we will obtain a more general model, which we will call generalized

stochastic jump Markov linear systems. It turns out that the class of classical stochastic jump-

linear systems generates the same class of output processesas the new more general class.

However, by looking at more general systems we are able to obtain a neat characterization of

minimality as well as necessary and sufficient conditions for the existence of a realization. We will

also formulate a realization algorithm and argue that minimality can be checked algorithmically.

The main tool for solving the stochastic realization problem is the solution of a general bilinear

realization problem, whose formulation and solution can bedescribed as follows. Consider an

output and an input process and imagine you would like to compute recursively the linear

projection of the future outputs onto the space of products of past outputs and inputs. Under the

assumption that the mixed covariances of the future outputswith the products of past outputs

and inputs form arational formal power series, we show that one can construct a bilinear state-
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space representation of the output process in the forward innovation form. The matrices of this

state-space representation are determined by the parameters of the rational representation of the

covariance sequence of future and past outputs and inputs. The results on realization theory of

stochastic jump-linear systems are then obtained by viewing the discrete state process as an input

process.

To the best of our knowledge, both the solution of the realization problem for stochastic jump-

linear systems, and the formulation and solution of the general bilinear realization problem are

new. In comparison the work of [40] on stochastic realization of jump-linear systems, the main

contribution of this paper is that it presents both necessary and sufficient conditions for the

existence of a realization as well as a characterization of minimality. In comparison to the work

of [13] on stochastic realization of bilinear systems with observed white-noise input process, the

main contribution of this paper is to solve the realization problem for a more general class of

bilinear systems, without requiring the input process to bewhite. In comparison with the works

of [15], [16], [17], [18] on identification of bilinear systems with inputs that are not necessarily

white noise, there are two main contributions. First, the aforementioned papers aim to identify the

parameters of the system from the measurements. In contrast, the goal of realization theory is to

understand the conditions, under which a (not necessarily identifiable) state-space representation

exists. Hence, establishing algorithms for finding the parameters of the system that generate the

process answers the realization problem only partially. Second, all the aforementioned papers

assume that the system to be identified is already in the forward innovation form and impose

a number of observability and stability conditions on the underlying system, which are more

restrictive than the conditions assumed here.

C. Paper outline

The outline of the paper is as follows. SectionII presents the background material on the theory

of rational formal power series. These results will be instrumental for solving the generalized

bilinear realization problem, which will be formulated andsolved in SectionIII . SectionV

formulates the realization problem for stochastic jump Markov linear systems and presents a

solution to it based on the results in SectionIII .
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II. RATIONAL POWER SERIES

In this section, we present several results on formal power series, which will be used for

solving a general bilinear filtering/realization problem to be presented in SectionIII . In turn,

the solution to this bilinear filtering/realization problem will yield a solution to the realization

problem for stochastic jump-linear systems, as we will showin SectionV.

The material and results in SubsectionsII-A and II-B can be found in [42] and [40], respec-

tively. For more details on the classical theory of rationalformal power series, the reader is

referred to [43], [44], [28] and the references therein.

A. Definition and Basic Theory

Let Σ be a finite set. We will refer toΣ as thealphabet. The elements ofΣ will be called

letters, and every finite sequence of letters will be called aword or string over Σ. Denote by

Σ∗ the set of all finite words from elements inΣ. An elementw ∈ Σ∗ of length |w| = k ≥ 0

is a finite sequencew = σ1σ2 · · ·σk with σ1, . . . , σk ∈ Σ. The empty word is denoted byǫ

and its length is zero, i.e.|ǫ| = 0. Denote byΣ+ the set of all non-empty words overΣ, i.e.

Σ+ = Σ∗ \ {ǫ}. The concatenation of two wordsv = ν1 · · · νm andw = σ1 · · ·σk ∈ Σ∗ is the

word vw = ν1 · · · νmσ1 · · ·σk.

Definition 1 (Lexicographic ordering):Let < be an ordering onΣ so thatΣ = {σ1, . . . , σ|Σ|}
with σ1 < σ2 < . . . < σ|Σ|. We define a lexicographic ordering≺ on Σ∗ as follows. For any

v = ν1 · · ·νm andw = σ1 · · ·σk ∈ Σ∗, v ≺ w if either |v| < |w| or 0 < |v| = |w|, v 6= w and

for somel ≤ |w|, νl < σl with the ordering< on Σ an νi = σi for i = 1, . . . , l − 1.

Notice that≺ is a complete ordering and thatΣ∗ = {v0, v1, . . .} with v0 ≺ v1 ≺ . . .. Therefore,

we will call the set{v0, v1, . . .} an ordered enumerationof Σ∗. Notice also thatv0 = ǫ and that

for all i ∈ N and σ ∈ Σ, we haveνi ≺ νiσ. Moreover, denote byM(N) the number of all

non-empty words overΣ whose length is at mostN , i.e. M(N) = |{w ∈ Σ+ | |w| ≤ N}|.
It then follows that with the lexicographic ordering definedabove, the set{v0, v1, . . . , vM(N)}
equals to the set of all words of length at mostM(N), including the empty word.

A formal power seriesS with coefficients inRp is a mapS : Σ∗ → Rp. We will call the

valuesS(w) ∈ Rp, w ∈ Σ∗, the coefficientsof S. We will denote byRp ≪ Σ∗ ≫ the set

of all formal power series with coefficients inRp. Consider a family of formal power series
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Ψ = {Sj ∈ R
p≪Σ∗≫| j ∈ J} indexed with a finite index setJ . We will call such an indexed

set of formal power series afamily of formal power series.

A family of formal power seriesΨ will be called rational if there exists an integern ∈ N, a

matrix C ∈ R
p×n, a collection of matricesAσ ∈ R

n×n indexed byσ ∈ Σ, and an indexed set

B = {Bj ∈ Rn | j ∈ J} of vectors inRn, such that for each indexj ∈ J and for all sequences

σ1, . . . , σk ∈ Σ, k ≥ 0,

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1

· · ·Aσ1Bj. (1)

The 4-tupleR = (Rn, {Aσ}σ∈Σ, B, C) will be called arepresentationof Ψ and the number

n = dimR will be called thedimensionof R. A representationRmin of Ψ will be called

minimal if all representationsR of Ψ satisfy dimRmin ≤ dimR. Two representations ofΨ,

R = (Rn, {Aσ}σ∈Σ, B, C) and R̃ = (Rn, {Ãσ}σ∈Σ, B̃, C̃), will be called isomorphic, if there

exists a nonsingular matrixT ∈ Rn×n such thatTÃσ = AσT for all σ ∈ Σ, TB̃j = Bj for all

j ∈ J , andC̃ = CT .

Let R = (Rn, {Aσ}σ∈Σ, B, C) be a representation ofΨ. In order to characterize whether this

representation is reachable and observable, let us define the following short-hand notation

Notation 1: Aw
.
=Aσk

Aσk−1
· · ·Aσ1 for w = σ1 · · ·σk ∈ Σ∗ and σ1, . . . , σk ∈ Σ, k ≥ 0. The

mapAǫ will be identified with the identity map.

— Recall the ordered enumeration ofΣ∗, {v0, v1, . . .}, fix an enumeration ofJ = {j1, . . . , jK}
and letB̃ =

[
Bj1 · · · BjK

]
. Define the following matrices.

WR =
[
Av0B̃ , . . . , AvM(n−1)

B̃
]

(2)

OR =
[
(CAv0)

T . . . (CAvM(n−1)
)T
]T

. (3)

We will call the representationR observableif kerOR = {0} and reachable if dimR =

rank WR. Observability and reachability of representations can bechecked numerically. For

instance, one can formulate an algorithm for transforming any representation to a minimal

representation of the same family of formal power series (see [42] and the references therein

for details).

Let Ψ = {Sj ∈ Rp ≪ Σ∗≫| j ∈ J} be a family of formal power series and defineI =

{1, . . . , p}. We define the Hankel-matrixHΨ of Ψ as the matrix such that the following holds.

The rows ofHΨ are indexed by pairs(u, i) where u ∈ Σ∗ is a word overΣ and i is and
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integer inI = {1, 2, . . . , p}. Likewise, the columns ofHΨ are indexed by pairs(v, j), where

v ∈ Σ∗ and j is an element of the index setJ . Thus, the element ofHΨ whose row index is

(u, i) and whose column index is(v, j) is simply theith row of the vectorSj(vu) ∈ Rp, i.e.

(HΨ)(u,i)(v,j) = (Sj(vu))i.

The following result on realization of formal power series can be found in [44], [28], [42].

Theorem 1 (Realization of formal power series):Let Ψ = {Sj ∈ Rp ≪ Σ∗ ≫| j ∈ J} be a

set of formal power series indexed byJ . Then the following holds.

(i) Ψ is rational ⇐⇒ rank HΨ < +∞.

(ii) R is a minimal representation ofΨ ⇐⇒ R is reachable and observable⇐⇒ dimR =

rank HΨ.

(iii) All minimal representations ofΨ are isomorphic.

It is possible to compute a minimal representation ofΨ from finitely many data. The procedure

resembles very much the partial realization algorithms forlinear systems. One defines the finite

matrixHΨ,M,N as the finite upper-left block of the infinite Hankel matrixHΨ obtained by taking

all the rows ofHΨ indexed by words overΣ of length at mostM , and all the columns ofHΨ

indexed by words of length at mostN . If rank HΨ,N,N = rank HΨ holds, then there exists

an algorithm for computing a minimal representationRN of Ψ. The algorithm is essentially a

generalization of the well-known Kalman-Ho algorithm [1] for linear systems. The condition

rank HΨ,N,N = rank HΨ holds, if, for example,N is chosen to be bigger than the dimension

of some representation ofΨ. In practice, this means thatN has to be an upper bound on the

estimated dimension of a potential representation ofΨ. More details on the computation of a

minimal representation from a Hankel-matrix can be found in[42] and the references therein.

For the purposes of this paper we will use a specific version ofthe realization algorithm. In

order to present the algorithm, we define the notion ofr,N-selection: an r,N-selectionis a pair

(α, beta) such that

1) α ⊆ ΣN × {1, . . . , p}, β ⊆ ΣN × J , ΣN = {v ∈ Σ∗ | |v| ≤ N},

2) |α| = |β| = r.

Intuitively, α represents a selection ofr rows of HΨ,N,N and β represents a selection ofr

columns ofHΨ,N,N . Let (α, β) be anr,N-selection. The proposed algorithm takes as parameter

the matrixHΨ,N+1,N and anr,N-selection(α, β). In addition, we assume that ther,N-selection

October 8, 2018 DRAFT
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(α, β) is such that the following holds. LetHΨ,α,β be the matrix formed by the intersection

of the columns ofHΨ,N,N indexed by elements ofβ with the rows ofHΨ,N,N indexed by the

elements ofα. We then assume thatrank HΨ,α,β = rank HΨ,N,N+1.

Algorithm 1

Inputs: matrix HΨ,N+1,N andr,N-selection(α, β)

Output: representatioñRN .

For each symbolσ ∈ Σ let Aσ ∈ Rr×r be such that

AσHΨ,α,β = Zσ

where Zσ is r× r matrix with row indices fromα and column indices fromβ such that its

entry indexed byz ∈ α, (v, j) ∈ β equals the entry ofHΨ,N,N+1 indexed by(z, (vσ, j)).

Let B = {Bj | j ∈ J}, where for each indexj ∈ J , the vectorBj ∈ Rr is formed by those

entries of the column(ǫ, j) of HΨ which are indexed by the elements ofα.

Let C ∈ Rp×r whoseith row is the interesection of the row indexed by(ǫ, i) with the columns

of HΨ indexed by the elements ofβ, i = 1, 2, . . . , p.

ReturnR̃N = (Rr, {Aσ}σ∈Σ, B, C).

Theorem 2 ([42], [ 44], [ 45]): If r = rank HΨ,N,N = rank HΨ, then there exists anr,N-

selection(α, β) such thatrank HΨ,α,β = r and the the representatioñRN returned by Algorithm1

when applied toHΨ,N+1,N and(α, β) is minimal representation ofΨ. Furthermore, ifrank HΨ ≤
N , or, equivalently, there exists a representationR of Ψ, such thatdimR ≤ N , thenrank HΨ =

rank HΨ,N,N , henceR̃N is a minimal representation ofΨ.

B. A Notion of Stability for Formal Power Series

Since our goal is to use formal power series to build a stochastic realization theory for jump-

linear systems, we will need to restrict our attention to formal power series that are stable in

some sense, similarly to the case of linear systems. In this subsection, we consider the notion of

square summability for formal power series, and translate the requirement of square summability

into algebraic properties of their representations.

October 8, 2018 DRAFT
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More specifically, consider a formal power seriesS ∈ R
p ≪ Σ∗ ≫ and define the sequence

Ln =

n∑

k=0

∑

σ1∈Σ
· · ·

∑

σk∈Σ
||S(σ1σ2 · · ·σk)||22. (4)

where|| · ||2 is the Euclidean norm inRp. The seriesS will be calledsquare summable, if the

limit limn→+∞Ln exists and it is finite. The familyΨ = {Sj ∈ Rp ≪ Σ∗ ≫| j ∈ J} will be

calledsquare summable, if for eachj ∈ J , the formal power seriesSj is square summable.

We now characterize square summability of a family of formalpower series in terms of the

stability of its representation. LetR = (Rn, {Aσ}σ∈Σ, B, C) be an arbitrary representation of

Ψ = {Sj ∈ R
p ≪ Σ∗ ≫| j ∈ J}. Assume thatΣ = {σ1, . . . , σd}, whered is the number of

elements ofΣ, and consider the matrix̃A =
d∑

i=1

AT
σi

⊗ AT
σi

, where⊗ denotes the Kronecker

product. We will callR stable, if the matrix Ã is stable, i.e. if all its eigenvaluesλ lie inside

the unit disk (|λ| < 1). We have the following.

Theorem 3:Consider a family of formal power seriesΨ. If Ψ admits a stable representation,

thenΨ is square summable. IfΨ is square summable, then any minimal representation ofΨ is

stable.

Notice the analogy with the case of linear systems, where theminimal realization of a stable

transfer matrix is also stable.

Proof of Theorem3: Assume thatΨ has a stable representationR = (Rn, {Aσ}σ∈Σ, C, B).

Then all the eigenvalues of the matrix̃A =
∑

σ∈Σ AT
σ ⊗ AT

σ are inside the unit circle. One can

easily see that the matrix̃A is in fact a matrix representation of the linear mapZ : Rn×n → Rn×n

defined as

Z(V ) =
∑

σ∈Σ
AT

σV Aσ.

This result is obtained by identifyingRn×n with Rn2
, as it is done in [41, Section 2.1]. As a

consequence, the eigenvalues ofZ andÃ coincide. Since the eigenvalues ofZ are inside the unit

circle, it follows from [41, Proposition 2.5] that for each positive semi-definite matrix V ≥ 0,

the infinite sum
∑∞

k=0 ‖Zk(V )‖ is convergent. By noticing that

∀x ∈ R
n xTZk(V )x ≤ ‖x‖22 · ‖Zk(V )‖,

we conclude that
∑∞

k=0 x
TZk(V )x is convergent for allx. It can be shown by induction that

Zk(V ) =
∑

w∈Σ∗,|w|=k

AT
wV Aw. (5)
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Thus, lettingV = CTC in
∑∞

k=0 x
TZk(V )x, we conclude that

∑
w∈Σ∗ ‖CAwx‖22 is convergent

for all x. If we setx = Bj , j ∈ J , we then obtain that
∑

w∈Σ∗ ‖Sj(w)‖22 is convergent for all

j ∈ J , i.e. the familyΨ is square summable.

Assume now thatΨ is square summable and letR = (Rn, {Aσ}σ∈Σ, C, B) be a minimal

representation ofΨ. Also, let Q = OT
ROR > 0, whereOR is the observability matrix ofR,

which is full rank becauseR is observable. First we show that
∞∑

k=0

xTZk(Q)x =
∑

w∈Σ∗

xTAT
wQAwx (6)

is convergent for allx ∈ Rn. To see this, notice from the reachability ofR that anyx ∈ Rn is a

linear combination of vectors of the formAvBj , j ∈ J , v ∈ Σ∗. Hence, it is sufficient to prove

the convergence of (6) for x = AvBj . But the latter follow from the fact that

∑

w∈Σ∗

(BjAv)
TAT

wQAwAvBj =
∑

w∈Σ∗

M(n−1)∑

i=0

||Sj(vwvi)||22

and that
∑

w∈Σ∗ ‖Sj(w)‖22, hence
∑

w∈Σ∗

∑M(n−1)
i=0 ‖Sj(vwvi)‖22 is convergent. Next we show

that ∞∑

k=0

xTZk(V )x =
∑

w∈Σ∗

xTAT
wV Awx (7)

is convergent for allx ∈ R
n and for all positive semi-definiten × n matricesV ≥ 0. To see

this, notice that for allV ≥ 0 and Q > 0, there existsM > 0 such thatxTV x ≤ MxTQx

for all x ∈ Rn. Indeed, we can chooseM = ‖V ‖
m

, where0 < m = inf‖x‖=1 x
TQx, so that

m‖x‖2 ≤ xTQx and hencexTV x ≤ ‖x‖2‖V ‖ ≤ MxTQx. Therefore, for anyV ≥ 0,
∞∑

k=0

xTZk(V )x =
∑

w∈Σ∗

xTAT
wV Awx ≤ M

∑

w∈Σ∗

xTAT
wQAwx = M

∞∑

k=0

xTZk(Q)x,

and so
∑∞

k=0 x
TZk(V )x is convergent for allx ∈ Rn andV ≥ 0. This implies that

lim
k→∞

xTZk(V )x = 0

for all x ∈ R
n. Therefore,limk→∞Zk(V ) = 0 for all V ≥ 0, which by [41, Proposition 2.5]

implies that all the eigenvalues ofZ (and hence of̃A) have modulus strictly smaller than1, i.e.

R is stable.
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III. STOCHASTIC REALIZATION OF GENERALIZED BILINEAR SYSTEMS

In this section we formulate and solve the realization problem for generalized stochastic

bilinear systems (abbreviated byGBS). A GBS is stochastic system which is bilinear in state and

inputs and where the inputs is an observed stochastic process. Informally, the realization problem

can be formulated as follows: given an output process and input process, find aGBSwhich is

driven by the input process, and whose output process coincides with the given one. Unlike in

[13], we will not require the input to be white. In particular, wewill allow finite-state Markov

processes as inputs, which will allow us to apply the framework to the realization of stochastic

jump-linear systems. Particular cases of this generalizedbilinear realization problem include

realization of classical linear and bilinear systems, as well as the Kalman filter. In addition, the

solution to this general problem provides a solution to the realization of stochastic jump-linear

systems, as we will show in SectionV.

The motivation of the realization problem stems from systemidentification and filtering. The

link with system identification is quite clear: the realization problem can be viewed as a idealized

system identification problem. The link with filtering is less direct. Recall that filtering one is

interested in computing the conditional expectation (or the linear projection) of the current

output onto the past outputs. The Kalman filter is an algorithm that computes such a projection

recursively. If one considers stationary linear systems, then the Kalman filter yields a linear

stochastic realization in the forward innovation form. That is, there is a correspondence between

recursive filters and stochastic realizations in forward innovation form.

In the case of bilinear situation, the situation is similar.The main difference is that the filtering

occurs based not only on past outputs but on past inputs too. In particular, the correspondence

between filters and stochastic realizations carries over tobilinear systems. Similarly to the linear

case, the construction of the recursive filter (i.e. stochastic realization in forward innovation

form) relies on the fact that the covariances of the outputs can be represented as rational formal

power series.

The section is organized as follows. In§III-A we define the class of generalized bilinear

systems and the corresponding realization problem. In§III-C we present the solution of the

realization problem. In§III-E we present a realization algorithm. The proofs of the results of

§III-C–III-E are presented in§IV.
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In what follows, we will work with random variables and stochastic processes. We will use

the standard terminology and notation of probability theory [46]. Throughout the paper, we fix

a probability space(Ω,F , P ) and all the random variables and stochastic processes should be

understood with respect to this probability space. HereF is a σ-algebra over the setΩ, P is

a probability measure onF . With a slight abuse of notation, when we want to indicate that a

random variablez takes its values in a setX (i.e. z is a measurable functionz : Ω → X), we

will write z ∈ X. We denote the expectation of a random variablez by E[z]. Let Z be the set of

integers. Recall that a discrete-time stochastic process (in the sequel to be referred to as process

or stochastic process) taking values in a setX is just a collection{z(t)}t∈Z wherez(t) ∈ X

is a random variable for allt ∈ Z; z(t) is referred to as the value of the stochastic process

{z(t)}t∈Z at time t ∈ Z. In the sequel, by abuse of notation, the stochastic process{z(t)}t∈Z
will be denoted byz(t): whetherz(t) means a stochastic process or its value at timet will be

clear from the context. A stochastic processz(t) ∈ Rk is called zero mean and square integrable,

if the expectationsE[z(t)] andE[zT (t)z(t)] exist, andE[z(t)] = 0 andE[zT (t)z(t)] < +∞.

Furthermore, recall that a processz(t) ∈ Rk is wide sense stationary, if for everys, t, k ∈ Z,

the expectationE[z(t + k)zT (s+ k)] exists and its value is independent ofk.

A. Stochastic Realization Problem for Generalized Bilinear Systems

Let the input processbe a collection ofR valued random processes{uσ(t)}σ∈Σ indexed by

the elements of a finite alphabetΣ.

Definition 2 (Generalized Bilinear System):A generalized bilinear system (abbreviated by

GBS) of is a system of the form

B





x(t + 1) =
∑

σ∈Σ
(Aσx(t) +Kσv(t))uσ(t)

y(t) = Cx(t) +Dv(t),

(8)

whereAσ ∈ Rn, Kσ ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, y(t) is a stochastic process with values in

Rp, called thestate process, x(t) is a stochastic process with values inRn, called thestate process

andv(t() is a stochastic process with values inRm, called thenoise process. Thedimensionof

B is defined as the numbern of state variables. The systemB is said to be arealizationof the

process̃y(t) if ỹ(t) = y(t) for all t ∈ Z. TheGBS B is said to be aminimal realizationof y(t)

if B is a realization ofy(t) and it has the minimal dimension among all possibleGBS of y(t).
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Now we are ready to state the realization problem forGBSs.

Definition 3 (Realization problem for generalized bilinearsystems):Given an output process

y(t) and find conditions for existence of aGBS which is a realization ofy(t) and characterize

minimality for GBSs which are realizations ofy(t).

Notice that by choosinguσ(t) in an appropriate way,GBSs include linear, bilinear, and as we

shall see later, even jump-linear systems.

Example 1 (Realization of Linear Systems):Notice that if Σ = {σ} and uσ(t) = 1, then

the generalized bilinear stochastic realization problem reduces to the classical stochastic linear

realization problem.

Example 2 (Realization of Bilinear Systems):Notice that ifΣ = {1, 2}, u1(t) = 1 andu2(t)

is white noise, then the generalized bilinear stochastic realization problem reduces to the classical

bilinear realization problem [13], [14].

Example 3 (Linear Jump-Markov systems with i.i.d discrete-state): Assume thatθ(t) ∈ Σ are

independent and identically distributed random variables, P (θ(t) = σ) = pσ > 0. Consider the

generalized bilinear system withuσ(t) = χ(θ = σ), whereχ is the indicator function. In this

case the realization problem forGBSs yields the realization of Jump-Markov linear systems

where is Markov process is observable and i.i.d. In fact, it can be shown that the realization

problem of more general type jump-linear systems can also bereduced to that ofGBSs.

Example 4 (Stochastic LPV systems):Let Σ = {1, . . . , d} and letu(t) = (u1(t), . . . ,ud(t))

be a stochastic process such thatu andv are independent. The resultingGBS can be viewed

as a stochastic linear parameter-varying system (LPV), where u plays the role of the scheduling

variable. LPV systems represent a widely applied and popular system class. Identification of

LPV systems is a subject of active research. The results of this paper are potentially useful for

system identification of LPV systems.

Example 5 (jump-bilinear systems with i.i.d discrete-state): Let Q be a finite set and fix an

integerm. Assume thatθ(t) ∈ Q are i.i.d random variables,P (θ(t) = q) = pq ≥ 0 for all

q ∈ Q. Define Σ = Q × {0, . . . , m} and letu(t) ∈ Rm be a colored noise process. Define

u(q,j)(t) = uj(t)χ(θ = q), whereuj(t) denotes thejth entry of u(t) for j = 1, . . . , m and

u0(t) = 1. With this choice of the input process, we immediately obtain the following jump-

bilinear systemx(t+1) =
∑m

j=0(Aθ(t),jx(t)+Kθ(t),jv(t))uj(t) andy(t) = Cx(t)+Dv(t). That

is GBSs do not only describe known system classes, but they also yield new system classes.
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The examples above are intended to demonstrate the versatility of GBSs. GBSs can be used

not only to describe well known system classes, but also system classes which have not been

studied in the literature so far.

B. Hilbert-space of square integrable random variables

In order to make the realization problem tractable, we need to make additional assumption on

GBSs. In particular, in the sequel, the outputs and inputs at anytime instance are mean-square

integrable random variables. Such random variables form a Hilbert-spaceH with covariance

playing the role of scalar product. SinceH is an Hilbert-space, we can speak of orthogonal

projection of a random variable onto a closed subspace ofH. Below we recall the framework

of the Hilbert-space of random variables in more detail.

In the sequel, we will identify random variables which differ only on a set of probability zero. A

scalar random variablez ∈ R is said to be mean-square integrable, if the expectationE[z2] exists

and it is finite. The space of scalar mean-square random variables forms an Hilbert-spaceH with

the scalar product< z,x >= E[zx] and the corresponding norm||z|| =
√

E[z2]. A sequence of

random variableszn is said to converge to in mean-square sense toz, if limn→∞E[(z−zn)
2] = 0,

or, in other words, iflimn→∞ ||zn−z|| = 0 with the norm||.|| defined above. As it is customary

in Hilbert-spaces, the scalar product and the norm are continuous operators with respect to the

topology induced by mean-square convergence. That is, iflimn→∞ zn = z and limn→∞ xn = x

in the mean-square sense, thenlimn→∞E[xnzn] = E[xz] and limn→∞ ||xn|| = ||x||.
Suppose thatM is a closed linear subset ofH. The orthogonal projection of a variablez

onto M the unique elementz∗ of M which satisfies the following two equivalent conditions:

(a) ||z∗− z|| ≤ ||x− z|| for all x ∈ M , (a) z− z∗ is orthogonal toM , i.e.E[(z− z∗)x] = 0 for

all x ∈ M . Note that ifM is the linear span of finitely many elements, then it is automatically

closed.

Consider now avector valuedrandom variablez = (z1, . . . , zp)
T ∈ Rp. We will call z mean-

square integrable, if the coordinateszi, i = 1, . . . , p are mean-square integrable scalar random

variables. Note that if we denote by||.||2 the Euclidean norm inRp, then mean-square integrability

of z is equivalent to existence and finiteness ofE[||z||22]. If zn = (zn1 , z
n
2 , . . . , z

n
p) ∈ Rp, n ∈ N

and z = (z1, . . . , zp) ∈ Rp are mean-square integrable random variables, then we say that zn

converges toz in a mean square sense, if for alli = 1, . . . , p, the sequencezni ∈ R of i
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coordinates ofzn converges to theith coordinatezi ∈ R of z in the mean-square sense.

Let M be a closed linear subspace of mean-square integrablescalar random variables. Let

z = (z1, . . . , zp) ∈ Rp be a vector valuedmean-square integrable random variable. By the

orthogonal projection ofz ontoM we mean the vector valued random variablez∗ = (z∗1, . . . , z
∗
p)

such thatz∗i ∈ M is the orthogonal projection of theith coordinatezi of z ontoM , as defined

for the scalar case. The orthogonal projectionz∗ has the following property:E[(z− z∗)x] = 0

for all x ∈ M . If M is generated by closure of the linear span of the coordinatesof a subsetS

of Rk valued mean-square integrable random variables, thenz∗ is uniquely determined by the

following property:E[(z− z∗)xT ] = 0 for all x ∈ S and all the coordinates ofz∗ belong toM .

In fact, by abuse of terminology, we will saythat z belongs toM , if all its coordinates

z1, . . . , zp belong toM . Similarly, let xi ∈ Rk, i ∈ I be a family of vector valued mean-

square integrable random variables and assume thatI is an arbitrary set. Then the Hilbert-space

generated by{xi}i∈I is understood to be the smallest closed subspaceM of the Hilbert-space of

all square integrable random variables such that forxi, i ∈ I belongs toM in the above sense

(i.e. the components ofxi belongs toM).

Assume thatz belongs toM and assume thatM is the Hilbert-space generated by the

components some vector values variables{xi}i∈I . In the sequel, we will often use the following

simple result.

Lemma 1: If theRp-valued random variablez belongs toM , thenz is measurable with respect

to theσ-algebra generated byF = {xi}i∈I .
Indeed, by [46, Exercise 34.13], the conditional expectationE[z | F ] equals the orthogonal

projection of z to the close subspaceHF generated by all theF measurable mean square

integrable random variables. ButM is a subspace ofHF and hencez already belongs toHF .

Hence, the orthogonal projection ofz to HF equalsz itself. Thus,z = E[z | F ] and since

E[z | F ] is F measurable by definition, Lemma1 follows.

C. Solution of the realization problem forGBS

Below we present the solution of the realization problem forGBSs. We will only state the

results, their proofs will be presented in§IV. In order to state the results, will introduce the

following notation and terminology.
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Notation 2: We fix a collection{pσ > 0}σ∈Σ of real numbers. For eachw ∈ Σ∗ define the

numberpw as follows:pǫ = 1 and if w = vσ for somev ∈ Σ∗ andσ ∈ Σ, then letpw = pvpσ.

The roles of{pσ}σ∈Σ will become clear later on. For each wordw = σ1σ2 · · ·σk ∈ Σ+, k ≥ 1,

σ1, . . . , σk ∈ Σ, define the random variables

uw(t) = uσ1(t− k + 1)uσ2(t− k + 1) · · ·uσk
(t) (9)

Using the notation defined above, we formulate the followingassumptions which will be valid

for the rest of the section.

Assumption 1 (Input process): 1)
∑

σ∈Σ ασuσ(t) = 1 for some numbers{ασ ∈ R}σ∈Σ.

2) For eachw ∈ Σ+, all the first and second order moments of the processuw(t) are finite.

We mention a number of examples ofuσ(t) which satisfies the assumptions above.

Example 6 (Bilinear systems [13]): Σ = {0, 1}, u0(t) = 1, u1(t) is a white noise Gaussian

process. In this case,α0 = 1, α1 = 0.

Example 7 (Discrete valued input):Assume there exists a processθ(t) takes its values from

a finite alphabetΣ and letuσ(t) = χ(θ(t) = σ). ThenE[|uw(t)|k] = E[uw(t)] = P (θ(t− k) =

σ1 · · ·θ(t− 1) = σk) and withασ = 1,
∑

σ∈Σ uσ(t) = 1.

Next, we define a class of stochastic processes which will play an important role in the rest of

the paper. Letr(t) ∈ Rk be a stochastic process and define for eachw ∈ Σ+

zrw(t) = r(t− |w|)uw(t− 1)
1√
pw

. (10)

In the sequel, the processzyw(t), obtained from (10) by choosingr(t) = y(t) will play a central

role. For this reason, we introduce the following notation

Notation 3: In the sequel we denote byzw(t) the processzyw(t).

Below, we will define a number of properties ofzrw(t) and we will require that the noise, state, and

output processesx(t), v(t) andy(t) of a GBS are such thatzxw(t), z
v
w(t) andzyw(t) satisfy those

properties. Intuitively, these properties say thatzrw(t) is a wide-sense stationary stochastic process

if w is also viewed as multidimensional time. To this, we introduce the following definitions.

Definition 4 (Admissible words):A setL ⊆ Σ+ is a set of admissible words, if the following

conditions hold.

1) Σ ⊆ L and for allw ∈ Σ+ \ L, uw(t) = 0 almost surely.
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2) There exists a setS ⊆ Σ × Σ, such that the wordw = σ1 · · ·σk ∈ Σ+, σ1, . . . , σk ∈ Σ,

k > 1 belongsL if and only if (σi, σi+1) ∈ S for all i = 1, . . . , k − 1.

For the rest of the paperL will denote a fixed set of admissible words. The motivation behind

introducing the setL is that for certainw ∈ Σ+, we might wish to setzw(t) to zero. This will

be the case when we try to use realization theory forGBSs for jump-markov systems. A simpler

motivating example is presented below.

Example 8 (Jump-markov systems with restricted switching): Consider the system described

in Example3 but with the following modification. We no longer assume thatθ is an i.i.d process.

Instead we assume that there exists a setS ⊆ Q × Q describing the admissible discrete state

transitions, andθ(t) is a stationary Markov process such thatP (θ(t+1) = q2 | θ(t) = q1) = pq2

if (q1, q2) ∈ S andP (θ(t+ 1) = q2 | θ(t) = q1) = 0 if (q1, q2) ∈ S. In this case, theuw(t) = 0

almost surely forw /∈ L, whereL is as defined in4

Definition 5 (Recursive covariance property):A processr(t) is said to haverecursive covari-

ance property (abbreviated byRC) if it satisfies the following conditions.

1) The processes(r(t), {zrw(t) | w ∈ Σ+}) are jointly wide-sense stationary, that is, for all

t, k ∈ Z, and for allw, v ∈ Σ+ we have thatE[r(t)] = 0, E[zrw(t)] = 0, and

E[r(t + k)(zrw(t+ k))r] = E[r(t)(zrw(t))
T ] and E[zrw(t+ k)(zrv(t+ k))T ] = E[zrw(t)(z

r
v(t))

T ].

2) Denote by

T r
w,v = E[zrw(t)(z

r
v(t))

T ] andΛr
w = E[r(t)(zrw(t))

T ]

Then for anyw, v ∈ Σ+, σ, σ
′ ∈ Σ, Tσ,σ′ = 0 for σ 6= σ

′

and

T r

wσ,vσ
′ =




T r
w,v if σ = σ

′

andwσ ∈ L or vσ ∈ L

0 if σ 6= σ
′

and (11)

T r

wσ,σ′ =




(Λr

w)
T if σ = σ

′

0 if σ 6= σ
′

. (12)

3) In addition,T r
w,v = 0 if w /∈ L or v /∈ L. If wσ ∈ L then for all vσ /∈ L, T r

v,w = 0, and

similarly, if vσ ∈ L, then for allwσ /∈ L, T r
v,w = 0.

Remark 1: It can be shown that Part3 of Definition 5 is by the other conditions.
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Remark 2: It is clear that ifr(t) ∈ R
r is anRC process, then for any matrixF ∈ R

l×r, l > 0,

the processs(t) = F r(t), t ∈ Z, is RC.

Intuitively, if r is RC, then the processeszrw obtained by multiplyingr(t) with future inputs

uw(t+ |w|) are zero-mean wide-sense stationary, moreover, the covariancesT r
w,v have a specific

recursive structure. This recursive structure can be interpreted as wide-sense stationarity, ifw is

viewed as a time instant on the multidimensional time axisΣ+. This property coincides with

the property required of multidimensional positive kernels in [47] and a special instance of

this property was also used in [14], [13]. This property (Part3 of Definition 5) is crucial for

developing stochastic realization theory, especially forthe realization algorithm.

Example 9 (Examples ofRC processes):Assume thatL = Σ+, r(t) is a zero-mean wide-

sense stationary process,r(t) anduσ(t+k), k ≥ 0 are independent,uσ(t) are i.i.d andE[u2
σ] =

pσ, and {uσ1(t)}t∈Z, {uσ2(t)}t∈Z are uncorrelated for allσ1 6= σ2, i.e. E[uσ1(t)uσ2(l)] = 0,

l, t ∈ Z. Moreover, assume thatuσ(t) satisfies Assumption1 and that for allw ∈ Σ+, E[r(t−
|w|)uw(t− 1)rT (t)] is independent oft. Thenr is a RC process.

One particular examples of the situation is whenuσ(t) is a zero mean i.i.d Gaussian process.

Another example if whenΣ = {0, 1}, u0(t) = 1 and u1(t) is an i.i.d zero mean Gaussian

process with variancepσ. This latter example is the one which occurs in bilinear stochastic

systems. Finally, consideruσ(t) is as in Example7. Assume, moreover thatθ(t) are i.i.dpσ =

P (θ(t) = σ). Then withL = Σ+, r(t) is anRC process.

Although Example9 covers a lot important cases, the example below demonstrates that RC

processes whereuσ is not an i.i.d process also plays an important role.

Example 10:Consider the processθ from Example8 and assume that{θ(t + l) | l ≥ 0}
and r(t) are conditionally independent w.r.t. to{θ(t − l) | l ≥ 0}. Assume thatr(t) is wide-

sense stationary, square integrable and zero-mean. Thenr(t) is a RC process withL defined in

Example8.

Now we are ready to formulate the assumptions we are going to make aboutGBSs.

Assumption 2:In the sequel, we will only considerGBSs which satisfy the following condi-

tions.

1) The noise processv(t) have theRC property.

2) For everyw, v ∈ Σ+, w 6= v, zvv (t) andzvw(t) are orthogonal, i.e.E[zvw(t)(z
v
v (t))

T ] = 0.

3) The statex(t) belongs to the Hilbert-space generated by the entries of{zvw(t) | w ∈ Σ+}.
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4) The matrixΣσ∈ΣpσA
T
σ ⊗AT

σ is stable, i.e. all its eigenvalues are inside the unit circle.

5) For all σ1, σ2 ∈ Σ, if σ1σ2 /∈ L, thenAσ2Aσ1 = 0 andAσ2Kσ1T
v
σ1,σ1

= 0.

Intuitively, Part1 of Assumption2 requires that the state and noise process are stationary and

that they are very loosely correlated with future inputs. Parts 2–1 of Assumption2 say that

the noise processes are uncorrelated. Parts3–4 intuitively express the assumption thatx(t) is

the result of starting at zero initial state at−∞ and allowing the system to be driven by the

noise process alone. The stability assumption is there to guarantee that this can be done. In fact,

Assumption2 yields the following.

Lemma 2: If B of the form (8) satisfies Assumption2, then
[
vT (t),xT (t)

]T
is anRC process,

and hencex(t) is an RC process. Moreover,w, v ∈ Σ+, |w| ≥ |v|, zxw(t) and zvv (t) are

uncorrelated, i.e.E[zxw(t)(z
v
v (t))

T ] = 0, and

∀t ∈ Z : x(t) =
∑

w∈Σ∗

∑

σ∈Σ

√
pσwAwBσz

v
σw(t). (13)

Here we used Notation1 for the matrix productAw, w ∈ Σ∗ and convergence is understood in

the mean-square sense.

In fact, we can also show that under some mild conditions, thetrajectories ofB converge to

x(t) as t goes to infinity.

Lemma 3:With the assumptions of Lemma2, if x̂(t) is a process which satisfies the first

equation of (8) and for allw, v ∈ Σ∗, σ1, σ2 ∈ Σ, |w| = |v|, T x̂
σ1w,σ2v

= E[x̂(0)x̂T (0)uw(|w| −
1)uv(|v| − 1)] is such thatT x̂

σ1w,σ2v = 0 if σ1w 6= σ2v and T x̂
σ1w,σ2v = E[x̂(0)x̂T (0)u2

σ(0)]pw

otherwise, then

lim
t→∞

E[||x(t)− x̂(t)||2] = 0.

If x̂(0) is independent ofuσ(t), t ≥ 0, σ ∈ Σ andE[uw(|w| − 1)uv(|v| − 1)] = 0 for w 6= v

and pw = E[uw(|w| − 1)uv(|v| − 1)] = 0, then the assumptions of Lemma3 are satisfied. In

particular, the assumptions of Lemma3 are the standard ones made for the systems described

in Examples1–3. Finally, note thatx(t) is wide-sense stationary and the following holds.

Lemma 4:Consider aGBS B of the form (8) and assume thatB satisfies Assumptions2.

Consider the equation

Pσ = pσ(
∑

σ1∈Σ,σ1σ∈L
Aσ1Pσ1A

T
σ1

+Kσ1Qσ1K
T
σ1
) (14)
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whereQσ = E[v(t)vT (t)u2
σ(t)] and{Pq}q∈Q is a family of matrix-valued indeterminate. Then

(14) has a unique solution determined byPσ = E[x(t)xT (t)u2
σ(t)], σ ∈ Σ.

The proofs of Lemma2–Lema4 require certain technical results, for this reason we postpone

them to§IV-A . The Lemma2 says that the state ofΣ is the one which one would obtain by

starting the system at zero at−∞. Lemma3 says that if we pick any initial state which satisfies

some mild conditions, then the resulting state trajectory of Σ will converge to the stationary

trajectoryx(t). In fact, the existence of the right-hand side of (13) does not require Part3 of

Assumption2. Hence, Lemma2 – 3 can be interpreted as stating that if the systemΣ satisfies

Assumption2, except Part3, then it has a state trajectory which satisfies Part3, moreover any

state-trajectory ofΣ converges to that particular one. The situation is similar to that of for

stable linear systems: asymptotically, a the state-trajectory of a stable linear system is stationary.

Finally, Lemma4 provides a formula for the state covariance as a solution of aLyapunov-like

equation. Note that similar formulas are well-known for thelinear [48] and even bilinear case

[13], [14]. The formula of Lemma4 represents a generalization of those well-known results.

We present a number of examples of systems which satisfy Assumptions2.

Example 11 (Linear systems):A stationary stable Gaussian linear system with the standard

assumption can be viewed as aGBS which satisfies Assumption2. In this case,Σ = {0},

u0(t) = 1, A0 is stable,L = Σ+, v(t) is an i.i.d process which is Gaussian and zero mean. If

we assume that the initial state of the system at time∞ was zero, then it is easy to see that the

resultingGBS satisfies Assumption2.

Example 12 (Bilinear systems):The bilinear systems from [13], [14] satisfy Assumption2.

In that case,Σ = {0, 1}, u0(t) = 1, uσ(t) is a white noise Gaussian process,v(t) is also a

white noise Gaussian process,B1 = 0 and the random variablesv(t) andu1(t + l), l ∈ Z are

assumed to be independent (theσ-algebra generated by them is independent). Moreover, it is

assumed thatx(t) is zero-mean, wide-sense stationary and satisfies (13). In fact in [13], [14]

it was not explicitly assumed thatx(t) satisfies (13), but from the discussion after Lemma2 it

follows that this can be assumed without loss of generality.Moreover, the state process of the

realization constructed by the algorithm [13], [14] does satisfy the assumptions of Lemma2.

Example 13 (Jump-linear systems driven by i.i.d.):Consider jump-linear systems driven by

an i.i.d process as described in Example3. In this case,L = Σ+. Assume that{θ(t)}t∈Z are

independent, identically distributed,pσ = P (θ(t) = σ) > 0, σ ∈ Σ. Assume that the noise
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process is{v(t)}t∈Z is independent of{θ(t)}t∈Z and thatv(t) is a wide-sense colored noise

process i.e.E[v(t)uw(l − 1)vT (l)] = 0, l > t, w ∈ Σ+, |w| = l − t + 1, E[v(t)] = 0,

E[v(t)vT (t)] = Q > 0. Assume that Part3, Part 4 and Part5 of Assumption2 holds. Then

the system satisfies Assumption2. Note that the assumptions we made are quite mild, they are

similar to the ones of [49].

The examples above represent a special case of the followingclass ofGBSs.

Example 14 (GBS with independent inputs):Consider aGBSB such thatv anduσ, σ ∈ Σ

satisfy Example9. That is,uσ is an i.i.d process,E[u2
σ(t)] = pσ, and theσ-algebras generated

by {v(t − l)}∞l=0 and {uσ(t + l) | σ ∈ Σ, l ≥ 0} are independent for anyt. Assume moreover

that v is a zero mean wide sense stationary process andE[v(t− l)vT (t)] = 0, l > 0, w ∈ Σ+,

|w| = l, t ∈ Z. Let L = Σ+ and assume
∑

σ∈Σ pσA
T
σ ⊗ AT

σ is a stable matrix. Assume that the

statex(t) is obtained by starting the system in zero initial state at time−∞. ThenB satisfies

Assumption2.

Examples11–13 represent special cases of Example14. Example14 can also be used to obtain

bilinear jump-markov systems as described in Example5. Unfortunately, Example14 does not

cover the case of jump-markov linear systems where the discrete state process is not i.i.d. Below

we show that even such cases can be cast into our framework. Here we only present a special

class of jump-markov linear systems, the general case is dealt with in §refsect:real.

Example 15 (Jump-markov linear systems with restricted switching): Consider the input pro-

cessuσ, σ ∈ Σ described in Example8. Consider aGBS with this input process, such that the

following holds. Denote byDt theσ-algebra generated by{θ(l) | l < t}. Assume thatv(t) is a

wide-sense stationary zero mean process, such thatv(t) andv(l), l 6= t arev(t) andv(l), l ≤ t

are conditionally uncorrelated with respect to theσ-algebraDl,t−1 generated by{θ(t)}t1−1
t=l , i.e.

E[v(t)vT (l) | Dl,t−1] = 0. Moreover, assume that theσ-algebras generated by{θ(t + l)}∞l=0

and {v(t − l)}∞l=0 are conditionally independent with respect toDt. In addition, assume that

Part 3, Part 4 and Part5 of Assumption2 holds. Then the resulting system will again satisfy

Assumption2. TheGBSs described above can be thought of as a special class of jump-markov

linear systems, where the transition probabilities of the discrete state process are either zero or

depend only on the final state.

Next, we state a number of assumptions on the output processy(t) which will guarantee

existence of aGBS realization ofy. To this end, recall thatzw(t) denotes the processzyw(t).

October 8, 2018 DRAFT



22

When constructing aGBS realization ofy, we will compute the orthogonal projection of the

future outputs onto the Hilbert space formed by the past outputs and inputs. In order to simplify

the discussion about orthogonal projections, we will use the following notation.

Notation 4 (Orthogonal projectionEl): Let Z be a set ofRp-valued mean-square integrable

random variables. Letz ∈ Rk, k > 0, be another mean-square integrable random variable. We

denote byEl[z | Z] the orthogonal projection ofz onto the subspaceM , whereM is the closure

of the linear space spanned by the coordinates of the elements of Z.

One can interpretEl[z | Z] as the best approximation (prediction) ofz in terms of (infinite)

linear combination of elements ofZ. Next, we define the forward innovation process fory.

Definition 6 (Forward innovation):The forward innovation processe of y is defined as

e(t) = y(t)−El[y(t) | {zw(t) | w ∈ Σ+}]. (15)

That is, the forward innovation is the difference between the predicted output and the actual

one, if the prediction is based on linear extrapolation of past outputs. The forward innovation

process has all the properties required of the noise of aGBS. Below we define a class ofGBSs

wheree is the noise.

Definition 7 (GBS in forward innovation form):Let B be GBS of the form (8). ThenB is in

forward innovation form, if D = Ip, v(t) = e(t) for all t ∈ Z, andB satisfies Assumption2.

That is, ifΣ is in forward innovation form, then the noise equalse andCx(t) equals the linear

projection ofy(t) to the space{zw(t) | w ∈ Σ+}, i.e. Cx(t) is the best linear estimate ofy(t)

in terms of{zw(t) | w ∈ Σ+}. Moreover, due to Part3 of Assumption3, the statex(t) of Σ

belongs to the Hilber-space generated by the variables{zw(t) | w ∈ Σ+}. Hence, a realization

in forward innovation form is its own Kalman-filter, and it can be viewed as a system which is

driven by the past outputs and inputs.

As we have mentioned before, for realizability byGBS, the covariances of the outputs and

inputs should form a rational formal power series. Below, wedefine these formal power series.

Definition 8 (Family of formal power seriesΨy): For eachj ∈ I = {1, . . . , p}, σ ∈ Σ, define

the formal power seriesS(j,σ) ∈ Rp≪Σ∗≫ asS(j,σ)(w) = (Λy
σw).,j, where(Λy

wσ).,j denotes the

jth column of thep × p covariance matrixΛy
wσ = E[y(t)zTwσ(t)]. Define the family of formal

power series

Ψy = {S(j,σ) | j ∈ I, σ ∈ Σ}. (16)
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We can now state the following assumptions which guarantee existence of aGBS realization.

Assumption 3:The processy is RC and the family ofΨy is is square summable and rational.

In addition, we will use the following assumption. Define therandom variableszfw(t), w ∈ Σ+,

zfw(t) = yT (t+ |w|)uw(t+ |w| − 1)
1√
pw

. (17)

Assumption 4:For eachw ∈ Σ+, assume that the variablezfw(t) is square integrable.

Remark 3: In many important cases, Assumption4 is automatically satisfied ify satisfies

Assumption3. We present below a number such cases.

1) uσ(t) is essentially bounded for allσ ∈ Σ, t ∈ Zm, i.e. there exists a constantK > 0

such that|uσ(t)| ≤ K almost everywhere. This is the case when for exampleuσ arises

from a discrete valued process, as described in Example7. Then E[(zfw(t))
Tzfw(t)] ≤

E[yT (t + k)y(t+ k)]K2 1
pw

< +∞, k = |w|.
2) If y(t), uw(t) have finite fourth order moments, then by Hölders inequality,E[(zfw(t))

Tzfw(t)] ≤
(E[(yT (t + k)y(t+ k))2]E[u4

w(t + k)])1/2 < +∞, k = |w|. In particular, this assumption

was made in [13].

Now we can state the main result on existence of aGBS realization.

Theorem 4 (Stochastic realization ofGBSs: existence):Assume thaty satisfies Assumption

4. Theny has a realization by aGBS which satisfies Assumption2 if and only if y satisfies

Assumption3. Moreover, ify has a realization by aGBS which satisfies Assumption2, then it

has a realization by aGBS in forward innovation form.

Recall that by Remark3, in many cases Assumption4 follows from Assumption2.

Corollary 1: Assumeuσ(t) = χ(θ(t) = σ) whereθ(t) is aΣ-valued process withP (θ(t) =

σ) = pσ > 0. Theny has a realization by aGBS which satisfies Assumption2 if and only if y

satisfies Assumption3.

Theorem4 is an easy consequence of Theorem5 – 6 which will be stated below. Theorem5

implies that the condition of Theorem4 is necessary for existence of a realization, and Theorem

6 implies that this condition is sufficient. In order to state Theorems5 – 6, we need the following

definition.

Definition 9 (Full rank process):We will say thaty is a full rank, for eachσ ∈ Σ the
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covarianceE[e(t)eT (t)u2
σ(t)] is of rankp, hence strictly positive definite.1

Strictly speaking, the concept of a full rank process is not necessary for Theorem4. However,

it plays an important role in formulating a realization algorithm. For this reason, we prefer to

state Theorems5–6 in such a way, that the concept of a full rank process is already used.

Next, we relateGBSs and rational representations.

Definition 10 (Representation associated withGBS): Consider the unique collection ofn×n

matrices{Pσ}σ∈Σ which satisfy (14). Define, the matrices

Bσ =
1√
pσ

(AσPσC
T +KσQσD

T ). (18)

Define therepresentation associated withB as RB = (Rn, {√pσAσ}σ∈Σ, B, C), whereB =

{Bσ,j | σ ∈ Σ, j = 1, . . . , p} andBσ,j denotes thejth column ofBσ.

Theorem 5 (Necessary condition for existence):If B is a realization ofy and B satisfies

Assumption2, then the following holds.

• The processy is RC.

• The representationRB well defined, stable, andRB is a representation ofΨy.

• y satisfies Assumption3.

• If, in addition, for all σ ∈ Σ, DE[v(t)vT (t)u2
σ(t)]D

T > 0, theny is full rank.

Remark 4:The definition ofRB implies that it is completely determined by the matrices

(C,D, {Aσ, Kσ, Qσ)}σ∈Σ).
The first two statements of Theorem5 state that ify has a realization by aGBS B, theny is

RC andRB is a stable representation ofΨy. The third statement, i.e. thaty satisfies Assumption

3, is an easy corollary of the previous ones and Theorem3 represent necessary conditions for

realizability. Theorem5 not only shows that Assumption3 represent a sufficient condition, but

it also described how to obtain a stable representation of the family of formal power seriesΨy.

The last statement of Theorem5 says that under some mild assumptions the output of aGBS is

full rank. This is important, because it shows that the requirement thaty is a full rank process

is not an unnatural one. In turn, this assumption allows us topropose a realization algorithm.

Next, we present the result stating the sufficient conditionfor existence of a realization.

1Note that the concept of a full rank process already has an established definition [48], which is slightly different from the

one used in this paper. In the linear case, i.e. whenΣ = {z} anduz = 1, the two definitions coincide. Hence, our definition

represents a slight abuse of terminology.
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Theorem 6 (Sufficient condition for existence):If y(t) satisfies Assumption3, then it has a

GBS B in forward innovation and thisGBS B can be obtained from a minimal rational repre-

sentation ofΨy as follows.

B





x(t+ 1) =
∑

σ∈Σ
(

1√
pσ

Aσx(t) +Kσe(t))uσ(t)

y(t) = Cx(t) + e(t)

(19)

where

• R = (Rn, {Aσ}σ∈Σ, B, C), B = {B(i,σ) ∈ Rn | σ ∈ Σ, i = 1, . . . , p} is a minimal

representation ofΨ.

• Let OR the observability matrix ofR. Define the random variableYn(t) as

Yn(t) =
[
zfv0(t) . . . zfvM(n−1)

]T
(20)

wherezfǫ (t) = yT (t) and for allw ∈ Σ+, zf is as defined in (24). The variableYn(t) can be

thought of as the products of future outputs and inputs. Notice thatR is observable, hence

the matrixOR is has a left inverse, which we will denote byO−1
R . Then the statex(t) is

define as

• For eachσ ∈ Σ,

Kσ(pσTσ,σ − CPσC
T ) = (Bσ

√
pσ −

1√
pσ

AσPσC
T ) (21)

wherePσ = E[x(t)xT (t)uσ(t)uσ(t)], and

Bσ =
[
B(1,σ), B(2,σ), . . . , B(p,σ)

]
∈ R

n×p. (22)

If, in addition,y is a full-rank process, then(pσTσ,σ − CPσC
T ) is invertible and

Kσ = (Bσ
√
pσ −

1√
pσ

AσPσC
T )(pσTσ,σ − CPσC

T )−1. (23)

Moreover, theGBS B constructed above satisfies Assumption2.

Remark 5 (Algebraic Ricccati equation):By Theorem6, if y is full rank, then the combina-

tion of (23) and (14) yields an equation of which{Pσ}σ∈Σ is a unique solution. This equation

is analogous to the well-known algebraic Riccati equation for linear systems.

Theorem6 not only gives a sufficient condition for existence of aGBS realization, but it serves as

a starting point of a realization algorithm. Moreover, it makes the relationship between realization

theory and filtering more precise. In particular, Remark5 and Theorem6 imply that the data
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contained in a rational representation ofΨy (i.e. of covariances of outputs and inputs) contains

all the necessary information for constructing aGBS realization ofy in forward innovation

form. As it was mentioned before, such aGBS can be viewed as recursive filter for computing

the best linear estimates of future outputs based on past outputs. Together with Theorem5 and

Theorem1 it yields an algorithm for computing such a filter from an arbitrary GBS realization

of y: we first compute the representationRB associated with aGBS realizationB of y, then we

use Theorem6 to obtain aGBS in forward innovation form.

Theorem5 – 6 imply the following characterization of minimality.

Definition 11 (Minimality): A GBS B which satisfies Assumption2 is said to be aminimal

realizationof y(t) if it realizesy(t) and it has the minimal dimension among all possibleGBS

realizations ofy(t) which satisfy Assumption2.

Theorem 7 (Minimality ofGBSs): AssumeB is a GBS which satisfies Assumption2 and

which is a realization ofy. The GBS B is minimal if and only ifRB is minimal. If theGBSs

B1 andB2 are both minimal realizations ofy and they both satisfy Assumption2, thenRB1 and

RB2 are isomorphic.

Remark 6:The isomorphism ofRB1 and RB2 can be directly translated into a relationship

between the matrices ofB1 and B2. If B1 is of the form (8) and the corresponding matrices

of B2 are Âσ, K̂σ and Ĉ and D̂, then isomorphism ofRB1 andRB2 implies that there exists a

non-singular matrixS ∈ Rn×n such thatCS−1 = Ĉ, ∀σ ∈ Σ : SAσS
−1 = Âσ. Note that we do

not claim thatSKσ = K̂σ, σ ∈ Σ or thatD = D̂. In fact, in general it will not be true.

Remark 7 (Checking minimality):From Theorem5 it follows thatRB can be computed bases

solely on the matrices ofB and the covariance of the noise. From Theorem1 it follows that

minimality of RB can be checked effectively, by checking ifRB is reachable and observable.

Hence, minimality of aGBS can be checked effectively, based on the knowledge of the matrices

(C,D, {Aσ, Kσ, Qσ)}σ∈Σ)

D. Realization theory for subclasses ofGBSs

We have argued before thatGBSs include a large number of system classes such as linear,

bilinear stochastic systems and even jump-markov linear systems. However, the solution of the

realization problem forGBSs does not directly yield solutions to the realization problems for

those system classes. The reason for this is quite obvious: while the necessary conditions remain
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valid for subclasses ofGBSs, the sufficient conditions need not remain valid. After all, it could

easily happen that even ify has a realization by aGBS belonging to a certain subclass, the

realization prescribed by Theorem6 does not fall into that subclass. Nevertheless, the results

obtained for generalGBSs can be used to solve the realization for the various sub-classes of

GBSs described above. Below we will discuss this topic in more detail.

We start with specializing the results toGBSs described in Example14. We will call such

GBSs GBSs with i.i.d. inputs. We will show that the following conditions are necessary and

sufficient for existence of aGBS realization with i.i.d inputs.

Assumption 5: 1) {y(t), zw(t) | w ∈ Σ+} is zero-mean, wide-sense stationary.

2) The σ-algebras generated by respectively{y(t − l)}∞l=0 and {uσ(t + l)}∞l=0, σ ∈ Σ are

independent.

3) The familyΨy is square summable and rational.

We obtain the following corollary of Theorem4.

Corollary 2: A processy has a realization by aGBS with i.i.d input if and only ify satisfies

Assumption5. If y satisfies Assumption5, then theGBS realization ofy described in Theorem

6 is a GBS with i.i.d input.

Indeed, ify satisfies Assumption5, theny is RC and hence it satisfies Assumption3. Hence, by

Theorem6, Assumption5 implies existence of aGBS realizationB of y in forward innovation

form. The noise process of thisGBS is then the innovation processe(t). By Lemma1, since

the coordinates ofe(t) belong to the Hilbert space generated by{y(t), zw(t) | w ∈ Σ+}, it is

measurable w.r.t to theσ-algebra generated by{y(t− l),u(t− l − 1)}∞l=0. The latterσ-algebra

is independent of theσ-algebra generated by{uσ(t + l)}∞l=0, sinceu is an i.i.d process andy

satisfies Assumption5. Hence, theσ-algebras generated by{e(t− l)}∞l=0 and{uσ(t+ l)}∞l=0 are

independent. Hence,B is a GBS with i.i.d inputs. Conversely, ify has a realization by aGBS

with i.i.d inputs, then by Theorem5 y satisfies Assumption3. Moreover, sincex(t) and hence

y(t) belongs to the Hilbert-space generated by{v(t), zvw(t) | w ∈ Σ+} and the latter variables

are independent ofuσ(t+ l), l ≥ 0, from Lemma1 it follows that theσ-algebras{y(t− l)}∞l=0

and{uσ(t+ l)}∞l=0, σ ∈ Σ are independent. Hence,y satisfies Assumption5.

Corollary 3: Theorem7 remains valid if we replaceGBSs by GBSs with i.i.d inputs.

Indeed, from Theorem7 it follows that a reachable and observableGBS with i.i.d inputs is

minimal. Conversely, by Theorem7 theGBS realization ofy described by Theorem6 is minimal,
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and by Corollary2 it implies that if aGBS with i.i.d inputs which has the minimal dimension

among all theGBSs with i.i.d. inputs, then it has the smallest possible dimension among all the

GBSs realizations ofy. Hence, minimalGBSs with i.i.d inputs are also reachable and observable.

Moreover, there is a minimalGBS realization ofy with i.i.d inputs. Finally, isomorphism of

minimal GBS realizations with i.i.d. inputs follows directly from Theorem 7.

Recall the linear systems (Example11), bilinear stochastic systems (Example12) and jump-

markov linear systems with i.i.d discrete state (Example13) arise fromGBS with i.i.d inputs

by a specific choice of the input processuσ, σ. If we apply Assumption5 to the case of linear

Gaussian systems, then we obtain the classical results on realization theory of linear systems.

Notice that the last part of Assumption5, when applied to the linear case, reduces to requiring

that the power spectrum is stable and rational. If we apply Assumption5 to bilinear stochastic

systems, then we obtain the conditions of [13], [14]. Note that in [13] only the sufficiency of

the condition was shown, not the necessity. Furthermore, [14] deals with weak realization (see

Definition 12) and it assumes that the output equation does not contain a noise term. If we

specialize Corollary2–3 to jump-markov linear systems with i.i.d state process we obtain the

following results. We will call theGBS of the type described in Example13 jump-markov linear

systems with i.i.d switching (abbreviated by JMLSIID).

Corollary 4 (Realization of JMLSIID):The processy has a realization by JMLSIID if and

only if the following conditions hold:

1) {y(t), zw(t) | w ∈ Σ+} is zero-mean, wide-sense stationary,

2) theσ-algebras generated by{y(t− l)}∞l=0 and{θ(t+ l)}∞l=0 are independent,

3) the familyΨy is square summable and rational.

If y satisfies the conditions above, then it has a minimal JMLSIIDrealization in forward

innovation form described in Theorem6. Moreover, Theorem7 holds if we replaceGBSs by

JMLSIID.

To the best of our knowledge, Corollary4 represents a new result. That is, the framework of

GBSs not only extends existing results on bilinear stochastic systems, but also yields, as a special

case, new results on a completely different system class.

Finally, we show how the results above specialize to the caseof jump-markov linear systems

with restricted switching (abbreviated by JMLSRS), described in Example15.

Assumption 6: 1) {y(t), zw(t) | w ∈ Σ+} is jointly zero-mean, wide-sense stationary,

October 8, 2018 DRAFT



29

2) theσ-algebras generated by{y(t− l)}∞l=0 and{θ(t+ l)}∞l=0 are conditionally independent

w.r.t to theσ-algebraDt generated by{θ(t− l − 1)}∞l=0

3) The familyΨy is square summable and rational.

Corollary 5 (Realization of JMLSRS):The processy has a realization by a JMLSRS if and

only if it satisfies Assumption6. If y satisfies Assumption6, then it has a minimal JMLSRS

realization in forward innovation form described in Theorem 6. Moreover, Theorem7 holds if

we replaceGBSs by JMLSRS.

The proof of this corollary is similar to the proof of Corollary 2. First, if y has a realization by

a JMLSR, then, since a JMLSR is aGBS satisfying Assumption2, y satisfies Assumption3.

Moreover,y(t) belongs to the Hilbert-space generated by{v(t), zvw(t) | v ∈ Σ+}, wherev is the

noise process of a JMLSR realization. From Lemma1 it then follows thaty(t) is measurable with

respect to theσ-algebra generated by{v(t−l), θ(t−l−1)}∞l=0. By the definition of JMLSRS and

the well-known properties of conditional independence,σ-algebras generated by{y(t−l)}∞l=0 and

{θ(t+ l)}∞l=0 are conditionally independent w.r.t.Dt. This, together with Assumption3 implies

thaty satisfies Assumption6. Conversely, Assumption6 implies Assumption3. Then there exists

a minimal GBS realizationB of y in forward innovation form. The noise process is then the

innovation processe ande(t) belongs to the Hilbert-space generated by{y(t), zw(t) | w ∈ Σ+}.

Using Lemma1 it then follows thate(t) is measurable w.r.t. to theσ-algebra generated by

{y(t − l), θ(t − l − 1)}∞l=0. The latterσ-algebra and theσ-algebra generated by{θ(t + l)}∞l=0

are conditionally independent w.r.t toDt by Assumption6. Hence, theσ-algebras generated by

{e(t− l)}∞l=0 and{θ(t+ l)}∞l=0 are conditionally independent w.r.t.Dt. That is,B is a JMLSRS

and it is a minimal one among all theGBS realizations. Hence, if a JMSRS is minimal among

all the JMLSRS realizations ofy, then it is minimal among all theGBS realizations ofy. Then

the last part of Corollary5 is a direct consequence of Theorem7.

The result of Corollary5 is new, to the best of our knowledge. This result is another proof

of versatility of theGBS framework.

E. Weak realization and realization algorithms

Below we present a realization algorithm forGBSs. We only state the algorithm and the related

results, the proofs are presented in§IV. Theorem6 proposes a procedure for construction aGBS

realization ofy using the knowledge ofy and{uσ}σ∈Σ. In this construction, the noise and the
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state processes are constructed explicitly usingy and{uσ}σ∈Σ. Unfortunately, this procedure is

not effective. In fact, it cannot be made effective, since itpresumes the knowledge of stochastic

processesy and {uσ}σ∈Σ. The latter objects cannot be represented by finite number ofdata

points. Note however, that for many application the knowledge of the state or noise process is

not required, instead it is sufficient to know the matrices ofthe GBS and covariance of the state

process. These matrices can be approximated from finitely many data points. This prompts us

to introduce the notion of aweak realization.

Definition 12 (Weak realization):A collection ({Aσ, Kσ, Pσ, Qσ}σ∈Σ, C,D), whereAσ, Pσ ∈
Rn×n, Kσ ∈ Rn×m, Qσ ∈ Rm×m, σ ∈ Σ, C ∈ Rp×n, D ∈ Rp×m, is called aweak realization

of y, if there exists aGBS Σ of the form (8), such thatΣ is a realization ofy and Σ

satisfies Assumption2 and E[x(t)xT (t)u2
σ(t)] = Pσ, E[v(t)vT (t)u2

σ(t)] = Qσ, σ ∈ Σ. The

data({Aσ, Kσ, Pσ}σ∈Σ, C,D) is said to be a weak realization ofy in forward innovation form,

if the GBS Σ above is a realization ofy in forward innovation form.

By a slight abuse of notation, we will identifyΣ with the data({Aσ, Kσ, Pσ, Qσ}σ∈Σ, C,D)

and writeΣ = ({Aσ, Kσ, Pσ, Qσ}σ∈Σ, C,D).

That is, aGBSΣ is said to be a weak realization ofy, if there exists aGBS realization ofy with

the same matrices, state and noise covariance as those ofΣ. It turns out that the construction of

Theorem6 can be used to compute a weak realization ofy from finite data.

As the first step, we construct approximations of the state and noise processes from Theorem

6 based on finitely many random variables. More precisely, we define a sequence of candidate

state-variablesxN(t) and noise variableseN(t) as

xN(t) = El[O
−1
R (Yn(t)) | {zw(t) | w ∈ ΣN}]

eN(t) = y(t)−El[y(t) | {zw(t) | w ∈ ΣN}

Recall thatΣN = {w ∈ Σ+ | |w| ≤ N}. Recall that the original construction ofx(t) ande(t) the

projection of future outputs to the space generated by infinitely many past outputs and inputs.

In contrast,xN(t) andeN (t) determined by projections of future outputs to finitely manypast

outputs and inputs. Intuitively,xN (t) andeN(t) are approximations ofx(t) ande(t) respectively.

In fact, the following result holds.

Lemma 5: limN→∞ xN(t) = x(t), limN→∞ eN (t) = e(t), limN→∞ xN (t)uσ(t) = x(t)uσ(t),

and limN→∞ eN (t)uσ(t) = e(t)uσ(t).
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It turns out that an analog of (19) holds forxN .

Lemma 6:There existn× p matricesKN
σ , σ ∈ Σ such that

xN+1(t+ 1) =
∑

σ∈Σ
(

1√
pσ

AσxN(t) +KN
σ eN(t))uσ(t)

y(t) = CxN (t) + eN(t).

(24)

If PN
σ = E[xN (t)xN(t)u

2
σ(t)], and(pσTσ,σ − CPN

σ CT ) is invertible, thenKN
σ

KN = (
√
pσBσ −

1√
pσ

AσP
N
σ CT )(pσTσ,σ − CPN

σ CT )−1. (25)

In fact, we will show later on thatPσ = limN→∞ PN
σ andKσ = limN→∞KN

σ . Hence, if we know

PN
σ andKN

σ , then Lemma6 yields an approximation of the weakGBS realization described in

Theorem6.

The computation ofPN
σ andKN

σ requires the knowledge of the random variables{zw(t) | w ∈
ΣN}. In practice, however, one has only data, i.e. samples of therandom variables{zw(t) | w ∈
ΣN}. Below we present a formula on approximatingPN

σ (and henceKN
σ ) from such a sample.

To this end, notice thatxN (t) belongs to the space spanned by the entries of{zw(t) | w ∈ ΣN}.

Recall thatM(N) = |ΣN |. and v1 ≺ v2 ≺ · · · ≺ vM(N) is an enumeration ofΣN based on

lexicographic ordering. Then there existsαN ∈ Rn×pM(N), such that

xN(t) = αNZN (t), (26)

whereZN (t) =
[
zTv1(t) . . . zTvM(N)

(t)
]T

∈ RpM(N)×1. If we define

TN = E[ZN (t)Z
T
N (t)] and Λ̃N = E[O−1

R (Yn(t + 1))ZT
N(t)],

then by the well-known properties of orthogonal projection, αN is determined bỹΛN andTN .

In fact, if TN is invertable, thenαN = Λ̃NT
−1
N . From (26) and the assumption thaty is RC it

then follows that

PN
σ = pσαNTNDαT

N . (27)

whereD is a diagonal matrix such that theith diagonal entryDii is 1 if uiσ ∈ L or it is zero

otherwise. It then follows that the knowledge ofΛ̃N andTN yieldsαN andPN
σ . Note thatΛ̃N

can be computed from a minimal representationR of Ψy as follows:Λ̃N =
[
Λ̃u1 . . . Λ̃uM(N)

]
,

whereΛ̃σv = AvBσ with Bσ =
[
B1,σ . . . Bp,σ

]
, for all v ∈ Σ∗, σ ∈ Σ.
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The discussion above yields the realization algorithm presented in Algorithm2. In Algorithm

2 we assume that we measure the finite time series{y(t), uσ(t) | σ ∈ Σ, t = 0, . . . , N +M} for

someN,M ≥ 0 and that we have a(n, n)-selection(α, β) at our disposal.

Theorem 8 (Correctness of Algorithm1): Assume that the following holds:

1) The process(y, {uw | w ∈ Σ+}) is ergodic and the time series{y(t), uσ(t) | σ ∈ Σ, t =

0, 1, . . . , } are such that for allv, w ∈ Σ+.

E[y(t)zTw(t)] = lim
N→∞

1

N

N∑

r=|w|
y(r)zTw(r)

E[zv(t)z
T
w(t)] = lim

N→∞

1

N

N∑

r=max |w|,|v|
zv(r)z

T
w(r)

(28)

2) Then, n–selection(α, β) is such thatrank HΨy,α,β = rank HΨy
≤ n.

3) The representation returned by Algorithm1 when applied toHΨy,n,n+1 and (α, β) is of

the formR = (Rr, {Aσ}σ∈Σ, B, C).

4) The processy satisfies Assumption3, Assumption4 and it is full rank.

Let Σ be theGBS realization ofy from (19) and letQσ = E[e(t)eT (t)u2
σ. Identify Σ with the

corresponding weak realizationΣ = ({Aσ, Kσ, Pσ, Qσ}σ∈Σ, C, Ip). Then the following holds

1) For large enoughN,M , TN,M andQN,M
σ are invertable and Algorithm1 is well posed.

2) limM→∞ΣN,M = ({Aσ, K
N
σ , PN

σ , QN
σ }σ∈Σ, C, Ip), whereQN

σ = E[eN(t)eN (t)u
2
σ(t)] and

PN
σ andKN

σ are defined as Lemma6.

3) limN→∞ limM→∞ΣN,M = Σ

Informally, Theorem8 says the following. If we letM go to infinity, then the weak realization

ΣN,M returned by Algorithm8 corresponds to the approximate realization described in Lemma

6. In that realization, the state processx(t) is approximated byxN(t), the latter being the (linear

combination of) projection of future outputs to finitely many past outputs and inputs. If we let

N go to infinity too, thenΣN,M will converge (as a tuple of matrices) to the weak realization

which corresponds to theGBS described in Theorem6. Theorem8 and Algorithm2 open up

the possibility of formulating subspace-like realizationalgorithms forGBSs and for analyzing

existing ones [50], [18], [15], [16]. Pursuing this direction remains future work.
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Algorithm 2

Input: data{yt, uσ(t) | t = 0, . . . , N +M,σ ∈ Σ} and (n.n)–selection(α, β).

Output: weak realizationΣN,M = ({MFσ, K
N,M
σ , PN,M

σ , QN,M
σ }σ∈Σ,MH, Ip).

1: Approximate the covariancesΛw, w ∈ Σ2n−1, and the covariancesTv1,v2 for v1, v2 ∈ ΣN

from the time-series using the formula:

Λw ≈ ΛM
w

def
=

1

M

M+2n−1∑

t=2n−1

y(t)zw(t)

Tv1,v2 ≈ TM
v1,v2

def
=

1

M

N+M+1∑

t=N

zv1(t)z
T
v2
(t)

where for anyw = σ1 · · ·σk ∈ Σ2n−1, σ1, . . . , σk ∈ Σ, k ≥ 2n− 1, zw(t) = y(t− k)uσ1(t−
k) · · ·uσk

(t− 1).

2: Construct the finite Hankel matrixHM
Ψy,n+1,n by replacing the covariancesΛy

w, w ∈ Σ2n−1

in the definition ofHΨy,n,n+1 by the estimatesΛM
w , w ∈ Σ2n−1.

3: Choose an, n-selection(α, β) such thatrank HΨy,α,β = rank HΨ,N,N . Apply Algorithm

1 SectionII to HM
Ψy,n+1,n and then, n-selection(α, β) to obtain a representationRM =

(Rn, {MFσ}σ∈Σ,MG,MH).

4: Use the estimatesTM
v1,v2 , v1, v2 ∈ ΣN to construct the matrixTN,M : the matrixTN,M has the

same structure asTN , but instead of the covariancesTv1,v2 we use the approximationsTM
v1,v2

.

5: Define Λ̃N,M in the same waỹΛN , but usingMFv
MGσ instead ofΛ̃σv, where MGσ =[

MG1,σ . . . MGp,σ

]
.

6: Assume thatTN,M is invertable, and find

αN,M = Λ̃N,MT−1
N,M

PN,M
σ = pσαN,MTN,MDαT

N,M

QN,M
σ = pσ(T

M
σ,σ −

1

pσ

MHPN,M
σ

MHT )

KN,M
σ = (

√
pσ

MGσ −
1√
pσ

MFσP
N,M
σ

MHT )(pσT
M
σ,σ − MHPN,M

σ
MHT )−1

HereD is a diagonal matrix such that theith diagonal entryDii is 1 if viσ ∈ L or it is zero

otherwise.

7: Return the weak realizationΣN,M = ({MFσ, K
N,M
σ , PN,M

σ , QN,M
σ }σ∈Σ,MH, Ip).

October 8, 2018 DRAFT



34

IV. PROOF OF THE RESULTS ON REALIZATION THEORY OFGBSS

A. Technical preliminaries and the proofs of Lemma2–4

Below we will present a number of technical results onRC processes. These results will allow

us to prove Lemmas2–4 and the main theorems.

Notation 5: Let Ik denote thek × k identity matrix.

Let r(t) ∈ Rr be anRC process.

Notation 6: Denote byHr
t the Hilbert-space generated by the entries of{zrw(t) | w ∈ Σ+}.

Lemma 7:With the notation above, ifHr
t ⊆ Hr

t+1, r(t) ∈ Hr
t+1.

Proof of Lemma7: From Assumption1 it follows that
∑

σ∈Σ ασuσ(t) = 1 for any

t ∈ Z, and hencer(t) =
∑

σ∈Σ ασr(t)uσ(t) =
∑

σ∈Σ zrσ(t + 1) ∈ Hr
t+1. Similarly, zrw(t) =

∑
σ∈Σ ασz

r
w(t)uσ(t) =

∑
σ∈Σ ασz

r
wσ(t+ 1) ∈ Hr

t+1.

Lemma 8:Let z(t) ∈ Rd be a process such that the entries ofz(t) belong toHr
t for any t ∈ Z

and thatE[z(t+ k)(zrw(t+ k))T ] = E[z(t)(zrw(t))
T ]. Then the process


r(t)
z(t)


 is RC.

For the proof of this lemma we will need the following results.

Lemma 9: If z ∈ R is a mean-square integrable random variable and it belongs to the linear

span of the components ofzv(t), v ∈ L, thenE[z2u2
σ(t)] ≤ pσE[z2].

Proof of Lemma9: Assume that for some finite subsetS ⊆ L, z =
∑

v∈S αvzv(t) for

someαv ∈ R1×p. DefineS1 = {v ∈ S, vσ ∈ L}, S2 = {v ∈ S, vσ /∈ L}. Then, by noticing

that E[zv(t)z
T
w(t)u

2
σ(t)] = E[zvσ(t + 1)zTwσ(t + 1)] = Tvσ,wσ and taking into account Part3 of

Definition 5 and thatT T
vσ,s = Ts,vσ = 0 for vσ /∈ L, we obtain

E[z2u2
σ(t)] =

∑

v,w∈S1

pσα
T
v Tvσ,wσα

T
w = pσ

∑

v,w∈S1

αvTv,wα
T
w (29)

On the other hand, by Part3 of Definition 5, if v ∈ S1 andw ∈ S2 or other way around, then

Tv,w = 0. Moreover,(Tv,w)v,w∈S2 is positive definite, i.e.
∑

v,w∈S2
αvTv,wα

T
w ≥ 0. Hence, by

noticing thatS = S1 ∪ S2,

E[z2] =
∑

v,w∈S
αvTw,vα

T
w =

∑

v,w∈S1

αvTv,wα
T
w +

∑

v,w∈S2

αvTv,wα
T
w ≥

∑

v,w∈S1

αvTv,wα
T
w (30)

Combining (29) and (30) yields the statement of the lemma.
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Lemma 10:Assume thatzN ∈ R is a sequence such thatzN is a finite linear combination

of zrw(t), w ∈ Σ+ and z = limN→∞ zN in the mean-square sense. Then for eachσ ∈ Σ,

zuσ(t) = limN→∞ zNuσ(t). in the mean-square sense.

Proof of Lemma10: If z = limN→∞ zN in the mean-square sense, then itzNuσ(t) converges

to zNuσ(t) in mean sense. Indeed, from Hölders inequality it follows thatE[|zNuσ(t)−zuσ(t)|] =
E[|(zN − z)||̇uσ(t)|] ≤

√
E[|z − zN |2]

√
E[uσ(t)2]. On the other hand, it can be shown that

zNuσ(t) is a Cauchy-sequence in the mean-square sense. Notice that by Lemma 9, zNuσ(t)

is in fact mean-square integrable. ConsiderzN+K − zN for any K > 0. Since zN+K − zN

belongs to the closed linear spaceMN+K generated by the entries of{zk}k≤N , by Lemma

9, E[|zN+Kuσ(t) − zNuσ(t)|2] = E[|zN+K − zN |2u2
σ(t)] ≤ pσE[|zN+K − zN |2]. SincezN is

convergent, it is then a Cauchy sequence and hence by the inequality above so iszNuσ(t). But

by Jensen’s inequality,E[|zN(t)uσ(t)− h|] ≤
√

E[|zN(t)uσ(t)− h|2], and henceh is the limit

of zNuσ(t) in the mean sense as well. It then follows from the uniquenessof the limit in L1

sense thath = zuσ(t) almost surely. Hence,zuσ(t) = h is indeed the limit ofzNuσ(t) in the

mean-square sense.

Proof of Lemma8: From z(t) ∈ Ht it follows that z(t) = limN→∞ zN where zN =
∑

w∈Σ+,|w|≤N αwz
r
w(t) for someαw ∈ Rd×r. DefinezN(k) =

∑
s∈Σ+,|s|≤N αsz

r
s(k) for all k ∈ Z.

From E[z(t)zTN(t)] = E[z(t + k)zTN(t + k)], it follows that E[||z(t + k) − zN(t + k)||2] =

E[||z(t) − zN(t)||2] and hencez(k) = limN→∞ zN(k), t, k ∈ Z. For everyv ∈ Σ+, denote by

zvN(t) the finite sumzvN(t) =
∑

s∈Σ+,|s|≤N αsz
r
sv(t). By repeated application of Lemma10 we

obtain that

zzv(t) = lim
N→∞

zvN(t)

SinceE[zzv(t)(z
z
w(t))

T ] andE[zz(t)(zzw(t))
T ] are the limits ofE[zvN(t)(z

w
N (t))

T ] andE[zN (t)(z
w
N(t))

T ]

respectively. Hence, ifr(t) satisfies Part1 of Definition 5, i.e. {r(t), zrw(t) | w ∈ Σ+} is zero

mean wide-sense stationary, then so is{z(t), zzw(t) | w ∈ Σ+}. That is z satisfies Part1 of

Definition 5. Finally, in order to prove thatz(t) satisfies Part2 of Definition 5, notice that

T z

wσ,vσ
′ is is the limit of linear combinations ofT r

swσ,hvσ
′ for s, h ∈ Σ+. If σ 6= σ

′

, then by virtue

of r satifying Part2 of Definition 5, T r

wσ,vσ′ = 0. If σ = σ
′

andwσ, vσ ∈ L, Finally, if wσ /∈ L

(respectivelyvσ /∈ L), then for alls ∈ Σ+, swσ /∈ L (respectivelyhvσ /∈ L for all v ∈ Σ+) and

henceT r
swσ,hvσ = 0. By combining the results above and taking limits we readilyconclude that
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z(t) satisfies Part2 of Definition 5. Finally, as it was remarked in Remark1, Part3 of Definition

5 follows from Parts1–2 of Definition 5.

Notation 7: For everyw ∈ Σ+, denote byHr
t,w the Hilbert-space generated by the entries of

{zrvw(t) | v ∈ Σ+} and denoteHr,∗
t,w the Hilbert-space generated by the entries of{zvw(t)r | v ∈

Σ∗}. Clearly,Hr
t,w ⊆ Hr,∗

t,w.

Lemma 11:With the notation above, for everyσ1, σ2 ∈ Σ, σ1 6= σ2, Hr,∗
t,σ1

and Hr,∗
t,σ2

are

orthogonal and henceHr
t,σ1

andHr
t,σ2

are orthogonal. Moreover, ifz ∈ Hr
t , thenzuσ(t) ∈ Hr

t+1,σ.

Proof of Lemma11: The first statement of the lemma is an immediate consequence of

the fact thatE[zrvσ1
(t)(zrwσ2

(t))T ] = 0 for all w, v ∈ Σ+, σ1 6= σ2 ∈ Σ. The second statement

follows by noticing thatzrw(t)uσ(t) ∈ Hr
t+1,σ. If z ∈ Hr

t , thenz = limN→∞ rN , whererN is a

finite linear combination ofzrw(t), w ∈ Σ+. It then follows thatrNuσ(t) ∈ Hr
t+1,σ. From Lemma

10 it follows that z = limN→∞ rNuσ(t) and hencez ∈ Hr
t+1,σ.

Lemma 12:Let h(t) ∈ Rl, z(t) ∈ Rp be processes such thats(t) = (zT (t),hT (t))T is RC and

the coordinates ofz(t) are orthogonal toHh
t for all t ∈ Z. Then for allw ∈ Σ+, the coordinates

of zzw(t) are orthogonal toHh
t,w for all t ∈ Z.

Proof: It then follows thatz(t) = C1s(t) andh(t) = C1s(t) for suitable matricesC1, C2.

NoteE[z(t)(zhv (t))
T ] = C1Λ

s
vC

T
2 andE[zzw(t)(z

h
vw(t))

T ] = C1T
s
w,vwC

T
2 , t ∈ Z. Sinces(t) is RC,

T s
w,vw = Λs

v if vw ∈ L andT s
w,vw = 0 otherwise. Hence,E[zzw(t)(z

h
vw(t))

T ] = E[z(t)(zhv (t))
T ]

if vw ∈ L and E[zzw(t)(z
h
vw(t))

T ] = 0 otherwise. Since by the orthogonality assumption

E[z(t)(zhv (t))
T ] = 0, it then follows thatE[zzw(t)(z

h
vw(t))] = 0 for all v ∈ Σ+.

Proof of Lemma2: It is clear that if s(t) =
[
vT (t), xT (t)

]T
is RC, then x(t) =

[
0, In

]
s(t) is RC too. The claim that

[
vT (t), xT (t)

]T
is RC follows directly from Part

3, Assumption2, and Lemma8, if we can show thatE[x(t)(zvv (t))
T ] does not depend ont for

any v ∈ Σ+. For anyk ≥ 0,

x(t) =
∑

w∈Σ+,|w|=k

√
pwAwz

x
w(t) +

∑

w∈Σ∗,|w|≤k−1

∑

σ∈Σ

√
pσwAwBσz

v
σw(t). (31)

If k = |v|, then it follows thatE[zxw(t)(z
v
v (t)

T ] = 0. Indeed, by Part3, Assumption2 and Lemma

10, zxw(t) belongs to the Hilbert-space generated by the components ofzvsw(t), s ∈ Σ+. Since,

|w| = |v| = k, sw 6= v for all s ∈ Σ+. Hence,zvv (t) is orthogonal to the latter Hilbert-space.
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Hence, fork = |v|,

E[x(t)(zvv (t))
T ] =

∑

w∈Σ∗,|w|≤k−1

∑

σ∈Σ

√
pσwAwBσT

v
σw,v,

and the latter expression does not depend ont.

Using Part3, Assumption2 and Lemma11, the coordinates ofzxw(t) belong to the Hilbert-

spaceHv
t,w generated by the coordinates ofzvsw(t), s ∈ Σ+. Since,|v| ≤ |w| = k, sw 6= v for

all s ∈ Σ+, and henceE[zvsw(t)(z
v
v (t))

T ] = 0. That is, the coordinates ofzvv (t) are orthogonal

to Hv
t,w and hence tozxw(t).

In order to show (13), we go back to (31). We will show thatrk(t) =
∑

w∈Σ+,|w|=k

√
pwAwz

x
w(t)

converges to zero ask → ∞. Sincex(t) is RC, E[zxw(t)(z
x
v (t))

T ] = 0 for any w 6= v or w =

v /∈ L, |w| = |v| = k, and for allw ∈ L, E[zxw(t)(z
x
w(t))

T ] = 1
pσ
E[x(t− k)xT (t− k)u2

σ(t− k)],

wherew = σs for σ ∈ Σ and s ∈ Σ∗. Denote byPσ = E[x(t − k)xT (t − k)u2
σ(t − k)]. Note

that by virtue ofx(t) being RC, the definition ofPσ does not depend ont and k. Moreover,

from Part4 it follows thatAsAσ = 0 if s ∈ Σ∗, σ ∈ Σ, σs /∈ L. In then follows that

E[rk(t)r
T
k (t)] =

∑

s∈Σ∗

∑

σ∈Σ
psAsAσPσA

T
σA

T
s . (32)

DefineS =
∑

σ∈Σ AσPσA
T
σ and define the linear mapR on the space of matricesRn×n as

R(V ) =
∑

σ∈Σ
pσAσV AT

σ .

ThenE[rk(t)r
T
k (t)] = Rk−1(S). Notice that

∑
σ∈Σ pσA

T
σ ⊗ AT

σ is just the matrix representation

of R(V ) in the basis described in [41, Chapter 2]. Hence, by Part4 of Definition 2 and

[41, Proposition 2.5],limk→∞Rk(S) = 0. Hence, it follows that the limit ofE[||rk(t)||2] =
traceE[rk(t)r

T
k (t)] equals zero ask → ∞, which is a equivalent to saying that the mean-square

limit of rk(t) is zero ask goes to∞.

Proof of Lemma3: In order to prove the statement of the lemma, we use the proof of

Lemma2. Notice that (31) remains valid fort = k, if we replacex by x̂. The assumptions of the

lemma ensure that (32) remains valid fort = k, whererk(k) =
∑

w∈Σ+,|w|=k

√
pwAwz

x̂
w(k) and

Pσ = E[x̂(0)x̂(0)Tu2
σ(0)]. With the argument as above, it then follows thatlimk→∞ rk(k) = 0

in the mean-square sense. Notice thatx(t) − x̂(t) =
∑

v∈Σ∗,|v|≥tΣσ∈Σ
√
pσvAvBσz

v
σv(t) − rt(t).

The first terms converges to zero in the mean-square sense ast → +∞, since the series on the

right-hand side of (13) is convergent in the mean-square sense. It was shown that the second
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termrt(t) converges to zero ast → ∞. Hence,x(t)− x̂(t) converges to0 in mean-square sense.

Proof of Lemma4: First, we show that there exists at most one solution to (14). To this

end, assume that there are two solutions{Pσ}σ∈Σ and{P ′

σ}σ∈Σ to (14). Define P̂σ = Pσ − P
′

σ.

By subtracting th equation (14) for Pσ andP
′

σ,

P̂σ =
∑

σ1∈Σ,σ1σ∈L
pσAσ1P̂σ1A

T
σ1
. (33)

Using the equation above and the fact thatAσAσ1 = 0 for σ1σ /∈ L, we obtain

AσP̂σA
T
σ =

∑

σ1∈Σ
pσAσAσ1P̂σ1A

T
σ1
Aσ (34)

Consider the mapZ : Rn×n → R
n×n defined asZ(V ) =

∑
σ∈Σ pσAσV AT

σ . It is easy to see that
∑

σ∈Σ pσA
T
σ ⊗AT

σ is a matrix representation ofZ. Hence, from Part4 of Assumption2 it follows

that all the eigenvalues ofZ are inside the unit circle. DefineQ =
∑

σ∈Σ AσP̂σA
T
σ and notice that

(34) implies thatQ =
∑

σ∈Σ pσAσ(
∑

σ1∈ΣAσ1Pσ1A
T
σ1
)AT

σ = Z(Q). Since1 is not an eigenvalue

of Q, it implies thatQ = 0. But if Q = 0, then (34) implies thatAσP̂σA
T
σ = pσAσQAT

σ = 0.

Applying (33) yields P̂σ = 0, and hencePσ = P
′

σ for all σ ∈ Σ.

Next, we show that a solution to (14) exists and it is determined byPσ = E[x(t)x(t)Tu2
σ(t)] =

pσE[zxσ(t)(z
x
σ(t))

T ]. By Lemma8 x(t) is RC. From Part3 of Assumption2 it also follows that

for everyw, v ∈ Σ+, |w| ≥ |v|, zxw(t) and zvv (t) are orthogonal. Indeed by Lemma10, zxw(t)

belongs to the Hilbert space generated byzvsw(t), s ∈ Σ+ and by Assumption2, zvv (t) andzvsw(t)

are orthogonal, since clearly|sw| > |w| ≥ |v|. Notice the identitiesPσ = pσE[zxσ(t+ 1)(zxσ(t+

1))T ] = pσT
x
σ,σ, zxσ1σ

(t+1) = 1√
pσ1σ

x(t− 1)uσ1(t− 1)uσ(t), zvσσ′ (t+1) = 1√
pσ1σ

v(t− 1)uσ1(t−
1)uσ(t) and

zxσ(t+ 1) =
∑

σ1∈Σ

√
pσσ1

(Aσ1z
x
σ1σ

(t+ 1) +Kσ1z
v
σ1σ

(t+ 1). (35)

Notice thatE[zxσ1σ(t)(z
x
σ2σ(t))

T ] equals zero, ifσ1 6= σ2 or σ1 = σ2, σ1σ /∈ L, and pσPσ1

otherwise. In a similar fashion,E[zvσ1σ
(t)(zvσ2σ

(t))T ] equals zero, ifσ1 6= σ2 or σ1 = σ2, σ1σ /∈ L

andpσQσ1 otherwise. In addition,E[zxσ1σ(t + 1)(zvσ2σ(t + 1))T ] = 0, σ1, σ2, σ ∈ Σ. By noticing

Pσ = pσE[zxσ(t+ 1)(zxσ(t+ 1))T ], and applying (35), it follows that{Pσ}σ∈Σ satisfies (14).
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B. Proof of Theorem5

We prove the claims one by one.

Proof that y is RC From Lemma2 it follows that s(t) =
[
vT (t), xT (t)

]T
, and as Notice

y(t) = Cx(t) +Dv(t) =
[
C, D

]
s(t), it then follows thaty is RC.

Proof that RB is well-defined and that it is a representation ofΨy. From Lemma4 it

follows that (14) has at most one solution.

Next, we show thatRB is a representation ofΨy. By induction on|w| we obtain that for all

w ∈ Σ∗,

E[x(t)(zxσw(t))
T ] =

1√
pσ

√
pwAwAσE[x(t− k)xT (t− k)u2

σ], (36)

wherepw is defined as in Notation2. Indeed, forw = ǫ, zxσ(t) =
1√
pσ
x(t−1)uσ(t−1) and using

that x(t) =
∑

σ∈Σ
√
pσ(Aσz

x
σ(t) + Kσz

v
σ(t)) andE[zvσ1

(t)(zxσ(t))
T ] = 0 for all σ1, σ ∈ Σ (see

Lemma2) , we obtain (36). If w = vσ̂, then usingx(t) =
∑

σ1∈Σ
√
pσ(Aσ1z

x
σ1
(t) +Kσ1z

v
σ1
(t)),

the induction hypothesis, and the equalitiesE[zxσ1
(t)(zxσvσ̂(t))

T ] = 0 if σ1 6= σ̂ or σvσ̂ /∈ L, and

E[zxσ1
(t)(zxσvσ̂(t))

T ] =
√
pσ̂E[x(t− 1)(zxσv(t))

T ] for w = σvσ̂ ∈ L, andE[zvσ1
(t)(zxσvσ̂(t))

T ] = 0

(see Lemma2), and usingAwAσ = 0 if σw /∈ L, we again readily obtain (36). In a similar

fashion, we can show that

E[x(t)(zvσw(t))
T ] =





1√
pσ

√
pwAwKσQσ, σw ∈ L

0 otherwise
,

whereQσ = E[v(t)vT (t)u2
σ(t)]. Finally, notice thatzw(t) = Czxw(t) + Dzvw(t), and v(t) is

orthogonal to the variableszxw(t) andzvw(t). Using the definitionΛy
σw = E[y(t)zTσw(t)], AwAσ =

0, AwKσQσ = 0 for σw /∈ L, and (36), we derive

Λy
σw = CE[x(t)(zxw(t))

T ]CT + CE[x(t)(zvw(t))
T ]DT =

√
pwCAw

1√
pσ

(AσPσC
T +KσQσD

T )

That is,Λy
σw = CAwBσ, i.e. RB is a representation ofΨy.

Finally, from Part4 of Definition 2 it follows thatRB is a stable representation.

Proof that y satisfies Assumption3 From the discussion above it follows thaty is RC andRB

is a stable representation ofΨy. Hence,Ψy is rational and by Theorem3 Ψy is square-summable

too.

Proof that y is full rank To this end, notice thatzw(t) = Czxw(t) + Dzvw(t). Part 3 of

Assumption2 and repeated application of Lemma11 implies the coordinates ofzxw(t) belong to

October 8, 2018 DRAFT



40

Hv
t,w ⊆ Hv

t andHy
t ⊆ Hv

t . LetH⊥
t be the orthogonal complement ofHy

t in Hv
t . From Definition

2 it follows thatE[v(t)h] = 0 for anyh ∈ Hv
t . Hence,v(t) is orthogonal toHy

t . Notice that the

entries ofx(t) belong toHv
t and hence it can be written asx(t) = x1(t) + x2(t) such that the

entries ofx2(t) belong toH⊥
t . It then follows thatEl[x(t) | {zw(t) | w ∈ Σ+}] = x1(t) since

for all w ∈ Σ+, E[x2(t)z
T
w(t)] = 0 and henceE[x(t)zTw(t)] = E[x1(t)z

T
w(t)]. ThenEl[y(t) |

{zw(t) | w ∈ Σ+}] = Cx1(t), sinceE[y(t)zTw(t)] = CE[x1(t)z
T
w(t)] and the entries ofCx1(t)

belong toHt. Moreover, from Lemma8 it follows that (yT (t),xT
2 (t))

T is RC. Similarly, since

v(t) is orthogonal toHv
t , by Lemma12 v(t)uσ(t) is orthogonal toHv

t+1,σ. Since by Lemma11

the entries ofxi(t)uσ(t), i = 1, 2 belong toHv
t+1,σ, it then follows thatxi(t)uσ(t), i = 1, 2 and

v(t)uσ(t) are orthogonal. Notice thate(t) = y(t) − Cx1(t) = Cx2(t) +Dv(t). Hence, for all

σ ∈ Σ, E[e(t)eT (t)u2
σ(t)] = CE[x2(t)x

T
2 (t)u

2
σ(t)]C

T + DE[v(t)vT (t)u2
σ(t)]D

T > 0, i.e. y is

full rank.

C. Proof of Theorem6

The proof of the theorem is organized as follows. First, we present a number of properties

of the state processx(t) and the innovation processe(t). Then we show the existence of the

matrix Kσ, σ ∈ Σ. Finally, we prove (19).

Properties of x(t) and e(t) Below we present some important properties ofx(t) and e(t)

constructed above. The exposition is organized as a series of lemmas.

Lemma 13:For eachw ∈ Σ∗ andσ ∈ Σ such

E[x(t)zTwσ(t)] = E[O−1
R (Yn(t))z

T
wσ(t)] = AwBσ,

whereBσ =
[
B1,σ, . . . , Bp,σ

]
.

Proof of Lemma13: Notice that because of the properties of orthogonal projection it holds

that ∀v ∈ Σ+ : E[x(t)zTv (t)] = E[O−1
R (Yn(t))z

T
v (t)]. Notice that the entries ofE[Yn(t)z

T
v (t)]

are of the formE[(zfvi)
T (t)zTv (t)] i = 0, . . . ,M(n− 1). By writing out the definition ofzfs and

zv(t), it follows that for anyv, s ∈ Σ+,

E[(zfs )
T (t)zTv (t)] = E[y(t+ l)zTvs(t+ l)] = Λy

vs
.

Hence, applying the result above tov = σw and noticing thatΛy
σwvi

= CAviAwBσ we ob-

tain E[Yn(t)zσw(t)] = ORAwBσ. From this, by taking into account thatE[x(t)zTσw(t)] =

O−1
R E[Yn(t)zw(t)], the statement of the lemma follows.
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Lemma13 explains the relationship between states of the would-be generalized bilinear realiza-

tion and the states of the rational representationR of Ψy. In particular, it yields the following

corollary.

Corollary 6: With the notation of Lemma13, Cx(t) = El[y(t) | {zw(t) | w ∈ Σ+}].
Proof of Corollary6: Indeed, from Lemma13 it follows that for anyv ∈ Σ+ of the form

v = σw for somew ∈ Σ∗, σ ∈ Σ: E[Cx(t)zTσw(t)] = CAwBσ = Λy
σw = E[y(t)zTσw(t)], and

hence for anyv ∈ Σ+, E[(y(t)−Cx(t))zTv (t)] = 0, i.e. the entries ofy(t)−Cx(t) are orthogonal

to the Hilbert-space generated by{zv(t) | v ∈ Σ+}. Since the entriesCx(t), obviously belong

to that Hilbert-space, the corollary follows.

The corollary above says thatCx(t) is the projection of the current output to past outputs and

inputs.

Lemma 14:The processesx(t) ande(t) = v(t) satisfy Part1–2 of Assumption2. Moreover,

s(t) =
[
xT (t),yT (t), eT (t)

]T
is RC.

Proof of Lemma14:

From Lemma13 it follows thatE[x(t)(zyv (t))
T ], v ∈ Σ+ does not depend ont. By noticing

that the entries ofx(t) belong toHy
t and applying Lemma8, it then follows thats1(t) =

[
xT (t), yT (t)

]T
is RC. By noticing thats(t) =




In 0

0 Ip

−C Ip


 s1(t), it follows that s(t) is RC.

Proof of Part 1 of Assumption 2 Sincex(t) ande(t) are components ofs(t), it follows that

x(t) ande(t) areRC.

Proof of Part 2 of Assumption 2 Assume thatw, v ∈ Σ+. Assume first that|w| > |v| and

w = sv for somes ∈ Σ+. Since the coordinates ofx(t) belong toHt, from Lemma11 it follows

that the entries ofzxw(t) belong toHy
t,w ⊆ Hy

t,v. From the construction ofe(t) = y(t) − Cx

it follows that zew(t) = zw(t) − Czxw(t). Hence, as the coordinates ofzw(t) belong toHy
t,v,

the coordinates ofzew(t) belong toHy
t,v. Note that the coordinates ofe(t) are orthogonal to

Hy
t . Moreover, recall thats(t) =

[
xT (t), eT (t), yT (t)

]T
is RC. By applying Lemma12

to z(t) = e(t), h(t) = y(t), it follows that zev(t) is orthogonal toHy
t,v. Hence, it follows

that E[zev(t)(z
e
w(t))

T ] = 0. If |w| > |v| but w does not end withv, then from the fact that

e(t) is RC and Part3 of Definition 5 it follows that E[zev(t)(z
e
w(t))

T ] = 0. If |w| < |v|,
thenE[zev(t)(z

e
w(t))

T ] = 0 follows from the discussion above by considering the transpose of
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E[zew(t)(z
e
v(t))

T ]. If |w| = |v| but w 6= v, E[zev(t)(z
e
w(t))

T ] = 0 follows from the fact thate(t)

is RC, by repeated application of Part3 of Definition 5 to r(t) = e(t).

Lemma 15:For anyw ∈ Σ+ andσ ∈ Σ such thatwσ ∈ L, E[x(t)zTw(t)u
2
σ(t)] = pσE[x(t)zTw(t)].

Proof of Lemma15: From Lemma8 it follows that s(t) = (xT (t),yT (t))T is a RC

process and henceT s
σ,wσ = Λs

w for wσ ∈ L. SinceE[x(t)zTw(t)u
2
σ(t)] andE[x(t)zTw(t)] are the

sub-matrices ofpσT s
σ,wσ and respectivelyΛs

w, the statement of the lemma follows.

Definition of Kσ In order to defineKσ, we need the following auxiliary result.

Lemma 16:

Hy
t+1 =

⊕

σ∈Σ
Hy

t,σ ⊕
⊕

σ∈Σ
< e(t)uσ(t) > (37)

where
⊕

denotes the direct sum and< e(t)uσ(t) > denoted the Hilbert-space generated by the

entries ofe(t)uσ(t). Here we used Notation6–7.

Proof of Lemma16: Indeed, from the definition ofHy
t+1 and Lemma8 it is clear thatHy

t+1

is the closure of the space
∑

σ∈Σ(H
y
t,σ+ < e(t)uσ(t) >). From Lemma11 it follows that Hy

t,σ

andHy

t,σ̂ are orthogonal for allσ, σ̂ ∈ Σ. From Lemma12 it follows that Ht,σ, < e(t)uσ(t) >

are orthogonal. Finally, we will show thatHt+1,σ, < etuσ̂(t) > are orthogonal forσ 6= σ̂. To

this end, notice that for allσ, σ̂ ∈ Σ, e(t)uσ̂(t) ∈ Hy,∗
t+1,σ̂ andHy

t+1,σ ⊆ Hy,∗
t+1,σ. From Lemma

11 it then follows thatHy,∗
t+1,σ and Hy,∗

t+1,σ̂ are orthogonal for eachσ, σ̂. Hence,e(t)uσ̂(t) is

orthogonal toHy
t+1,σ ⊆ Hy,∗

t+1,σ. Since all the involved spacesHy
t+1,σ and < e(t)uσ(t) > are

mutually orthogonal, the closure of their sum equals their direct sum.

From Lemma16 it follows that

x(t + 1) =
∑

σ∈Σ
El[O

−1
R (Yn(t+ 1)) | Hσ

t ] + El[O
−1
R (Yn(t+ 1)) |< e(t)uσ(t) >] (38)

Define nowKσ as an× p matrix such that

El[O
−1
R (Yn(t+ 1)) |< e(t)uσ(t) >] = Kσe(t)uσ(t).

If y is full rank, thenKσ is unique andKσ = E[O−1
R (Yn(t+1))eT (t)uσ](E[e(t)eT (t)u2

σ(t)])
−1.

Proof of (19) The second equation of (19) follows directly from the definition ofe(t) =

y(t)− Cx(t). We will concentrate on the first equation. To this end, we will show that

El[O
−1
R (Yn(t+ 1)) | Hy

t+1,σ] =
1√
pσ

Aσx(t)uσ(t). (39)
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From this and from (38) the first equation of (19) follows. From Lemma11 and the fact that the

entries ofx(t) belong toHt it follows that the entries ofx(t)uσ(t) belongs toHy
t+1,σ. Hence,

by Lemma16 in order to show that (39), it is enough to show thatw ∈ Σ+, σ ∈ Σ,

E[O−1
R (Yn(t+ 1))zTwσ(t+ 1)] =

1√
pσ

AσE[x(t)uσ(t)z
T
wσ(t + 1)]. (40)

If wσ /∈ L, thenzTwσ(t+ 1) = 0 and hence (40) trivially holds. Hence, in the sequel we assume

thatwσ ∈ L. Then from Lemma15 and Lemma13 it follows that

1√
p
σ

AσE[x(t)uσ(t)z
T
wσ(t + 1)] =

1√
pσ

Aσ(
√
pσE[x(t)zTw(t)]) = AσAwBσ̂. (41)

where σ̂ is the first letter ofw. By applying Lemma13 to t + 1 instead of t, we obtain

E[O−1
R (Yn(t + 1))zTwσ(t + 1)] = AσAvBσ̂. Hence, by combining this with (41), (40) follows.

Proof of (21), (23) Notice that on the one hand, by Lemma13 E[x(t + 1)zTσ (t + 1)] = Bσ

and on the other hand, if we use (19),

E[x(t + 1)zTσ (t + 1)] =
1√
pσ

AσE[x(t)uσz
T
σ (t+ 1)] +KσE[e(t)uσ(t)z

T
σ (t+ 1)]. (42)

Here we used the corollary of Lemma16 thatx(t)uσ(t), e(t)uσ(t) are orthogonal tozσ̂(t+ 1)

for σ̂ 6= σ, σ, σ̂ ∈ Σ and thatx(t)uσ(t) ande(t)uσ(t) are orthogonal. Indeed, from Lemma16 it

follows thatx(t)uσ(t) ande(t)uσ(t) are orthogonal. From Lemma11 it follows that the entries

of x(t)uσ(t) belong toHy
t+1,σ ⊆ Hy,∗

t+1,σ and the entries ofe(t)uσ(t) = y(t)uσ(t)− Cx(t)uσ(t)

belong toHy,∗
t+1,σ. The entries ofzyσ̂(t + 1) belong toHy,∗

t+1,σ̂. From Lemma11 it then follows

that the spacesHy,∗
t+1,σ, Hy,∗

t+1,σ̂ are orthogonal. Using this remark and the equalityzσ(t + 1) =

1√
pσ
y(t)uσ(t) =

1√
pσ
(Cx(t)uσ(t) + e(t)uσ(t)), we obtain

E[x(t)uσ(t)z
T
σ (t + 1)] =

1√
pσ

PσC
T . (43)

In addition, from the discussion above it follows thatTσ,σ = E[zσ(t)z
T
σ (t)] = 1

pσ
CPσC

T +

1
pσ
E[e(t)eT (t)u2

σ(t)]) and hence

E[e(t)eT (t)u2
σ(t)] = pσTσ,σ − CPσC

T . (44)

Combining (43),(44) and (42) yield

Bσ =
1

pσ
AσPσC

T +
1√
pσ

Kσ(pσTσ,σ − CPσC
T ),
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from which (21) follows easily. Ify is full rank, then the existence of the inverse of(pσTσ,σ −
CPσC

T ) follows from (44) and the invertibility ofE[e(t)eT (t)u2
σ(t)]. If the inverse of(pσTσ,σ−

CPσC
T ) exists, then (21) implies (23).

Proof that the system satisfies Assumption2 We have already shown that Parts1–2 of

Assumption2 are satisfied. SinceR is a minimal representation ofΨy and Ψy is square-

summable, from Theorem3 it follows that
∑

σ∈Σ AT
σ ⊗ AT

σ is stable, i.e. Part4 of Assumption

2 holds. In order to show that Part5 of Assumption2 holds, letσ1, σ2 ∈ Σ such thatσ1σ2 /∈ L.

Notice that for allσ ∈ Σ, v, w ∈ Σ∗, CAwAσ2Aσ1AvBσ = Λσvσ1σ2w. Notice that ifσ1σ2 /∈ L, then

σvσ1σ2w /∈ L, and henceCAwAσ2Aσ1AvBσ = Λσvσ1σ2w = 0. Sincew is arbitrary, it then follows

thatAσ2Aσ1AvBσ ∈ OR. As R is observable, i.e.OR = {0}, it follows that (Aσ2Aσ1)AvBσ = 0.

Since v and σ are arbitrary, the latter implies thatAσ2Aσ1WR = 0. As R is reachable, i.e.

WR = R
n, it then follows thatAσ2Aσ1 = 0. With a similar reasoning, we can show that if

σ1σ2 /∈ L, then for anyw ∈ Σ∗, CAwAσ2Bσ1 = Λσ1σ2w = 0. Hence, observability ofR implies

Aσ2Bσ1 = 0. Finally, from (21), Aσ2Aσ1 = 0, Aσ2Bσ1 = 0 it follows that Aσ2Kσ1Qσ1 = 0 and

thus by recalling thatT e
σ1,σ1

= 1
pσ1

Qσ1 , Part5 of Definition 2 follows.

It is left to show that Part3 of Assumption2 holds. To this end, we have to show that for all

v, w ∈ Σ+, |w| ≥ |v|, E[zxw(t)(z
e
v(t))

T ] = 0. In order to show that for allv, w ∈ Σ+, |w| ≥ |v|,
E[zxw(t)(z

e
v(t))

T ] = 0, we proceed as follows. Since|w| ≥ |v|, w = sv̂ for somes ∈ Σ∗,

v̂ ∈ Σ+, |v̂| = |v|. From Lemma14 it follows that r(t) =
[
xT (t), eT (t)

]T
is RC. Moreover,

E[zxw(t)(z
e
v(t))

T ] is a suitable sub-matrix ofT r
w,v. If v̂ 6= v, then from Part3 of Definition 5 it

follows thatT r
w,v = 0 and henceE[zxw(t)(z

e
v(t))

T ] = 0. Assume now thatv = v̂, i.e. w = sv.

Recall that he entries ofe(t) are orthogonal toHy
t (sincee(t) = y(t)−El[y(t) | Hy

t ]). Moreover,

from Lemma14 it follows that (yT (t), eT (t))T is RC. Hence, the conditions of Lemma12 are

satisfied forz(t) = e(t), h(t) = y(t). Therefore, the entries ofzev(t) are orthogonal toHy
t,v.

Since the entries ofx(t) belong toHy
t , from Lemma11 it follows that the entries ofzxw(t)

belong toHy
t,w. Notice that ifw = sv, thenHy

t,w ⊆ Hy
t,v. Hence in this case the entries ofzev(t)

are orthogonal toHy
t,w and thus to the entries ofzxw(t). Using thate(t),x(t) areRC, (19) holds

and v(t) = e(t) satisfies Part2 of Assumption2, and
∑

σ∈Σ AT
σ ⊗ AT

σ is stable and that the

system satisfies Part4 of Assumption2, we can show that

x(t) = lim
k→∞

∑

w∈Σ∗,|w|≤k−1

∑

σ∈Σ
AwBσz

e
σw(t), (45)
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where the limit is taken in the mean square sense. From (45) Part 3 of Assumption2 follows.

In order to show (45), we can use a reasoning similar to the proof of Lemma2. To this end,

notice that (19) implies that

x(t) =
∑

w∈Σ+,|w|=k

Awz
x
w(t) +

∑

w∈Σ∗,|w|≤k−1

∑

σ∈Σ
AwKσz

v
σw(t),

Hence, it is enough to show thatrk(t) =
∑

w∈Σ+,|w|=kAwz
x
w(k) converges to zero in the

mean square sense. Like in the proof of Lemma2, it can be shown thatE[rk(t)r
T
k (t)] =

∑
s∈Σ∗,|s|=k−1

∑
σ∈Σ AsSA

T
s = Zk−1(S), whereS =

∑
σ∈Σ AσT

x
σ,σA

T
σ , whereZ is the linear map

on R
n×n defined byZ(V ) =

∑
σ∈Σ AσV AT

σ . Since
∑

σ∈Σ AT
σ ⊗AT

σ is the matrix representation

of Z with respect to the basis defined in [41, Section 2.1], [41, Proposition 2.5] implies that

limk→∞E[||rk(t)||2] = limk→∞ traceE[rk(t)r
T
k (t)] = limk→∞ traceRk−1(S) = 0.

D. Proof of Theorem7

Assume thatB is a minimal minimal realization ofy andB satisfies Assumption2. Then by

Theorem5, RB is a representation ofΨy andy satisfies Assumptions3. Assume thatRB is not

a minimal representation ofΨy. Consider a minimal representationR of Ψy. From Theorem6

it then follows that there exists aGBS realizationBR of y such that the dimension ofBR equals

dimR and BR satisfies Assumption2. From the construction ofRB it follows that dimB =

dimRB, hencedimB < dimR = dimBR. This contradicts to the minimality ofB, henceRB

has to be minimal. Conversely, assume thatRB is minimal, and consider aGBS realizationB1

of y such thatB1 satisfies Assumption2. ThendimB1 = dimRB1 ≤ dimRB = dimB. Since

B1 was an arbitrary realization ofy, it then follows thatB is a minimal realization ofy. The

second statement of the theorem is a direct consequence of the first one and of Theorem1.

E. Proof of the results related to the realization algorithm

Below we present the proofs of Lemmas5 – 6 and Theorem8. To this end, we will need the

following auxiliary result.

Lemma 17:Let MN be a sequence of closed subspaces such thatMN ⊆ MN+1 and letM be

the closure of the space
⋃∞

k=1Mk. Let h be a mean-square integrable scalar random variable,

and letzN = El[h | MN ] andz = El[h | M ]. Then limN→∞ zN = z in the mean-square sense.
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Proof of Lemma17: It is clear that iflimN→∞ zN exists and equalsz, thenz = El[h | M ].

Indeed,z = El[h | M ] if and only if h − z is orthogonal toM . If z = limN→ zN , then, since

h− zN is orthogonal toMN , it follows thath− z is orthogonal toMN for all N . Hence,h− z

is orthogonal toM , as the latter is the closure of
⋃∞

N=0MN .

In order to show thatzN is convergent in the mean-square sense, it is enough to show that

zN is a Cauchy sequence. To this end, definedN = ||h− zN || and notice that for anys ∈ MN ,

dN ≤ ||h − s||, due the the well-known properties of orthogonal projections ontoMN . Since

MN ⊆ MN+1, it then follows that0 ≤ dN+1 ≤ dN , and hence the limitlimN→∞ dN = α exists.

Notice that< (h− zN+k), zN+l >= 0 for all 0 ≤ l ≤ k. Hence,

||h− zN+k||2 =< h− zN+k, h− zN+k >=< h− zN+k, h >=< h− zN+k, h− zN >,

and thus

||zN+k − zN ||2 = ||(zN+k − h) + (h− zN)||2 = ||h− zN ||2 − ||h− zN+k||2

d2N − d2N+k

Sinced2N is convergent, it is a Cauchy sequence, and hence for anyǫ > 0 there existsNǫ > 0

such that for anyN > Nǫ and for anyk ≥ 0, 0 < d2N −d2N+k < ǫ, and hence||zN+k−zN ||2 < ǫ,

i.e. zN is indeed a Cauchy sequence.

Proof of Lemma5: From Lemma17 it follows that limN→∞ xN(t) = x(t). From this and

eN(t) = y(t)− CxN(t) ande(t) = y(t)− Cx(t) it follows that limN→∞ eN(t) = e(t). Finally,

limN→∞ xN (t)uσ(t) = x(t)uσ(t), limN→∞ eN(t)uσ(t) = e(t)uσ(t) follows from Lemma10.

Proof of Lemma6: The proof is analogous to the proof of (19). More precisely, we define

HN
t as the linear space generated byzw(t), w ∈ ΣN , and defineHσ,N

t as the linear space

generated byzw(t)uσ(t), w ∈ ΣN . Similarly to Lemma16, it then follows that

HN+1
t+1 =

⊕

σ∈Σ
Hσ,N

t ⊕
⊕

σΣ

< eN (t)uσ(t) > (46)

and hence

xN+1(t + 1) =
∑

σ∈Σ
(E[O−1

R (Yn(t+ 1)) | Hσ,N
t ] + E[O−1

R (Yn(t+ 1)) |< eN(t)uσ(t) >]). (47)

DefineKN
σ such that

E[O−1
R (Yn(t+ 1)) |< eN(t)uσ(t) >] = KN

σ eN(t)uσ(t). (48)
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If we show that

E[O−1
R (Yn(t+ 1)) | Hσ,N

t ] =
1√
pσ

AσxN(t)uσ(t), (49)

then combining this with (48) and (47) we obtain (24). It is left to show that (49) holds. To this

end, notice thatE[xN+1(t+1)zTw(t+1)] = AvBσ̂ whereσ̂ is the first letter ofw, w ∈ ΣN+1. The

proof of this equality is analogous to that of Lemma13. The proof of (47) is then analogous to

that of (39). Finally (25) follows from (47) in a way similar to the proof of (23).

Lemma 18:If y is a full-rank process and satisfies Assumption3 and Assumption4, then for

large enoughN , TN is invertable.

Proof of Lemma18: Since the underlying assumption of this section is that Assumption

3- and Assumption4 hold, it follows thaty has aGBS realization of the form (19). From

y(t) = Cx(t) + e(t), ∀t ∈ Z it follows that zw(t) = Czxw(t) + ze(t), ∀t ∈ Zm. Tv,w =

CE[zxv (t)(z
x
w(t))

T ]CT + E[zev(t)(z
e
w(t))

T ]. Hence,TN = RN + QN , whereRN is the block

matrix RN = (CE[zxvi(t)(z
x
vj
(t))T ]CT )i,j=1,...,M(N) andQN is the block-diagonal matrix, whose

ith diagonalp × p block, i = 1, . . . ,M(N) equalspv̂iE[e(t)eT (t)u2
σi
(t)], vi = σiv̂i. Sincey is

full rank, it then follows thatQN is strictly positive definite. Notice thatRN is positive semi-

definite by definition (as a covariance matrix of((zxv1(t))
T , . . . , (zxvM(N)

(t))T )T ). Hence,TN is

strictly positive definite.

Proof of Theorem8: From Part1 of assumptions of the theorem it follows thatlimM→∞ TN,M =

TN and limM→∞QN,M
σ = QN

σ . Since by Lemma18 TN is invertable, it follows thatTN,M is

invertable for large enoughM . Moreover, sincelimN→∞QN
σ = Qσ > 0, for large enoughN

andM , QN,M
σ is invertable for allσ ∈ Σ. Hence, Algorithm2 is indeed well posed.

Moreover, Part1 implies thatlimM→∞ ΛM
w = Λy

w for all w ∈ Σ+ and hencelimM→∞HM
Ψy,n,n+1 =

HΨy,n,n+1. Hence, for large enoughM , rank HM
Ψy,α,β = rank HΨy,α,β = rank HΨy

= n.

From Algorithm 1 it is clear that its outcome is continuous in the input matrixHΨ,N,N+1,

i.e. limM→∞
MFσ = Aσ, limM→∞

MG = B, limM→∞
MH = C. Hence,limM→∞ Λ̃M,N = Λ̃N

and hence,limM→∞ αN,M = Λ̃NT
−1
N = αN . This and (27) yields thatPN

σ = limM→∞ PM,N
σ .

Using (25) yields limM→∞KM,N
σ = KN

σ . Moreover, notice thatlimM→∞QN,M = (Tσ,σ −
CPN

σ CT ) and the latter equalsE[eN(t)e
T
N (t)u

2
σ(t)] = QN

σ . Finally, from Lemma5 it follows

that limN→∞ PN
σ = Pσ limN→∞QN

σ = Qσ, and by virtue of (25), limN→∞KN
σ = Kσ.
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V. JUMP MARKOV L INEAR SYSTEMS

The goal of this paper is to present a realization theory for aclass of discrete-time stochastic

hybrid systems known as jump Markov linear systems (JMLS) [41]. In reality, however, we

will look at stochastic hybrid systems of a slightly more general form than the ones defined in

[41]. The reason is that the more general class generates the same class of output processes as

classical JMLS, but it is easier to establish necessary and sufficient conditions for the existence

of a realization for the more general class.

Definition 13 (Generalized jump Markov linear system):A generalized jump Markov linear

system(GJMLS),H, is a system of the form

H :




x(t + 1) = Mθ(t),θ(t+1)x(t) +Bθ(t),θ(t+1)v(t)

y(t) = Cθ(t)x(t) +Dθv(t)
. (50)

Here θ, x, y and v are stochastic processes defined on the whole set of integers, i.e. t ∈ Z.

The processθ is called thediscrete state processand takes values in theset of discrete states

Q = {1, 2, . . . , d}. The processθ is a stationary ergodic finite-state Markov process, with state-

transition probabilitiespi,j = Prob(θ(t + 1) = j | θ(t) = i) > 0 for all i, j ∈ Q. Moreover,

the probability distribution of the discrete stateθ(t) is given by the vectorπ = (π1, . . . , πd)
T ,

whereπi = Prob(θ(k) = i). The processx is called thecontinuous state processand takes

values in one of thecontinuous-state spacesXq = R
nq , q ∈ Q. More precisely, for any time

t ∈ Z, the continuous statex(t) lives in the state-space componentXθ(t). The processy is the

continuous output processand takes values in theset of continuous outputsRp. The processv

is thecontinuous noiseand takes values inRm. The matricesMq1,q2 andBq1,q2 are of the form

Mq1,q2 ∈ Rnq2×nq1 andBq1,q2 ∈ Rnq2×m for any pair of discrete statesq1, q2 ∈ Q. Finally, the

matricesCq andDq are of the formCq ∈ Rp×nq andDq ∈ Rp×m for each discrete stateq ∈ Q.

We will make a number of assumptions on the stochastic processes involved.

Assumption 7:Let Dt be theσ-algebra generated by{θ(t− k)}k≥0, and letDt1,t2 , t1 ≥ t2 be

the σ-algebra generated by{θ(t)}t1t=t2 . We assume that for allt ∈ Z,

1) v(t) is mean square integrable, it is conditionally zero mean given Dt,t+k for all k ≥ 0,

i.e. E[v(t) | Dt+k] = 0, and for all l > 0, v(t) and v(t − l) are conditionally un-

correlated givenDt,t−l, i.e. for all l > 0 E[v(t)vT (t − l)T | Dt,t−l] = 0. Moreover,

Qq = E[v(t)vT (t)χ(θ(t) = q)] does not depend ont.
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2) Theσ-algebras generated by the random variables{v(t− l), l ≥ 0} and{θ(t+ l), l > 0}
are conditionally independent givenDt.

3) For anyt ∈ Z, x(t) belongs to the Hilbert-space generated by the variablesv(t−k)χ(θ(t−
k) = q0, . . . , θ(t) = qk) for all q0, . . . , qk ∈ Q, k > 0.

4) The Markov processθ is stationary and ergodic. Therefore, for allq ∈ Q

∑

s∈Q
πsps,q = πq. (51)

5) Let n = n1 + n2 + · · ·+ nd. The matrix

M̃ =




p1,1M
T
1,1 ⊗MT

1,1 p1,2M
T
1,2 ⊗MT

1,2 · · · p1,dM
T
1,d ⊗MT

1,d

p2,1M
T
2,1 ⊗MT

2,1 p2,2M
T
2,2 ⊗M2,2 · · · p2,dM

T
2,d ⊗MT

2,d

...
... · · · ...

pd,1M
T
d,1 ⊗MT

d,1 pd,2M
T
d,2 ⊗MT

d,2 · · · pd,dM
T
d,d ⊗MT

d,d



∈ R

n2×n2

(52)

is stable. That is, for any eigenvalueλ of M̃ , we have|λ| < 1.

6) For eachq ∈ Q, the matrixDqQqD
T
q , whereQq = E[v(t)vT (t)χ(θ(t) = q)], is strictly

positive definite.

Assumption7 implies that future discrete states interact with past noises and continuous states

only through the past discrete states. It also implies that for any fixed sequence of discrete states,

the noise process is a colored noise and the future noise and the current continuous state are

uncorrelated. In addition, Assumption7 imply that the state processx(t) is wide-sense stationary

and the following holds.

Lemma 19:If Assumption7 holds, then there exists a unique collection ofnq × nq matrices

Pq with q ∈ Q, such thatPq satisfy

Pq =
∑

s∈Q
pq,s(Ms,qPsM

T
s,q +Bs,qQs,qB

T
s,q), (53)

whereQs,q = E[v(t)v(t)Tχ(θ(t) = s, θ(t+ 1) = q)]. In additionPq = E[x(t)xT (t)χ(θ(t) = q)

for all q ∈ Q and t ∈ Z.

We present the proof of Lemma19 later on in the text. In fact, Lemma19 follows from Lemma

4 and the relationship between GJMLSs andGBSs which will be presented in the sequel.

realization by a GJLS system as follows. Next, we define the notion of dimension for GJMLS.
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Definition 14 (Dimension of a GJMLS):The dimensionof a GJMLSH with discrete state

processθ taking values onQ = {1, 2, . . . , d} is defined as

dimH = n1 + n2 + · · ·+ nd, (54)

whereni is the dimension of the continuous state space associated with discrete stateq, i.e.

nq = dimXq, for q ∈ Q.

Remark 8:Notice that two GJLSs can have the same dimension even if the dimensions of

the individual continuous components are completely different.

The main motivation for the definitions above is that it allows us to formulate a neat charac-

terization of minimality. In addition, it is intuitively appealing, as the definition of dimension

reflects the amount of date which is required to store the state information. Next, we define

when a GJMLS is a realization of a given process. For ease of notation, in the sequel we will

keep the discrete state processθ fixed and whenever we speak of a GJMLS realization of the

processy, we will always mean a GJMLS ofy with discrete state processθ. More precisely,

let y be a stochastic process taking values inRp.

Definition 15 (Realization by GJMLS):The GJMLSH with discrete state processθ is said

a realizationof y, if the output process ofH equalsy. We call a realizationH of y minimal,

wheneverdimH ≤ dimH ′ for all GJMLSsH ′ that are realizations ofy.

This section will be devoted to the solution of the followingrealization problem for GJMLSs

with fully observed discrete states.

Problem 1 (Realization problem for jump-markov systems):Given a processy and find con-

ditions for existence of a GJMLS which is a realization ofy and characterize minimality of

GJMLS realizations ofy.

A. Relationship between JMLS and GJMLS

Note that the classical definition of discrete-time JMLS [41] differs from (50). The main

difference is that in our framework the continuous state transition rule depends not only on the

current, but also on the next discrete state. More specifically, a JMLS according to [41] is a

GJMLS system of the form

S :




x(t+ 1) = Aθ(t)x(t) +Bθ(t)v(t)

y(t) = Cθ(t)x(t) +Dθ(t)v(t)
. (55)
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wherex(t) ∈ R
n is the state process,v(t) ∈ R

m is the noise process,y(t) ∈ R
p is the output

process andAq ∈ Rn×n, Cq ∈ Rp×n, Bq ∈ Rn×m andDq ∈ Rp×m for all q ∈ Q = {1, . . . , d}.

In other words a JMLS is just a GMLJS of the form (50) such thatnq = n for all q ∈ Q and

Mq1,q2 = Aq2, i.e. Mq1,q2 depends only onq2 for all q1, q2 ∈ Q. In case of JMLS, one does not

speak of state-spaces belonging to different discrete states and the most natural candidate for the

state-space of a JMLSS is the spaceRn. Therefore, the most natural definition of dimension

for a JMLS is the dimensionn of its state-space.

The classes of GJMLS and JMLS are equivalent in the followingsense. First, it is clear that

a classical JMLS also satisfies our definition. Conversely, aGJMLS of the form (50) can be

rewritten as a classical JMLS with the same noise and output processes, but with the continuous

state process and the system matrices are replaced by a continuous state process and system

matrices living in the continuous spaceRn1+n2+···+nd. More precisely, ifH is a GJMLS of the

form (50), then define the JMLS

S(H) :




x̂(t+ 1) = Âθ(t)x̂(t) + B̂θ(t)v(t)

ŷ(t) = Ĉθ(t)x̂(t) +Dθ(t)v(t)
, (56)

wherex̂(t) =
[
x̂T
1 (t), . . . , x̂T

d (t)
]T

, x̂T
q (t) = Mq,θ(t−1)x(t−1)+Bq,θ(t−1)v(t−1), q ∈ Q, and

Âq =




δ1,qM1,1, δ2,qM1,2, . . . δd,qM1,d

δ1,qM2,1, δ2,qM2,2, . . . δd,qM2,d

...
... . . .

...

δ1,qMd,1, δ2,qMd,2, . . . δd,qMd,d




B̂q =




B1,q

B2,q

...

Bd,q




Ĉq =
[
δ1,qC1, δ2,qC2, . . . δd,qCd

]
,

whereδi,j = 1 if i = j andδi,j = 0 if i 6= j for all i, j ∈ Q. It is easy to see that the output of

SH andH coincide, i.e.ŷ(t) = y(t). Hence, a process can be realized by a GJMLS if and only

if it can be realized by a JMLS. In addition, notice that is we define the dimension of a JMLS

as the dimensionn of its state-space, thendimSH = dimH. In other words, the definition of

the dimension for a GJMLS becomes the natural definition, once the GJMLS is converted to a

JMLS. This is a further argument in favor of the definition of dimension of GJMLS adopted in

this paper.
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§V-B presents conditions for the existence of a realization of GJMLS and a characterization

of minimal GJMLSs. The proofs of§the results ofV-B are presented in§V-C.

B. Solution to the realization problem for GJMLS

Below we will present the solution to the realization problem for GJMLS. We will only

state the results, their proofs will be presented in§V-C. We start with formulating conditions

for existence of a realization by a GJMLS. To this end, we fix a processy(t) ∈ R
p GJMLS

and a Markov-processθ(t) ∈ Q = {1, . . . , d}. We will formulate sufficient and necessary

conditions fory(t) to admit a GJMLS realization. In order to formulate the assumptions ony

which characterize realizability, we will recall the terminology of SectionIII and we will try to

interprety(t) as a potential output process of aGBS. More precisely, we define the alphabetΣ

to be the set of pairs of discrete states, i.e.Σ = Q×Q. For each letter(q1, q2) ∈ Σ let the input

processes ofB be defined as

u(q1,q2)(t) = χ(θ(t + 1) = q2, θ(t) = q1). (57)

Define p(q1,q2) = pq1,q2. Notice that Assumption1 holds withασ = 1 for all σ ∈ Σ. We define

the set of admissible sequencesL (see Definition4) as

L = {w = (q1, q2)(q2, q3) · · · (qk−1, qk) | k ≥ 0, q1, q2, . . . , qk ∈ Q}. (58)

Notice that ifw = σ1σ2 · · ·σk /∈ L, thenuσ1(t − k) · · ·uσk
(t) = 0. Using the correspondence

described above, we can interpret the processzyw(t) defined in (10), i.e. if w = σ1 · · ·σk ∈ Σ+,

σ1, . . . , σk ∈ Σ, with σi = (q2i−1, q2i), for q2i−1, q2i ∈ Q, i = 1, . . . , k, then if w /∈ L, i.e.

q2i 6= q2i+1 for somei = 1, . . . , k, thenzw(t) = 0, and if q2i = q2i+1 for all i = 1, . . . , k, i.e. if

w ∈ L, then

zyw(t) = y(t− k)χ(θ(t− k) = s1, . . . , θ(t) = sk)

wheresi = q2i−1, i = 1, . . . , k. In accordance with Notation3 we drop the superscripty and we

denotezyw(t) by zw(t). The terminology above allows us to apply Definition9 to y and speak

of y being full rank.

Now we can formulate the assumptions which are necessary andsufficient for existence of a

GJMLS realization ofy.
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Assumption 8: 1) {y(t), zw(t) | w ∈ Σ+} is jointly zero-mean, wide-sense stationary, i.e.

E[y(t)] = 0, E[zw(t)] = 0 for all t ∈ Z and the covariancesE[zw(t)z
T
v (t)], E[y(t)zTw(t)],

w, v ∈ Σ+ are independent oft ∈ Z,

2) theσ-algebras generated by{y(t− l)}∞l=0 and{θ(t+ l)}∞l=0 are conditionally independent

w.r.t to theσ-algebraDt generated by{θ(t− l)}∞l=0

3) y(t) if a full rank process.

In fact, Assumption8 not only guarantees existence of a GJMLS realization, but italso guarantees

existence of a GJMLS realization which is its own Kalman-filter, i.e. the best possible estimate

of its state based on observable is the state itself. In orderto state the existence of such a GJMLS,

we need additional terminology.

Definition 16 (GJMLS in forward innovation form):We will call a GJMLSH of the form

(50) a GJMLS in forward innovation form, if the noise processv(t) equals the innovation

processe(t) = y(t) − El[y(t) | {zw(t) | w ∈ Σ+}] andDq is the p × p identity matrix for all

q ∈ Q.

With the definitions above, we can state the main result of existence of a GMJLS realization.

Theorem 9 (Existence of a GJMLS Realization):The processy satisfies Assumption8 if and

only if there exists a GJMLSH of the form (50) which is a realization ofy and which satisfies

Assumptions7. Moreover,H can be chosen to be in forward innovation form.

From the discussion in§V-A and Theorem9 we can also deduce the following condition for an

existence of a realization by JMLS.

Corollary 7: Theorem9 remains valid if we replace the word GJMLS by JMLS.

The second claim of Theorem9 is important for filtering. Notice that ifH is a GJMLS

(respectively JMLS) is in forward innovation form, then it is easy to see thatx(t) = El[x(t) |
{zw(t) | w ∈ Σ+}], i.e. the Kalman-filter of theH is H itself. Recall that Kalman-filtering of

JMLS is a well-established topic [41].

Theorem9 follows from Theorem4 by establishing a correspondence between GJMLSs and

GBSs. This correspondence is interesting on its own right. Moreover, it will help us to formulate

the characterization of minimality for GJMLSs. The definition of this correspondence will also

explain our choice of working with GJMLSs rather than JMLSs:the correspondence is much

simpler for GJMLSs than for JMLSs. For this reason, we will present this correspondence below.

We will use the following notation.
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Notation 8 (Identity and zero matrices):In the sequel, we denote byOk,l the k × l matrix

with all zero entries and we denote byIk the k × k identity matrix.

In addition, we will introduce anauxiliary output process̃y(t) ∈ Rpd which is defined as follows

ỹ(t) =
[
yT (t)χ(θ(t) = 1), yT (t)χ(θ(t) = 2), . . . , yT (t)χ(θ(t) = d)

]T
(59)

Below we will show that GJMLSs realization ofy yield GBSs realizations of̃y and vice versa.

Moreover, these transformations preserve minimality and isomorphisms. This will enable us

to use the existing results on existence of aGBS realization and its minimality to prove the

corresponding results for GJMLSs. Notice that for

E =
[
Ip, . . . , Ip

]
∈ R

p×pd,

y(t) = E ỹ(t). Hence, ifB of the form (8) is a realization of̃y(t), then by replacing the matrices

C andD of B with EC andED, we obtain aGBS realization ofy.

In fact, from the definition of̃y we can conclude the following.

Lemma 20:If the processy satisfies Assumption8, then ỹ also satisfies Assumption3. In

addition, if we definẽe(t) = ỹ(t)− El[ỹ(t) | {zỹw(t) | w ∈ Σ+}], then

ẽ(t) =
[
eT (t)χ(θ(t) = 1), . . . , eT (t)χ(θ(t) = d)

]T
.

Moreover, the Hilbert-space spanned by the entries of{zw(t) | w ∈ Σ+} coincides with that of

spanned by the elements of{zyw(t) | w ∈ Σ+}.

Next, we associate a generalized bilinear systemBH with a GBJMLSH.

Definition 17 (GBS associated with a GJMLS):Assume thatH is a GJLS of the form (50)

andH satisfies Assumptions7. We will define theGBS BH , referred to as theGBS associated

with H as follows.

BH





x̃(t+ 1) =
∑

σ∈Σ
(Aσx̃(t) + K̃σṽ(t))uσ(t)

ỹ(t) = Cx̃(t) +Dṽ(t),

(60)

In order to define the parameters ofB, we definen = n1 + · · ·+ nd and for eachq ∈ Q define

the matricesIq ∈ Rn×nq , Sq ∈ Rm×dm

Sq =
[
Om,(q−1)m, Im×m, Om,(d−q)m

]

Iq =
[
Onq,n1, . . . Onq,nq−1 , Inq

, Onq,nq+1, . . . ,Onq,nd

]T
.
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Using the matrices above, we define the parameters ofBH as follows.

State x̃(t). x̃(t) =
[
xT (t)χ(θ(t) = 1), . . . , xT (t)θ(t) = d)

]T
∈ Rn, n = n1 + · · ·+ nd.

Noise ṽ(t). ṽ(t) =
[
vT (t)χ(θ(t) = 1), . . . , vT (t)θ(t) = d)

]T
∈ Rdm.

Matrices A(q1,q2). Define for eachq1, q2 let Aq2,q1 be then× n matrix

A(q1,q2) = Iq2Mq1,q2I
T
q1

The matrix K̃(q1,q2). The n×md matrix K̃(q1,q2) is defined as

K(q1,q2) = Iq2Bq1,q2Sq1.

Matrix C. The p× n matrix C is defined by

C =
[
I1C

T
1 , I2C

T
2 , . . . , IdC

T
d

]T
.

That is,C is a diagonal matrix, such that for allq ∈ Q its diagonal block indexed by row indices

i = (q− 1)p, . . . , qp and column indicesj = [n1 + · · ·+ nq−1 + 1, . . . , n1 + · · ·+ nq] equalsCq.

Matrix D The p×md matrix D is defined by

D =
[
ST
1D

T
1 , ST

2D
T
2 , . . . , ST

dD
T
d

]T
.

Lemma 21:The output process ofBH equals̃y. If H satisfies Assumptions7, thenBH satisfies

Assumption2. Moreover, if we defineD̂ = ED =
[
D1, . . . , Dd

]
, then for anyσ = (q1, q2) ∈

Σ, D̂E[v̂T (t)v̂(t)χ(θ(t) = q1, θ(t+ 1) = q2]D̂
T is strictly positive definite.

Remark 9: If the GJMLSH is a jump-Markov linear system of the type studied in [41], i.e.

H :




x(t+ 1) = Fθ(t)x(t) +Gθ(t)v(t)

y(t) = Hθ(t)x(t) + Lθ(t)v(t)
. (61)

whereFq ∈ Rn×n, Gq ∈ Rn×m, Hq ∈ Rp×n, Gq ∈ Rp×m, q ∈ Θ, then we can directly construct

a GBS

B





x̃(t + 1) =
∑

σ∈Σ
(Ãσx̃(t) + K̃σṽ(t))uσ(t)

y(t) = C̃x̃(t) + D̃ṽ(t),

(62)

whose output isy. In this case,Ã(q1,q2) is a nd × nd matrix, all elements of which are zero,

except then × n block at location(q1, q2) which equalFq2. Similarly, K̃(q1,q2) is annd × md

October 8, 2018 DRAFT



56

matrix, all elements of which are zero, except then×m block at location(q1, q2) which equals

Gq2. That is,

Ã(q1,q2) =




δ(1,1),(q1,q2)F1 · · · δ(1,d),(q1,q2)Fd

...
...

...

δ(d,1),(q1,q2)F1 · · · δ(d,d),(q1,q2)Fd


 , K̃(q1,q2) =




δ(1,1),(q1,q2)G1 · · · δ(1,d),(q1,q2)Gd

...
...

...

δ(d,1),(q1,q2)G1 · · · δ(d,d),(q1,q2)Gd




where δ(i,j),(k,l) = 1 if k = i and j = l and δ(i,j),(k,l) = 0 otherwise. The matrices̃C and D̃

areC̃ =
[
C1, . . . , Cd

]T
, D̃ =

[
L1, . . . , Ld

]T
. The processes̃x andṽ are defined as̃x(t) =

[
xT (t)χ(θ(t) = 1), . . . , xT (t)θ(t) = d)

]T
, ṽ(t) =

[
vT (t)χ(θ(t) = 1), . . . , vT (t)θ(t) = d)

]T
.

If H satisfies Assumptions7, thenB defined above satisfies Assumption2.

We can reverse the construction above, by associating with every GBS B a GJMLSH.

Definition 18 (GJMLS associated withGBS): Let B be aGBS of the form

x(t+ 1) =
∑

σ∈Σ
(Aσx(t) +Kσẽ(t))uσ(t)

ỹ(t) = Cx(t) + ẽ(t)

where ẽ(t) is the innovation process of̃y(t) defined in Lemma20. Define theGJMLS HB

associated withB as follows.

HB :





x̂(t + 1) = Mθ(t+1),θ(t)x̂(t) + K̃θ(t+1),θ(t)e(t)

y(t) = Cθ(t)x̂(t) + e(t),
(63)

where In order to define the parameters ofHB, we use the following notation.

For eachq ∈ Q, define the matrixMq ∈ R
p×pd as

Mq =
[
Op,p(q−1), Ip, Op,p(d−q−1)

]
.

For eachq ∈ Q defineXq ⊆ Rn as the subspace spanned by all the elements belonging to

ImA(q1,q)AwK(q2,q3)M
T
q2

and ImK(q1,q)M
T
q1

for all q1, q2, q3 ∈ Q, w ∈ Σ∗, σ ∈ Σ, i = 1, . . . , p.

Let nq = dimXq. Let Πq ∈ Rn×nq be such that the columns ofΠq are orthogonal and they span

Xq, i.e. ΠT
q Πq = Inq

and ImΠq = Xq. ThenΠq is the matrix representation of the inclusion

Xq ⊆ Rn andΠT
q is the matrix representation of the projection of elements of Rn to Xq.

1) Continuous state-space forq ∈ Q: Rnq , nq = dimXq.

2) State process.The continuous state procesŝx(t) of the GJMLS is obtained from the

continuous statex(t) of the generalized bilinear system19 as follows. Then let̂x(t) =
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ΠT
θ(θ)(x(t)), i.e. x̂(t) is obtained fromx(t) by viewing it as an element ofXθ(t) and

identifying it with the corresponding vector inRnq for q = θ(t).

3) System matrices.For eachq1, q2 ∈ Q the matrixMq1,q2 ∈ Rnq2×nq1 is defines as

Mq1,q2 = ΠT
q2A(q1,q2)Πq1

i.e. Mq1,q2 is the matrix representation of the ma[Xq1 ∋ x 7→ A(q1,q2)x ∈ Xq2. For each

q ∈ Q the matrixCq ∈ Rp×nq as

Cq = MqCΠq.

4) Noise gainK̃q1,q2 Let K̃q1,q2 = ΠT
q2K(q1,q2)M

T
q1 .

Lemma 22:Assume thatB is in forward innovation form, it satisfies Assumptions2, and it

is a realization of̃y. Assume moreover thaty satisfies Part2 of Assumption8. ThenHB is also

a realization ofy, it is in forward innovation form, and it satisfies Assumptions7. Moreover, if

the representationRB associated withB is reachable and observable, thenRn =
⊕

q∈QXq and

hencedimB = dimHB.

Remark 10:In fact, we can convert anyGBS B of the form

x̃(t+ 1) =
∑

σ∈Σ
(Aσx̃(t) +Kσṽ(t))uσ(t)

y(t) = Cx̃(t) +Dṽ(t)

to a jump-Markov linear system of the type defined in [41]:

H :




x(t+ 1) = Fθ(t)x(t) +Gθ(t)ṽ(t)

y(t) = Hθ(t)x(t) + Lθ(t)ṽ(t)
. (64)

wherex(t) =
[
zT1 (t), . . . , zTd (t)

]T
, zq(t) = A(q,θ(t−1))x̃(t− 1)+K(q,θ(t−1))ṽ(t− 1), q ∈ Q, and

Lq = D

Hq =
[
δq,1C, δq,2C, · · · δq,dC

]

Fq =




δ1,qA(1,1), δ2,qA(1,2), . . . δd,qA(1,d)

δ1,qA(2,1), δ2,qA(2,2), . . . δd,qA(2,d)

...
... . . .

...

δ1,qA(d,1), δ2,qA(d,2), . . . δd,qA(d,d)




Gq =




K(1,q)

K(2,q)

...

K(d,q)




October 8, 2018 DRAFT



58

whereδi,j = 1 if i = j and δi,j = 0 if i 6= j for all i, j ∈ Q. If B satisfies Assumptions2, and

it is a realization ofy, thenH is also a ealization ofy and it satisfies Assumptions7.

Recall the notion ofminimality of a linear system realization. In particular, recall that a

realization by a linear system is minimal if and only if it is reachable and observable. In this

subsection, we will formulate similar concepts for GJMLS with fully observed discrete. We first

define the notions of reachability and observability for a GJMLS. We then show that a realization

by a GJMLS is minimal if and only if it is reachable and observable.

In order to formulate the conditions more precisely, we willneed to introduce some notation.

In particular, we need to define reachability and observability matrices for GJMLS. To that end,

let H be a given GJMLS of the form (50) that satisfies Assumptions7. Let N be the dimension

of H, i.e. N = dimH, and for all(q1, q2) ∈ Q×Q = Σ let

Gq1,q2 =E[x(t)yT (t− 1)χ(θ(t) = q2, θ(t− 1) = q1)] =

=pq1,q2(Mq1,q2Pq1C
T
q1
+Bq1,q2Qq1D

T
q1
) ∈ R

q2×p.
(65)

Recall the definition ofL ⊂ Q×Q = Σ from (58).

Notation 9 (Matrix products):We define the following notation for the products of matrices

Mq1,q2 ∈ Rnq1×nq2 . For any admissible wordw = (q1, q2) · · · (qk−1, qk) ∈ L, wherek > 2 and

q1, . . . , qk ∈ Q, let

Mw = Mqk−1,qkMqk−2,qk−1
· · ·Mq1,q2 ∈ R

nqk
×nq1 (66)

If w = ǫ, thenMǫ is an identity matrix, dimension of which depends on the context it is used

in. If w /∈ L, thenMw denotes the zero matrix.

Notation 10: For eachq ∈ Q, Lq(N) be the set of all words inw ∈ L such that|w| ≤ N

andw = v(q1, q) for someq1 ∈ Q andv ∈ L.

Definition 19 (Reachability of a GJMLS):For each discrete stateq ∈ Q, define the matrix

RH,q = [MvGq1,q2 | q1 ∈ Q, q2 ∈ Q, (q1, q2)v ∈ Lq(N)] ∈ R
nq×|Lq(N)|p. (67)

We will say that the GJMLSH is reachable, if for each discrete stateq ∈ Q, rank (RH,q) = nq.

Notice that the matrixRH,q is analogous to the controllability matrix for linear systems.

Notation 11: For eachq ∈ Q, let Lq(N) be the set of all words inL of length at mostN

that begin in some pair whose first component isq, i.e. Lq(N) is the set of all words inw ∈ L

such that|w| ≤ N andw = (q, q2)v for someq2 ∈ Q andv ∈ L.
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Definition 20 (Observability of a GJMLS):For each discrete stateq ∈ Q, define the matrix

OH,q = [(CqkMv)
T | qk−1 ∈ Q, qk ∈ Q, v(qk−1, qk) ∈ Lq(N)]T ∈ R

|Lq(N)|p×nq . (68)

We will say that a GJMLSH is observable, if for each discrete stateq ∈ Q, rank (OH,q) = nq.

Notice that the matrixOH,q plays a role similar to the observability matrix for linear systems.

Recall from (60) the definition of theGBS BH associated with a GJLSH. Recall from

Definition 10 the definition of the representationRBH
associated with theGBS BH . We will

denoteRBH
by RH and we will call it the representation associated with the GJMLS H. Recall

the definition of reachability of a representation along with the definition of the spaceORH

defined in (3). Observability and reachability of a GJMLSH can be characterized in terms of

the observability and reachability of the corresponding representationRH as follows.

Lemma 23:The GJMLSH is reachable if and only ifRH is reachable, andH is observable

if and only if RH is observable.

The lemma above implies that observability and reachability of a GJMLS can be checked by

a numerical algorithm.

Definition 21 (Morphism of GJMLSs):Let H be a GJMLS of the form (50) and let Ĥ is

another GJMLS realization ofy given by

x̂(t+ 1) = M̂θ(t),θ(t+1)x̂(t) + B̂θ(t),θ(t+1)v̂(t)

ŷ(t) = Ĉθ(t)x̂(t) + D̂θ(t)v̂(t),
(69)

where the dimension of the continuous state-space ofĤ corresponding to the discrete stateq is

n̂q. A morphism fromH to Ĥ is a collection of matricesT = {Tq ∈ Rn̂q×nq}q∈Q such that for

all q1, q2 ∈ Q.

Tq2Mq1,q2 = M̂q1,q2Tq1 , Cq1 = Ĉq1Tq1, Tq2Gq1,q2 = Ĝq1,q2, (70)

whereGq1,q2 is defined in (65), and

Ĝq1,q2 =
√
pq1,q2(M̂q1,q2P̂q1C

T
q1
+ B̂q1,q2Q̂q1D̂

T
q1
, (71)

whereP̂q1 = E[x̂(t)x̂T (t)χ(θ(t) = q1)] and Q̂q1 = E[v̂(t)v̂T (t)χ(θ(t) = q1)].

T will be called an isomorphism, if for allq ∈ Q, nq = n̂q andTq is invertible.

Note thatT = (Tq) is an GJMLS isomorphism, if and only if the mapST : RH → RĤ is a

representation isomorphism, whereST =
∑

q∈Q IqTqI
T
q .
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We are now ready to state the theorem on minimality of a GJMLS realization.

Theorem 10 (Minimality of a realization by a GJMLS):Let the GJMLSH be a realization

of y of the form (50) and assume thatH satisfies Assumption7. Then, the GJMLSH is a

minimal realization ofy if and only if it is reachable and observable. If̂H is another minimal

GJMLS realization ofy such thatĤ satisfies Assumption7, thenĤ andH are isomorphic.

Remark 11:Notice that in (70) we do not require any relationship betweenBq1,q2 andK̂q1,q2.

This is consistent with the situation for linear stochasticsystems.

Remark 12 (Realization Algorithms):It is clear that reachability and observability, and hence

minimality, of a GJLS can be checked numerically. It is also easy to see that the Algorithm2

can be adapted to obtain a weak realizationH of y.

C. Proofs of the results on realization theory of GJMLSs

Below we present the proofs of the statements presented in§V-B. In addition, we present the

proof of Lemma19.

Proof of Lemma20: We show that̃y satisfies the parts of Assumptions3 one by one and

then we show that the statement of the lemma for the innovation process of̃y is true.

ỹ is an RC processDefine the matrixMq ∈ Rp×dp as

Mq =
[
Op,(q−1)p, Ip, Op,(d−q−1)p

]
.

It then follows thatzỹw(t) = MT
q z

T
w(t) if w = (q, q1)v for someq, q1 ∈ Q, v ∈ Σ+. Moreover,

notice that̃y(t)(zỹw(t))
T = MT

q2y(t)z
T
w(t)Mq, whereq ∈ Q is the first component of the first letter

of w andq2 ∈ Q is the second component of the last letter ofw. It is then easy to check that ify is

aRC process, then so is̃y. In order to see thaty is anRC process, notice that the first requirement

of Assumption8 implies thaty satisfies Part1 of Definition5. Thaty satisfies Part2 of Definition

5 can be shown as follows. Ifw /∈ L, thenuw(t) = 0 by definition ofL. Let w, v ∈ Σ∗ be

such thatwσ, vσ
′ ∈ L and |w| > 0. It is clear thatzwσ(t)zvσ′ (t) contains a termuσ(t)uσ′ (t)

and the latter term is zero, ifσ 6= σ
′

. Assume thatσ = σ
′

= (q1, q2). Then, using the definition

of zw(t), zv(t), E[zwσ(t)z
T
vσ(t)] = 1

pq1,q2
E[zw(t − 1)zTv (t − 1)χ(θ(t − 1) = q1, θ(t) = q2)].

Here, for v = ǫ, zv(t − 1) = y(t − 1). Using the assumption on conditional independence,

E[zw(t − 1)zTv (t − 1)χ(θ(t − 1) = q1, θ(t) = q2) | Dt−1] = E[χ(θ(t − 1) = q1, θ(t) = q2) |
Dt−1]E[zw(t−1)zTv (t−1) | Dt−1] = pq1,q2χ(θ(t−1) = q1)E[zw(t−1)zTv (t−1) | Dt−1]. Note that
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E[zw(t−1)zTv (t−1)] = E[E[zw(t−1)zTv (t−1) | Dt−1]]. Moreover,wσ ∈ L, |w| > 0 implies that

q1 is the last component of the last letter ofw. Hence,zw(t−1)χ(θ(t−1) = q1) = zw(t−1). From

the properties of conditional expectation it follows then thatχ(θ(t−1) = q1)E[zw(t−1)zTv (t−1) |
Dt−1] = E[zw(t − 1)χ(θ(t − 1) = q1)z

T
v (t − 1) | Dt−1] = E[zw(t − 1)zv(t − 1) | Dt−1].

Combining all these remarks, it follows thatE[zw(t−1)zTv (t−1)χ(θ(t−1) = q1, θ(t) = q2)] =

pq1,q2E[zw(t−1)zTv (t−1)] and henceE[zwσ(t)z
T
vσ(t)] = E[zw(t−1)zTv (t−1)]. That is,y satisfies

Part2 of Definition 5. By Remark1, y then satisfies Part3 of Definition 5 too.

Ψỹ is rational and square summable

From the discussion above it follows that ifΨỹ = {T(σ,i) | σ ∈ Σ, i = 1, . . . , dp}, then for all

q ∈ Q, l = 1, . . . , p, Tσ,p(q−1)+l(v) can be written as follows. Ifq is the first components of

σ, thenTσ,p(q−1)+l(v) = MT
q2
Sσ,l(v)Mq for all v ∈ Σ∗ whereσv = s(q1, q2) for somes ∈ Σ∗,

q1 ∈ Q. If q is not the first components ofσ, then Tσ,p(q−1)+l(v) = 0. It is not difficult to

construct a rational representation ofΨỹ based on such a representation ofΨy. Indeed, assume

thatR = (Rn, {Aσ}σ∈Σ, B, C) is a representation ofΨy. DefineX̂ = Rdn and defineHq ∈ Rn×nd

by

Hq =
[
On,(q−1)n, In, On,(d−q−1)n

]
.

Let Â(q1,q2) = HT
q2
A(q1,q2)Hq1, B̂(q1,q2),p(q1−1)+i = Hq2B(q1,q2),i, i = 1, . . . , p and letB̂(q1,q2),l = 0

for all l 6= p(q1 − 1) + i for somei = 1, . . . , p. Finally, defineĈ =
[
HT

1C
T , . . . , HT

dC
T

]T
,

i.e. Ĉ is a block diagonal matrix, whose(q, q)th p × n block equalsC. It is then easy to see

that R̂ = (Rnd, {Âσ}σ∈Σ, B̂, Ĉ) is a representation ofΨỹ. Square summability ofΨỹ follows

easily from that ofΨy, by taking into account the relationshipTσ,p(q−1)+l(v) = MT
q2Sσ,l(v)Mq,

v ∈ Σ∗, l = 1, . . . , p, q ∈ Q, σ ∈ Σ, q is the first letter ofσ.

Proof of the formula for ẽ(t)

Finally, from the discussion above it follows that the Hilbert-space spanned by the entries of

{zw(t) | w ∈ Σ+} coincides with that of spanned by the elements of{zỹw(t) | w ∈ Σ+}. If z(t) =

El[y(t) | {zw(t) | w ∈ Σ+}], then defines(t) =
[
zT (t)χ(θ(t) = 1), . . . , zT (t)χ(θ(t) = d)

]T
.

We claim thats(t) = El[ỹ(t) | {zỹw(t) | w ∈ Σ+}]. Indeed,s(t) belongs to the Hilbert-space

spanned by the entries of{zỹw(t) | w ∈ Σ+}. Moreover, if q is the first component of the first

letter of w and q1 is the second component of the last letter ofw, then E[ỹ(t)(zỹw(t))
T ] =

MT
q1
E[y(t)zTw(t)]Mq = MT

q1
E[z(t)zTw(t)]Mq = E[s(t)(zỹw(t))

T ]. From this, the claim of the
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lemma regarding̃e(t) follows easily.

Proof of Lemma21: First, we show thatBH is well-defined and the output ofBH equals

ỹ. For this, we have to show that̂x(t) indeed satisfy (60). From this and the definition of̃y(t)

it follows easily that the outputs ofH and BH are equal. We show that the various parts of

Definition 2 hold one by one. First of all, Assumption4 on ergodicity ofθ means that the

framework of SectionIII can be used as it was explained before.

ṽ(t) satisfies Part1 of Assumption 2

First, we will show thatv is an RC process. From Part1, Assumption7 it follows that

zvw(t) is zero-mean. Moreover, for anyw, v ∈ Σ+, |w| = k < |v| = l, E[zvw(t)(z
v
v (t))

T ] =

E[E[zvw(t)(z
v
v (t))

T | Dt−k,t]]. If v = ss
′

for somes, s
′ ∈ Σ+, |s′| = |w| and w 6= s

′

then

clearly uv(t)uw(t) = 0 and henceE[zvw(t)(z
v
v (t))

T ] = 0. Otherwise, ifw = s
′

, then notice

that uv(t) is a product of variablesχ(θ(t − r) = q) for someq ∈ Q and r = 0, . . . , l − 1

multiplied by a constant. Hence, by Part1 of Assumption7 E[zvw(t)z
v
v (t) | Dt−l,t] =

1
pw
E[uv(t) |

Dt−k]E[v(t− k)v(t− l))T | Dt−l,t] = 0. Hence,E[zvw(t)(z
v
v (t))

T ] = 0 for anyw 6= v, |w| 6= |v|.
If w 6= v but |w| = |v|, the uw(t)uv(t) = 0 and henceE[zvw(t)(z

v
v (t))

T ] = 0. Finally, if

w = v and |w| = |v| = k, then using Assumption7, Part2 yields E[zvw(t)(z
v
w(t))

T | Dt−k,t] =

1
pw
E[uw(t) | Dt−k,t]E[v(t − k)vT (t − k) | Dt−k] = χ(θ(t − k) = q)E[v(t − k)vT (t − k) |

Dt−k,t] = E[v(t − k)vT (t − k)χ(θ(t − k) = q) | Dt−k,t] where is assumed to be of the form

w = (q, q1)s for someq, q1 ∈ Q, s ∈ Σ∗. Hence,E[zvw(t)z
v
w(t))

T ] = E[E[zvw(t)(z
v
w(t))

T |
Dt−k,t]] = E[v(t− k)vT (t− k)χ(θ(t− k))] and the latter does not dependt by Assumption7,

Part 2. Hence, we have shown thatE[zvw(t)z
v
w(t))

T ] does not depend ont. Finally, notice that

E[v(t)(zvw(t))
T |Dt−k,t] =

1√
pw
uw(t)E[v(t)vT (t − k) | Dt−k,t] = 0 does not depend ont and

henceE[v(t)(zvw(t))
T ] = 0 also does not depend ont. Hence,v(t) satisfies Part1 of Definition

5. Finally, from the discussion above it follows thatTw,v = 0 for w 6= v, and Tw,w = 0 for

w /∈ L andTw,w = E[v(t)vT (t)χ(θ(t) = q)] whereq ∈ Q is such thatw = (q, q1)s for some

q1 ∈ Q, s ∈ Σ∗. This implies that Part2 of Definition 5 is satisfied. By Remark1 this already

implies Part3 of Definition 5. Hence,v is indeed anRC process. Next, we show thatṽ is anRC

process too. It follows that all the entries ofzṽw(t) are zero except the one which corresponds to

the qth block of p rows, whereq is the first components of the first letter ofw. The latter entry

equalszvw(t), It is then easy to see that Part1 of Definition 5 hold. Consider any twow, v ∈ Σ+,

and let the first component of the first letter ofw andv be respectivelyq1, q2 ∈ Q. Then non-
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zerop× p block of E[ṽ(t)(zṽw(t))
T ] is the one indexed by(q1, q1). Similarly, the only non-zero

p × p block of E[zṽv (t)(z
ṽ
w(t))

T ] is the is the one indexed byq1 × q2. Here, we viewed both

matrices asd× d matrices ofp× p block. The respective non-zero entries areE[zv(t)(zvw(t)
T ]

andE[zvv (t)(z
v
w(t))

T ]. Sincev is RC, it follows that ṽ satisfies Part2 and3 of Definition 5.

ṽ(t) satisfies Part2 of Assumption 2

The orthogonality ofzṽw(t) andzṽv (t) for w 6= v follows from the proof that̃v(t) satisfies Part

1 of Assumption2.

x(t) and v(t) satisfy Part 3 of Assumption 2 The first statement of Part3 of Assumption

2 is a direct consequence of Part3 of Assumption7 and the fact that the sum of entries ofṽ(t)

equalsv(t).

Part 5 of Assumption 2 holds From the construction ofA(q1,q2) it follows that the only non-

zero column ofA(q1,q2) is the one indexed byj = (
∑q1−1

q=1 nq) + 1, . . . ,
∑q1

q=1 nq, and the only

non-zero rows are the ones indexed byi = (
∑q2−1

q=1 nq) + 1, . . . ,
∑q2

q=1 nq. Hence,A(q3,q4)A(q1,q2)

is necessarily zero ifq2 6= q3. The latter condition is equivalent to(q1, q2)(q3, q4) /∈ L. Similarly,

the only non-zero rows of̂K(q1,q2) are the ones indexed byi = (
∑q2−1

q=1 nq) + 1, . . . ,
∑q2

q=1 nq, so

againA(q3,q4)K̂(q1,q2) = 0 for q3 6= q2.

Part 4 of Assumption 2 holds It is easy to see that
∑

(q1,q2)∈Σ pq1,q2A
T
(q1,q2)

⊗ AT
(q1,q2)

= M̃

and hence Part4 of Assumption2 follows directly from Part5 of Assumption7.

Proof that D̂E[v̂T (t)v̂(t)χ(θ(t) = q1, θ(t+1) = q2)]D̂
T > 0. Notice thatD̂E[v̂T (t)v̂(t)χ(θ(t) =

q1, θ(t+1) = q2)]D̂
T = Dq1E[v(t)vT (t)χ(θ(t) = q1, θ(t+1) = q2)]D

T
q1. From Part1 it follows

that E[v(t)vT (t)χ(θ(t) = q1, θ(t + 1) = q2) | Dt] = E[v(t)vT (t)χ(θ(t) = q1)]E[χ(θ(t + 1) =

q2) | Dt] | Dt] = pq1,q2E[v(t)vT (t)χ(θ(t) = q1) | Dt] and henceE[v(t)vT (t)χ(θ(t) = q1, θ(t +

1) = q2)] = pq1,q2E[v(t)vT (t)χ(θ(t) = q)] = pq1,q2Qq1 . Hence,DQ(q1,q2)D
T = pq1,q2Dq1Qq1D

T
q1.

Sincepq1,q2 > 0, by Part6 of Assumption7, the above matrix is strictly positive definite.

Proof of Lemma22: The first, we argue thatHB is well-defined and its output equalsy.

The only non-trivial thing is to prove that̂x(t) is well defined and that the output ofHB is y.

First, notice that Lemma20 implies that

K(θ(t),θ(t+1)ẽ(t) = K(θ(t),θ(t+1))Mθ(t)e(t)

It then follows that

x̂(t+ 1) = ΠT
θ(t+1)x(t+ 1) = ΠT

θ(t+1)A(θ(t),θ(t+1))x(t) + ΠT
θ(t+1)K(θ(t),θ(t+1)ẽ(t) (72)
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Note that from Lemma2 it follows that x is an RC process and thatx(t)χ(θ(t) = q) be-

longs toXq = ImΠq almost surely. Hence,Πθ(t)Π
T
θ(t)x(t) = x(t) and thusAθ(t+1),θ(t)x(t) =

Aθ(t+1),θ(t)Πθ(t)x̂(t). Substituting this into (72) yields that

x̂(t + 1) = Mθ(t+1),θ(t)x̂(t) + K̃θ(t+1),θ(t)e(t).

Hence, the first equation ofHB holds. Notice thatMθ(t)ỹ(t) = y(t) and Mθ(t)ẽ(t) = e(t).

Moreover, by the discussion above it follows thatCx(t) = CΠθ(t)x̂(t). By multiplying ỹ(t) =

Cx̂(t) + ẽ(t) with Mθ(t) we obtain

y(t) = Cθ(t)x̂(t) + e(t).

That is,y is indeed the output ofHB.

Next, we show thatHB satisfies each of the assumptions of Assumption7.

Part 1 of Assumption 7 Sincey(t) is the output ofB, by Theorem4 it is RC. Moreover,

becauseB satisfies Assumption2, the innovation process isRC too. Hence,E[zew(t+ |w|)] = 0

for any w ∈ Σ+, which implies thatE[e(t) | Dt+k] = 0 for any k ≥ 0. Notice that for any

w ∈ Σ+, |w| = l the variablesuw(t + 1) generate theσ-algebraDt−l,t. Notice that for any

w ∈ Σ+, |w| = l− 1, σ ∈ Σ E[e(t)eT (t− l)uwσ(t+ 1)] =
√
pwσE[zeσ(t+ 1)(zewσ(t+ 1))T ] = 0.

Hence,E[e(t)eT (t − l) | Dt,t−l] = 0. Finally E[e(t)eT (t)χ(θ(t) = q)] =
∑

q2∈Q E[ze(q,q2)(t +

1)(ze(q,q2)(t+ 1))T ] and the latter does not depen ont due to the fact thate(t) is RC.

Part 2 of Assumption 7 Let F1 be theσ-algebra generated by the variables{y(t− l)}l≥0 and

denote byF1 ∨ Dt the smallestσ-algebra which containsF1 andDt. Let F2 be theσ-algebra

generated by{θ(t+l)}l>0 and notice that by assumptionF2 andF1 are conditionaly independent

w.r.t. Dt. From the elementary properties of conditional independence and the fact thatF1 and

F2 are conditionally independent w.r.t.Dt it follows thatF1 ∨Dt andF2 are also conditionally

independent w.r.t.Dt.

Hence, it is enough to show that forl ≥ 0, e(t − l) is F1 ∨ Dt measurable. From this and

the discussion above it then follows that theσ-algebra generated by{e(t − l)}∞l=0 andF2 are

conditionaly independent w.r.tDt. Notice thate(t− l) belongs to the Hilbert-space generated by

{y(t− l), zw(t− l) | w ∈ Σ+}, and hence by Lemma1, e(t− l) is measurable w.r.t theσ-algebra

generated by{y(t− l), zw(t − l) | w ∈ Σ+}. The latterσ-algebra is contained inF1 ∨ Dt and

hencey is F1 ∨ Dt measurable, as required.
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Part 3 of Assumption 7 This is a direct consequence of Part3 of Assumption2.

Part 4 of Assumption 7 This a direct consequence of Assumption2.

Part 5 of Assumption 7 It then follows thatMq1,q2 ⊗ Mq1,q2 = (ΠT
q2 ⊗ ΠT

q2)(A(q1,q2) ⊗
A(q1,q2))(Πq1 ⊗ Πq1). Let P = (P1, . . . , Pd) a d tuple of matricesPq ∈ Rnq×nq such that if

P is interpreted as a
∑

q∈Q n2
q vectorφ(P ), thenM̃Tφ(P ) = λφ(P ) for someλ ∈ C. It then

follows that λPq =
∑

r∈Q pr,qMr,qPrM
T
r,q. Notice that withP̂q = ΠqPqΠ

T
q = (Πq ⊗ Πq)φ(P ),

λPq =
∑

r∈Q pr,qΠ
T
q A(r,q)P̂rA

T
(r,q)Πq. By applying from the leftΠq and from the rightΠT

q to both

sides of the equation, we getλP̂q =
∑

r∈Q pr,qΠqΠ
T
q A(r,q)P̂rA

T
(r,q)ΠqΠ

T
q . Notice thatXq = ImΠq

and thatA(r,q)Xr ⊆ Xq. Hence,A(r,q)Πr = ΠqS for someS ∈ Rnr×n. By exploitingΠT
q Πq = Inq

,

it follows thatΠqΠ
T
q A(r,q)Πr = AT

(r,q)Πr. Thus, by taking into account that̂Pr = ΠrPrΠ
T
r , r ∈ Q,

λP̂q =
∑

r∈Q
pr,qA(r,q)P̂rA

T
(r,q).

Note thatA(r,q)Πr1 = 0 for r1 6= r, sinceA(r,q)|Xr1
= 0, sinceXr1 belongs to the linear

span of elements ofImA(r1,q1) and ImK(r1,q1), q1 ∈ Q, and Part5 of Assumption2. Hence,

if P̂ =
∑

q∈Q P̂q, thenA(r,q)P̂rA
T
(r,q) = A(r,q)P̂AT

(r,q). Denote byZ the linear mapRn2×n2 7→
∑

(r,q)∈Q×Q pr,qA(r,q)V AT
(r,q). From the discussion above it follows thatP̂ is an eigenvector ofZ

corresponding to the eigenvalueλ. From [41, Chapter 2] it follows
∑

(r,q)∈Q×Q pr,qA(r,q)⊗A(r,q)

is just a matrix representation ofZ. Then Part4 of Assumption2 implies that the eigenvalues

(
∑

(r,q)∈Q×Q pr,qA(r,q) ⊗ A(r,q))
T =

∑
(r,q)∈Q×Q pr,qA

T
(r,q) ⊗ AT

(r,q) all inside the unit disk. Since

takings transposes does not change the eigenvalues, it thenfollows that all the eigenvalues of
∑

(r,q)∈Q×Q pr,qA(r,q) ⊗ A(r,q), and hence ofZ, are inside the unit disk as well. Sinceλ was an

arbitrary eigenvalue of̃MT , andM̃ and M̃T have the same eigenvalues, it follows that Part5

of Assumption7 holds.

Part 6 of Assumption 7 A direct consequence of Part5 of Definition 2.

Proof that Rn =
⊕

q∈QXq

Consider the matrixBσ of B defined in (18). It then follows thatK(q1,q2)Q(q1,q2) = B(q1,q2) −
A(q1,q2)P(q1,q2)C

T . whereQq1,q2 = E[ẽ(t)ẽT (t)χ(θ(t) = q1, θ(t + 1) = q2)]. From Lemma20 it

follows thatQq1,q2 = MT
q2E[e(t)eT (t)χ(θ(t) = q1, θ(t + 1) = q2)]Mq1. Sincee(t) andθ(t+ 1)

are conditionally independent givenDt, it follows thatE[e(t)eT (t)χ(θ(t) = q1, θ(t+1) = q2)] =

E[e(t)eT (t)χ(θ(t) = q1)]pq1,q2 > 0. Notice, moreover, thatMq1M
T
q1

= Iq1 . Hence, by multi-

plying K(q1,q2)Q(q1,q2) = B(q1,q2) − A(q1,q2)P(q1,q2)C
T by MT

q1(E[e(t)eT (t)χ(θ(t) = q1)])
−1p−1

q1,q2
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from the right, we obtain thatK(q1,q2)M
T
q1 belongs to the linear span of elements of the form

ImB(q1,q2) andA(q1,q2)z, z ∈ Rn.

Also notice thatMqCAwBσ = E[ỹ(t)(zỹσw(t))
T ] = 0, if the last component of the last letter

of σw is not q ∈ Q. SinceB is reachable, anyz ∈ R
n is a linear combination of vectors

from ImAwBσ for somew ∈ Σ∗, σ ∈ Σ. Hence,MqCA(q1,q2) = 0 andMqCB(q1,q2) = 0 for

all q1, q2, q ∈ Q such thatq2 6= q. Combining this with the definition ofXq, q ∈ Q and the

fact derived above thatK(q1,q2) is spanned by elementsImA(q1,q2), ImB(q1,q2), it follows that

MqCx = 0 for all x ∈ Xq1 , q1 6= q.

We are now ready to prove thatRn =
⊕

q∈QXq. From the discussion above, it follows that

Xq1 ∩ Xq2 = {0}. Indeed, ifx ∈ Xq1 ∩ Xq2, then forq 6= q1, MqCx = 0, and sinceq1 6= q2 and

x ∈ Xq2 , Mq1Cx = 0. Hence,Cx = 0. Moreover, notice thatXq ⊆ kerA(q3,q4) for q 6= q3, since

A(q3,q4)Kq5,q = 0 andA(q3,q4)A(q5,q) = 0 for all q5 ∈ Q. By applying this result toq = q1 and

q = q2, it follows thatA(q3,q4)x = 0 for any q1, q4 ∈ Q and henceAwx = 0 for any w ∈ Σ+.

That is,CAwx = 0 for all w ∈ Σ∗, i.e. x ∈ ORB
. SinceB is observable, it then follows that

x = 0.

It is left to show thatRn =
∑

q∈QXq. To this end, consider the definition ofRB. As it

was already mentioned,x(t)χ(θ(t) = q) belongs toXq for q ∈ Q almost everywhere. Hence,

the columns ofP(q1,q2) = E[x(t)xT (t)χ(θ(t) = q1, θ(t + 1) = q2)] belong toXq1 : take any

M ∈ Rn−nq1×n such thatXq1 = kerM ; then Mx(t)χ(θ(t) = q) = 0 almost everywhere,

and henceMP(q1,q2) = 0. It then follows thatImA(q1,q2)P(q1,q2)C
T ⊆ Xq2. From the previous

discussion it follows thatK(q1,q2)Q(q1,q2) = pq1,q2K(q1,q2)M
T
q1E[e(t)eT (t)χ(θ(t) = q1)]Mq1 and

henceImK(q1,q2)Q(q1,q2) ⊆ Xq2 . Combining all this with the definition ofRB it follows that

ImB(q1,q2) ⊆ Xq2 . SinceA(q,q3)(Xq) ⊆ Xq3, we obtain thatImAwB(q1,q2) always belongs toXq,

whereq is the last component of the last letter of(q1, q2)w. From reachability ofRB we then

obtain thatRn =
∑

q∈QXq, as claimed.

Now we can also easily prove Lemma19. In fact, we will prove first a technical result, relating

state covariances ofH andBH . From this Lemma19 follows easily.

Lemma 24:Assume thatH satisfies Assumption7. Let P̂q1,q2 = E[x̂(t)x̂T (t)χ(θ(t) = q1, θ(t+

1) = q2)]. Then forPq = E[x(t)xT (t)χ(θ(t) = q)],

P̂q1,q2 = pq1,q2Iq1Pq1I
T
q1
.
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Similarly, if Q̂q1,q2 = E[v̂(t)v̂(t)χ(θ(t) = 1, θ(t + 1) = q2)], andQq1 = E[v(t)vT (t)χ(θ(t) =

q1)], then

Q̂q1,q2 = pq1,q2S
T
q1
Qq1Sq1.

Proof of Lemma24: The second statement of the lemma was already shown in the proof

of Lemma21, while showing thatBH satisfies Part5 of Assumption2 holds.

We proceed with the proof of the first statement. From the construction of x̂(t) it fol-

lows that P̂(q1,q2) = Iq1E[x(t)x(t)χ(θ(t) = q1, θ(t + 1) = q2)]I
T
q1

. Hence, it is enough to

show thatE[x(t)xT (t)χ(θ(t) = q1, θ(t + 1) = q2)] = pq1,q2Pq1. To this end, notice that

E[x(t)xT (t)χ(θ(t) = q1, θ(t + 1) = q2)] = E[Ex(t)xT (t)χ(θ(t) = q1, θ(t + 1) = q2 | Dt]].

Also notice that from Part3 of Assumption7 it follows that x(t) is measurable w.r.t. theσ-

algebra generated by{v(t− l)}l≥0. Indeed, Part3 of Assumption7 and Lemma1 implies that

x(t) measurable w.r.t. to theσ-algebra generated by{v(t− l)}l≥0.

From Part2 of Assumption7 it then follows thatx(t) andθ(t), θ(t+1) are conditionally inde-

pendent givenDt. HenceE[x(t)xT (t)χ(θ(t) = q1, θ(t+1) = q2) | Dt] = pq1,q2E[x(t)xT (t)χ(θ(t) =

q1) | Dt]. Combining this with the discussion above yields thatE[x(t)xT (t)χ(θ(t) = q1, θ(t +

1) = q2)] = pq1,q2E[x(t)xT (t)χ(θ(t) = q1)].

Proof of Lemma19: Consider theGBS BH associated withH. From the construction of

the matrices ofBH it follows that the solutions to (53) and those of (14) interpreted forB = BH

can be related as follows. Suppose that{Pq}q∈Q is a solution to (53). From Lemma24 it follows

that Q̂(q1,q2) = pq1,q2S
T
q1
Qq1ISq1

. Define P̂(q1,q2) = pq1,q2Iq1Pq1I
T
q1

. Notice thatITq Iq = Inq
and

SqS
T
q = Im. If we multiply (53) by Iq from the right and byITq from the right, then using the

discussion above and the definition ofA(q1,q2), Kq1,q2 we readily obtain that{P̂(q1,q2)}(q1,q2)∈Q×Q

satisfies (14). In addition, notice that the correspondence betweenpq1,q2Pq1 andP̂(q1,q2) is injective,

sinceIq1 is full column rank for allq1 ∈ Q. Since by Lemma4 (14) has precisely one solution,

this implies that (53) has at most one solution.

Next, we show that (53) has a solution. To this end, notice that the unique solutionof (14)

is of the formP̂(q1,q2) = E[x̂(t)x̂T (t)χ(θ(t) = q1, θ(t+ 1) = q2)]. Notice that the only non-zero

block of P̂(q1,q2) is the one which corresponds topq1,p2E[x(t)xT (t)χ(θ(t) = q1)]. Define now

Pq = E[x(t)xT (t)χ(θ(t) = q)], q ∈ Q. From the discussion above and Lemma24 and the

definition of the matricesA(q1,q2) andK(q1,q2) it is easy to see that{Pq}q∈Q satisfies (53).
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Now we are ready to present the proof of Theorem9.

Proof of Theorem9: Necessity

If y has a realization by a GJMLS which satisfies Assumption7, then by Lemma21, y can

be realized by aGBS which satisfies Assumption2. By Theorem5, the latter implies thaty

satisfies Assumption3. Moreover, the second statement of Lemma21 together with Theorem5

implies thaty is full rank. Hence,y satisfies the first part of Assumption8.

Finally, the validity of Part2 of Assumption8 can be obtained as follows. LetFt be the

σ-algebra generated by{v(t− l)}l≤0. Let D+
t be theσ-algebra generated by{θ(t+ l)}l≥0. From

Part3 of Assumption7 andy(t) = Cθ(t)x(t)+Dθ(t)v(t) it follows thaty(t) is measurable with

respect to the jointσ-algebraFt ∨Dt. Hence, theσ-algebraHt generated by{y(t− l)}l≥0 is a

sub-algebra ofFt∨Dt. Since by Part2 of Assumption7 Ft andD+
t are conditionaly independent

given Dt, from the well-known properties of conditional independence it follows thatFt ∨ Dt

and D+
t are conditionally independent too. Hence,Ht and D+

t are conditionally independent

givenDt,

Sufficiency Assume thaty satisfies Assumption8. From Theorem4 it follows thaty admits

a GBS Σ realization in forward innovation form which satisfies Assumption 2. From Lemma

22 it then follows that the GJMLSHΣ associated withΣ is a realization ofy and it satisfies

Assumption7.

Proof of Lemma23: Consider theGBS BSH associated withH from (60). Then it is easy

to see thatRH = (Rn, {√pσAσ}σ∈Σ, B, C), whereB = {B(σ,j) | σ ∈ Σ, j = 1, . . . , p} and with

Bσ =
[
Bσ,1 . . . Bσ,p

]
,

Bσ =
√
pσ(AσP̂σC

T +KσQσD
T
σ )

whereP̂σ = E[x̂(t)x̂T (t)u2
σ(t)]. From Lemma24 it then follows that

B(q1,q2) =
√
pq1,q2I

T
q2Gq1,q2Mq1,

whereMq =
[
Op,p(q−1), Ip, Op,p(d−q−1)

]
∈ Rp×pd.

Note thatRH is reachable if and only the elements ofIm
√
p
w
AwB(q1,q2), w ∈ (Q × Q)∗,

|w| ≤ n−1, (q1, q2) ∈ Q×Q, span the whole space. Notice thatAwB(q1,q2) = 0 if (q1, q2)w /∈ L

and thatB(q1,q2) ∈ ImIq, andAwB(q1,q2) belongs toImIq, if w ends in a letter(q3, q). Hence,

reachability ofRH is equivalent to requiring that the span of columns ofA(q,q3)wB(q1,q2), B(q,q4) for
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all q1, q2, q3, q4, |w| ≤ n− 2, w ∈ L equalsImIq for all q ∈ Q. Notice thatMq is full row rank,

hence ImA(q,q3)wB(q1,q2) = ImIqM(q,q3)wG(q1,q2)Mq1 = ImIqM(q,q3)wG(q1,q2) and ImB(q4,q) =

ImIqGq4,qMq4 = ImIqGq4,q for all q1, q2, q3, q4, |w| ≤ n−2, w ∈ L. It then follows that the span

of those vectors equalsImIqRH,q. Sincerank Iq = nq, reachability ofRH is indeed equivalent

to rank RH,q = nq for all q ∈ Q.

From the definition ofRH andBH it follows thatMrCAwA(q1,q)Iq = 0 if (q1, q)w does not end

in a letter(q2, r), q2 ∈ Q, andMrCAwA(q1,q)Iq = CrMw(q1,q) otherwise, for anyr, q1, q ∈ Q,

w ∈ Σ∗. Hence,kerCAwIq = kerCrMw for all w ∈ L such thatw ends in(q2, r). Notice

that CIq = Cq. Finally, we remark thatw /∈ L, thenCAw = 0 and if w does not start with

a letter of the form(q, q1), thenCAwIq = 0. From the discussion above it then follows that

ORH
∩ ImIq = Iq(OH,q).

Assume now thatRH is observable, i.e.ORH
= {0}. SinceIq is full column rank, we then get

thatOH,q = {0}, q ∈ Q. Conversely, assume thatOH,q = {0} for all q ∈ Q. It then follows that

ORH
∩ ImIq = {0}. Let x = (xT

1 , . . . , x
T
d )

T ∈ Rn, xq ∈ Rnq , q ∈ Q, and assume thatx ∈ ORH
.

Notice thatCx =
[
(C1x1)

T , . . . , (Cdxd)
T

]T
andCxq = MqCqxq = CIqx, q ∈ Q. Hence,

Cx = 0 is equivalent toCqxq = 0. Moreover, for anyq1, q2 ∈ Q, A(q1,q2)x = A(q1,q2)Iq1xq1 and

A(q1,q2)Iqxq = 0 for q 6= q1. Hence,x ∈ ORH
implies thatCAwIqxq = 0 for any q ∈ Q, w ∈ Σ∗,

|w| ≤ n−1. Hence,Iqxq ∈ ORH
∩ ImIq. Since we have shown above thatORH

∩ ImIq = {0}, it

follows thatIqxq = 0, q ∈ Q. SinceIq is full column rank, it follows thatxq = 0 for all q ∈ Q.

Hence,x = 0.

Proof of Theorem10:

Minimality =⇒ reachability and observability. Assume thatH is a minimal realization ofy

and assume that it is not reachable or observable. Consider theGBSBH associated withH. From

Lemma21 it follows thatBH is a realization of̃y. From Lemma23 it follows RBH
cannot be

reachable and observable. Then by Theorem7 BH cannot be minimal. Take a minimal realization

B of ỹ in forward innovation form. ThendimB < dimBH = dimH. Construct the GJMLSHB

associated withB. By Lemma22, HB is a realization ofy anddimHB = dimB < dimH. This

contradicts to minimality ofH and hence a contradiction.

Reachability and observability =⇒ minimality Assume thatH is reachable and observable

but it is not a minimal realization ofy. Consider the associatedGBS BH . From Lemma23 it

follows thatRH = RBH
is reachable and observable. From Theorem7 and Lemma21 it then
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follows thatBH is a minimal realization of̃y. Assume thatH is not minimal. Then there exists

a GJMLS Ĥ such thatdim Ĥ < dimH, Ĥ is a realization ofy and it satisfies Assumption

7. From Lemma22 it then follows thatBĤ is a realization of̃y. Sincedim Ĥ = dimBĤ and

dimH = dimBH , it follows thatdimBĤ < dimBH , which contradicts the minimality ofBH .

Minimal realizations are isomorphic If H andĤ are two minimal realizations ofy such that

they both satisfy Assumption7, then by Lemma21theGBSsBH andBĤ are minimal realizations

of ỹ which satisfy Assumption2. From Theorem7 it then follows that the representations

RH = RBH
and RĤ = RB

Ĥ
i are isomorphic and they are both reachable and observable.

Consider this isomorphismS : RH → RĤ . It is easy to see thatS is then an isomorphism

betweenH and Ĥ.

VI. D ISCUSSION ANDCONCLUSION

We have presented a realization theory for stochastic jump-linear systems. The theory relies

on the solution of a generalized bilinear filtering/realization problem. This solution represents

an extension of the known results on linear and bilinear stochastic realization/filtering.

We would like to extend the presented results to more generalclasses of hybrid systems. In

particular, we would like to develope realization theory for jump-linear systems with partially

observed discrete states. Necessary conditions for existence of a realization by a system of this

class were already presented in [40]. Another line of research we would like to pursue is to use

the presented theory for developing subspace identification algorithms for stochastic jump-linear

systems. Note that the classical stochastic bilinear realization theory gave rise to a number of

subspace identification algorithms, see [16], [18], [17], [15]. It is very likely that the presented

results will lead to very similar subspace identification algorithms.
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