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ABSTRACT

The kinematics of many control systems, especially in the robotics field, naturally live on smooth manifolds.
Most classical state-estimation algorithms, including the extended Kalman filter, are posed on Euclidean
space. Although any filter algorithm can be adapted to a manifold setting by implementing it in local co-
ordinates and ignoring the geometric structure, it has always been clear that there would be advantages in
taking the geometric structure into consideration in developing the algorithm. In this paper, we argue that the
minimum geometric structure required to adapt the extended Kalman filter to a manifold is that of an affine
connection. With this structure, we show that a naive coordinate implementation of the EKF fails to account
for geometry of the manifold in the update step and in the reset step. We provide geometric modifications to
the classical EKF based on parallel transport of the measurement covariance (for the update) and a-posteriori
state covariance (for the reset) that address these limitations. Preliminary results for attitude estimation with
two directional measurements demonstrate that the proposed modifications significantly improve the transient
behavior of the filter.

1 INTRODUCTION

Over the past sixty years, the extended Kalman filter (EKF) has been the industry standard for state estimation problems
when the system dynamics are governed by nonlinear equations [1][2]. Although the classical formulation of EKF is given in
global Euclidean space, there have been many papers that adapt the Kalman filter methodology to systems that live on smooth
manifolds. Although any choice of local coordinates provides a representation in which the classical extended Kalman filter can
be implemented, from as early as the 1970s, authors were demonstrating the advantage of choosing local coordinate charts that
encode geometric structure, such as Riemannian metrics or homogeneous symmetries, in a natural manner [3][4]. Such charts
have specific structure that can lead to lower linearisation error for the filter improving performance. The approach comes at
the cost of using a new chart for every iteration of the algorithm, since the nice geometric properties of the chart usually only
hold at a single point, the origin or reference point of the chart. This structure is also the foundation of the ⊞ (’boxplus’) and
⊟ (’boxminus’) operators used for modelling state displacement on manifold, introduced in [5]. Similar techniques were used
in [6] and [7]. One example of local coordinates centered at a point are the normal coordinates comprising geodesics in a star
shaped neighbourhood associated with an affine connection [4]. This is particularly of interest for Riemannian manifolds where
Levi-Civita connection is the unique torsion free connection that preserves the metric [3][8][9]. However, normal coordinates
can be defined for an arbitrary affine connection and do not require a Riemannian metric, for example, one-parameter subgroups
on a Lie-group state-space.

A parallel, and closely related, research thread considers geometric structure induced by global symmetry properties of the
system state-space. A key early problem that motivated this perspective was the question of attitude estimation in aerospace
applications. The use of quaternions or rotation matrices for orientation representation led to the multiplicative extended
Kalman filter (MEKF) [10]. This methodology uses an extended Kalman filter based on a linearisation of a global error
defined using the group structure of the state-space. Although the MEKF became an industry standard for attitude estimation
in aerospace [11] the approach was not extended beyond the quaternion and rotation groups until picked up again after the
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turn of the century. The advent of remotely piloted aerial vehicle led to a revaluation of the attitude filtering problem [12][13].
Bonnabel et al. proposed a general theory for the Invariant Extended Kalman Filter (IEKF) for systems on Lie-groups in a
series of works [14][15], motivated originally by attitude estimation. They identified a class of ‘group affine’ systems for which
they showed that the IEKF provides an exact linearisation of the prediction step of the EKF [16] leading to global convergence
and high performance. This observation is also seen in the work by Long et al. [17]. Bourmaud et al. [18][19] proposed the
continuous-discrete EKF (CD-EKF) for systems on connected unimodular Lie groups using concentrated Gaussian distribution.
Mahony et al. [20][21][22] proposed the equivariant filter (EqF), a general Kalman filter design methodology for systems on
homogeneous spaces. This design perspective has been widely adapted by modern filters and applied to a range of real-world
problems including visual inertial odometry [23][24], inertial navigation systems [25][26], homography tracking [27], etc. The
design approach can be interpreted as using local coordinates induced by one of the Cartan-Schouten affine connections on the
Lie-group. These are the affine connections for which the geodesics are the one-parameter subgroups, or exponentials, on the
Lie-group (or their projections on the homogeneous space). Although this insight draws a strong analogy with the more general
research theme discussed earlier, the Lie-group and homogeneous space structure fundamental in this approach (for common
real-world problems) carries global matrix algebraic structure that is core to the mathematical formulations and efficiency of
the filters.

In this paper, we consider the nonlinear systems where the state space and output space are both smooth manifolds that admit
an affine connection and present a general error-state extended Kalman filter design methodology for such systems. An affine
connection is the minimum geometric structure that captures the key properties of geometry. We argue that this is the minimum
requirement on manifold structure that is necessary to consider to develop EKF algorithms that are not simply an implemen-
tation of the classical Euclidean EKF in local coordinates. With an affine connection, one can define the concepts of geodesic
and parallel transport that we show are fundamental in deriving high performance Kalman filter algorithms. We frame the filter
development in the context of using concentrated Gaussian distributions [19][22] as local approximations of the information
state of the filter. Using this formalisation we can define concepts of mean and covariance for the approximate information
state in normal coordinates on the manifold without requiring these concepts to be well defined for the full information state
on the manifold. We go on to show that the geometric structure of the manifold should be taken into account explicitly in two
places in a Kalman filter update. The first in the Bayesian update step to parallel transport the covariance of the generative noise
measurement model into coordinates adapted to the state. Then second in the reset step to parallel transport the state covariance
estimate generated by the Bayesian update to the new filter estimate coordinates. There are several prior works that have con-
sidered geometric modification to the reset step for EKF algorithms on manifolds [23][28][29][20][22], however, the authors
are not aware of any prior work in the EKF algorithms for geometric modifications of the update step. In addition, we believe
the geometric insight in the present paper to be novel. We provide simulations to demonstrate the advantage of the proposed
geometric modifications during the transient response of the filter. This is the period of the filter evolution when not taking
account the geometry of the manifold impacts most on the filter performance. Once the filter has converged to steady-state
tracking, the local linearisation error is small and all EKF algorithms have similar performance.

This paper includes seven sections alongside the introduction and conclusion. In Section 2 notation is defined and preliminary
mathematics is discussed. In Section 3 the system and its stochastic model are defined. In Section 4, we present a conventional
error-state EKF construction based on normal coordinates on smooth manifolds. In Section 5, we propose novel geometric
modifications in the filter dynamics to compensate the coordinate transform during the measurement update step and the error
reset step. The example of attitude estimation with directional measurements is presented in Section 6.

2 PRELIMINARIES

2.1 Manifold and Affine Connection

Let M be a smooth manifold with dimension m. The tangent space at a point ξ ∈M is denoted Tξ M . The tangent bundle is
denoted TM . Given a differentiable function between smooth manifolds h : M →N , its derivative at ξ ◦ is written as

Dξ |ξ ◦h(ξ ) : Tξ ◦M → Th(ξ ◦)N .

The notation Dh(ξ ) : TM → TN denotes the differential of h with an implicit base point.

Let X(M ) denote the space of differentiable vector fields over M . Let C∞(M ) denote the class of infinitely differentiable
functions on M . An affine connection [30] is an operator ∇ : X(M )×X(M )→ X(M ) written (X ,Y ) 7→ ∇XY , that satisfies

• (Linear in X) ∇ f1X1+ f2X2Y = f1∇X1Y + f2∇X2Y ,
• (Linear in Y ) ∇X (a1Y1 +a2Y2) = a1∇XY1 +a2∇XY2,
• (Product rule) ∇X ( fY ) = f ∇XY +(X f )Y ,

for all f1, f2 ∈C∞(M ), a1,a2 ∈ R and X ,Y ∈ X(M ). This gives a notion of directional derivative of a vector field defined on
the manifold.

A curve γ : I→M is called geodesic [30] if
∇γ̇(t)γ̇(t) = 0 (1)

2



A Note on the Extended Kalman Filter on a Manifold AUTHOR ACCEPTED VERSION

for any t ∈ I where I is a maximal open interval in R containing 0. For any ξ̂ ∈ M and v ∈ T
ξ̂

M , there exists a unique

maximal geodesic γ : [0, t(v, ξ̂ ))→M that satisfies γv(0) = ξ̂ and γ̇v(0) = v [30, Collorary 4.28]. The exponential mapping
exp

ξ̂
: W

ξ̂
⊂ T

ξ̂
M →M is defined as mapping each tangent vector v ∈ T

ξ̂
M to the value of its geodesic at time 1; that is,

exp
ξ̂
(v) = γv(1) (2)

where W
ξ̂

is the largest open subset of T
ξ̂

for which exp is a diffeomorphism. Let U
ξ̂
= exp

ξ̂
(W

ξ̂
) and note that U

ξ̂
is open by

construction. Let ı
ξ̂

: T
ξ̂

M →Rm provide a linear isomorphism between T
ξ̂

M and Rm for each ξ̂ . Then the normal coordinates
on M are defined by

ϑ
ξ̂

:= ı
ξ̂
◦ exp−1

ξ̂
: U

ξ̂
→ Rm. (3)

A vector field is an assignment ξ 7→ Xξ for every ξ ∈M . A vector field X is parallel along γ with respect to the connection ∇

if

∇γ̇(t)Xγ(t) = 0 (4)

for all t. Given any vector Xγ(0) ∈ Tγ(0)M and smooth curve γ(t) then there is a unique family of vectors Xγ(t) that satisfy (4)
and this correspondence induces an invertible linear map Pγ(t) : Tγ(0)M → Tγ(t)M between tangent spaces by

Pγ(t)Xγ(0) := Xγ(t)

for all Xγ(0) ∈ Tγ(0)M . For a fixed time T , the inverse of the parallel transport Pγ(T ) along a curve γ(t) is equal to the parallel
transport Pγ ′(T ) along the reversed curve γ ′(t) := γ(T − t). Parallel transport of vector fields induces parallel transport of tensor
operators Σγ(0) : Tγ(0)M ×Tγ(0)M → R by

Pγ(t)Σγ(0)(Xγ(t),Yγ(t)) := Σγ(0)(P−1
γ(t)Xγ(t),P−1

γ(t)Yγ(t)).

2.2 The ⊞/⊟ Operators

Building on the established literature we will use the ⊞ and ⊟ operator notation introduced in [31, 5] to model small Rm

‘perturbations acting on M . Recalling the normal coordinates (3), define the box plus ⊞ : M ×Rm → M and box minus
⊟ : M ×M → Rm operators by

ξ ⊞u = ϑ
−1
ξ

(u), (5)

ζ ⊟ξ = ϑξ (ζ ), (6)

for all ξ ∈M , ζ ∈Wξ and u ∈ ı(Uξ ). Both the ⊞ and ⊟ operators are associated with geodesic curves on the manifold and in
this sense are the natural generalisation of straight lines on Euclidean space. We believe that this is the most natural geometric
definition of these operators. Any other definition introduces local coordinates that are not adapted in the natural sense to the
geometry of the manifold.

It is straightforward to verify that these proposed operators satisfy

ξ ⊞0 = ξ , (7a)
ξ ⊞ (ζ ⊟ξ ) = ζ , (7b)
(ξ ⊞u)⊟ξ = u, (7c)

the first three of the four requirements of the original definition proposed in [5, Def. 1]. The fourth axiom in [5, Def. 1] requires
that

|(ξ̂ ⊞δ1)⊟ (ξ̂ ⊞δ2)|2 ≤ |δ1−δ2|2. (8)

However, in the normal coordinates (on a Riemannian manifold) one has

|(ξ̂ ⊞δ1)⊟ (ξ̂ ⊞δ2)|2 = |δ1−δ2|2−
1
3

Ric(δ1,δ2)+O(|δ |3),

where Ric is the Ricci curvature tensor. For manifolds with non-negative curvature; that is, Ric ≥ 0 is positive semi-definite,
then (8) holds. For any manifold with negative curvature, however, axiom 4 from [5, Def. 1] will fail locally. This axiom
was used in [5] to prove properties of the mean of the true information state on the manifold M associated with properties of
the mean of distributions defined in the Rm coordinates. In general manifolds the concept of mean and covariance are unclear
and instead we will work entirely with concentrated Gaussian distribution approximations (§ 3.1) of the true information state.
These approximations do have well-defined mean and covariance parametrisation that can be used in the filter algorithm. The
results developed in this paper are general and not restricted to manifolds with non-negative curvature.

3



A Note on the Extended Kalman Filter on a Manifold AUTHOR ACCEPTED VERSION

3 PROBLEM FORMULATION

3.1 Stochastic model

It is always possible to define a volume measure on a general manifold using a partition of unity construction. The class of
probability distributions for the information state considered will be those that are integrable with respect to such a measure.
Even with a well-defined concept of probability distribution, concepts such as mean and covariance are not well defined on a
general manifold. There are many works that use geometric structure of the manifold such as a Riemannian metric [3][4], or
Lie-group structures [19][32] to define equivalent concepts. These constructions, however, are not necessary for the formulation
of Kalman filter algorithms. Rather such algorithms need only a definition of a class of approximating distributions that can be
parameterised by mean and covariance parameters. In particular, it is not necessary that the mean and covariance parameters
used as state in the filter correspond to statistics of the true distribution or even of the approximate distribution, only that the
distribution generated by the filter parameterisations is close in some sense to the true distribution.

In the remainder of the paper we assume that both the systems state-space M and the output space N admit affine connections
and that we work with normal coordinates

ϑ
ξ̂

: M → Rm (9)

ϕŷ : N → Rn (10)

We approximate a general distribution p : M → R+ around ξ̂ ∈M by a concentrated Gaussian distribution [32]

N
ξ̂
(ξ |µ,Σ) := α exp(−1

2
(ϑ

ξ̂
(ξ )−µ)⊤Σ

−1(ϑ
ξ̂
(ξ )−µ)), (11)

where

α :=

∣∣∣∣∣
∫

U
ξ̂

exp(−1
2
(ϑ

ξ̂
(ξ )−µ)⊤Σ

−1(ϑ
ξ̂
(ξ )−µ))dξ

∣∣∣∣∣
−1

.

is a normalizing factor, µ ∈ Rm is a mean vector parameter and Σ ∈ S+(m) is a positive-definite symmetric m×m covariance
matrix parameter. Note that the support for the distribution N

ξ̂
(ξ |µ,Σ) is contained in the open set U

ξ̂
⊂M . Within this set,

the distribution in local coordinates x = ϑ
ξ̂
(ξ ) looks like a trimmed Gaussian and the first and second order statistics µ and Σ

are well defined. Although the mean and covariance have natural interpretations as parameters in the concentrated Gaussian,
they do not correspond to the statistical mean and variance of the distribution on M , or even in Rm coordinates due to the
trimmed nature of the distribution. This does not prevent them being used to parameterise the approximate distribution and
derive an extended Kalman filter. The filter formulation is now done within the class of concentrated Gaussian distribution
and its validity will depend on the validity of the approximation p(ξ ) ≈ N

ξ̂
(ξ |µ,Σ). Clearly for a large range of engineering

applications where the a-posteriori state distribution is locally Gaussian in the normal coordinates this approximation will work
extremely well.

3.2 System definition

In this work, we consider a nonlinear discrete-time system living on a smooth manifold M . The system function is given by

ξk+1 = F(ξk,uk+1 +κ
I
k+1)⊞κ

P
k+1,

κ
I
k+1 ∼ N(0,RI

k+1), κ
P
k+1 ∼ N(0,RP

k+1), (12)

where ξ ∈M and u ∈ L are the system state and input, respectively. These systems usually admit two types of noise, the input
noise κ I

k+1 and the processing noise κP
k+1, modelled as Gaussian processes on the linear input space L and the tangent space

Tξk+1
M . In this work, we combine these noise terms through linearisation,

ξk+1 = F(ξk,uk+1)⊞ (κP
k+1 +Bk+1κ

I
k+1), (13)

where Bk+1 = Du|uk+1
F(ξk,u) is the differential of the system function with respect to the input signal. The resulting simplified

noise model is

ξk+1 = F(ξk,uk+1)⊞κk+1, κk+1 ∼ N(0,Rk+1), (14)

where the total covariance Rk+1 = RP
k+1 +Bk+1RI

k+1B⊤k+1 captures the combined effect of processing noise and input noise.

The configuration output

yk+1 = h(ξk+1)⊞νk+1, νk+1 ∼ N(0,Qk+1), (15)

is given by a function h : M →N , where N is a smooth manifold termed the output space. The disturbance νk+1 is modelled
as a Gaussian process in the normal coordinate around h(ξk+1) on N .

4
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4 EXTENDED KALMAN FILTER ON MANIFOLD

In this section, we provide an overview of the EKF design methodology on smooth manifolds and indicate points at which
the geometric structure of the manifold is not taken into account in classical treatments. We derive the filter in the error-
state formulation, since this allows for a more geometric analysis. The error-state Kalman filter considers propagating the
information state of an error εk between true ξk and nominal ξ̂ [33] and reconstructs the filter state ξ̂ from the error update.

4.0.1 Error state

The local error in normal coordinates εk ∈ T
ξ̂k

M is given by

εk = ξk ⊟ ξ̂k, (16)

where ξk, ξ̂k ∈M are the true and estimated system state, respectively. In general, on systems with symmetry the error state is
often defined globally using a group structure and the local error state is the local linearisation of this construction [16][21].

4.0.2 Stochastic approximation

The information state for the filter at time k, that approximates the true a-posteriori distribution of the information state, is a
concentrated Gaussian

ξk|k ∼ N
ξ̂k|k

(ξ |0,Σk|k)

where k|k indicates the state at time k conditioned on information (inputs and measurements) up to and including time k. This
construction corresponds to

ξk|k ⊟ ξ̂k|k ∼ Ntrim(0,Σk|k)

as a random variable in Rm, where Ntrim denotes the trimmed Gaussian associated with the domain of definition of the normal
coordinates.

4.0.3 Prediction

The reference point ξ̂k|k is updated using the full nonlinear model of the system

ξ̂k+1|k = F(ξ̂k|k,u).

The predicted error is defined as

εk+1|k := ξk+1 ⊟ ξ̂k+1|k. (17)

We use the linearisation of the state dynamics to compute an update equation for εk+1|k .
Lemma 4.1. The linearised dynamics of εk+1|k is given by

εk+1|k = Ak+1εk|k +κk+1 +O(|εk|k,κk+1|2), (18)

where κk+1 ∼ N(0,Rk+1) and Ak+1 is given by

Ak+1 := Dϑ
ξ̂k+1|k

(ξ̂k+1|k) ·DFuk+1(ξ̂k|k) ·Dϑ
−1
ξ̂k|k

(0). (19)

Proof. The predicted error can be written

εk+1|k = ξk+1 ⊟ ξ̂k+1|k,

= (F(ξk,uk+1)⊞κk+1)⊟F(ξ̂k,uk+1),

= (F(ξ̂k ⊞ εk|k,uk+1)⊞κk+1)⊟F(ξ̂k,uk+1), (20)

Discarding O(|εk|k| |κk+1|) quadratic terms one has

εk+1|k = ϑ
ξ̂k+1|k

(Fuk+1(ϑ
−1
ξ̂k|k

(εk|k)))+κk+1. (21)

The formula for Ak+1 follows by applying the chain rule of differentiation and evaluating at εk|k = 0.

The predicted state error is distributed according to a Gaussian with mean zero and covariance [1]

ξk+1|k ∼ N
ξ̂k+1|k

(ξ |0,Σk+1|k).

5
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where
Σk+1|k = Ak+1Σk|kA⊤k+1 +Rk+1. (22)

This covariance update (22) hides two changes of coordinates. Firstly, the covariance parameter Σk|k is defined in normal
coordinates at ξ̂k|k while Σk+1|k is defined in normal coordinates at ξ̂k+1|k. Fortunately, the state update intrinsically captures this
change, and Ak+1Σk|kA⊤k+1 is the correct covariance transformation up to linearisation error. The second change of coordinates
is associated with the noise process κk+1 in (20) defined around the propagation of the true state F(ξk,u). However, in (22) the
covariance Rk+1 is applied directly in coordinates centered at ξ̂k+1|k. This implicit change of coordinates is further discussed in
Section 5.1.

4.0.4 Update

The update step involves Bayesian fusion of the prior ξk+1 ∼N
ξ̂k+1|k

(ξ |0,Σk+1|k) with a measurement yk+1 ∈N associated with

a generative noise model yk+1 ∼ Nh(ξk+1)
(y|0,Qk+1) (15).

Let ŷk+1|k = h(ξ̂k+1|k). Define the innovation as ỹk+1 := yk+1 ⊟ ŷk+1|k. The estimated measurement ŷk+1 is considered as an
independent signal and h(ξk+1) is considered a function of the error state εk+1|k. The update equation uses the linearisation of
the innovation with respect to εk+1|k at zero.
Lemma 4.2. The linearisation of the innovation is given by

ỹk+1 =Ck+1εk+1|k +νk+1 +O(|εk+1|k,νk+1|2), (23)

where νk+1 ∼ N(0,Qk+1) and Ck+1, termed the output matrix, is given by

Ck+1 = Dϕŷk+1(ŷk+1) ·Dh(ξ̂k+1|k) ·Dϑ
−1
ξ̂k+1|k

(0). (24)

Proof. One has
ỹk+1 := yk+1 ⊟ ŷk+1|k

= (h(ξk+1)⊞νk+1)⊟ ŷk+1|k

= (h(ξ̂k+1|k ⊞ (ξk+1 ⊟ ξ̂k+1|k))⊞νk+1)⊟ ŷk+1|k

= (h(ξ̂k+1|k ⊞ εk+1|k)⊞νk+1)⊟ ŷk+1|k, (25)

Discarding O(|εk+1|k| |νk+1|) quadratic terms yields

ỹk+1 = ϕh(ξ̂k+1|k)
(h(ϑ−1

ξ̂k+1|k
εk+1|k))+νk+1. (26)

Linearising at εk+1|k = 0 and applying the chain rule yields Ck+1

The Kalman update [1] for the a-posteriori distribution is given by
ξk+1|k+1 ∼ N

ξ̂k+1|k
(ξ |µk+1,Σk+1|k+1) (27)

where
Kk+1 = Σk+1|k C⊤k+1 (Ck+1Σk+1|kC

⊤
k+1 +Qk+1)

−1, (28)

µk+1 = Kk+1ỹk+1, (29)
Σk+1|k+1 = (I−Kk+1Ck+1)Σk+1|k. (30)

Similarly to the prediction step, this update step hides an additional change of coordinate. The generative noise process is
defined around the true output yk+1 = h(ξk+1), but it is applied around the estimated output ŷk+1 = h(ξ̂k+1). We discuss how
one can address this using parallel transport in Section 5.2.

4.0.5 Reset

The reset step in an extended Kalman filter is geometrically a change of coordinates. One sets

ξ̂k+1|k+1 = ξ̂k+1|k ⊞µk+1.

The resulting posteriori distribution is taken to be
ξk+1|k+1 = N

ξ̂k+1|k+1
(ξ |0,Σk+1|k+1).

However, since the covariance Σk+1|k+1 was defined in coordinates centered at ξ̂k+1|k it is clear that this second statement does
not follow directly. We address this in Section 5.3

6
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5 GEOMETRIC INSIGHT

In this section, we integrate the geometric perspective into the EKF design methodology presented in Section 4, and propose
novel geometric modifications in the filter dynamics.

5.1 Geometric Prediction

In the prediction step (20), linearisation of the error dynamics implicitly relocates the noise process κk+1 from the true state
prediction F(ξk,uk+1) to the estimated state prediction F(ξ̂k|k,uk+1). To correct this, the covariance prediction (22) should be
modified to

Σk+1|k = Ak+1Σk|kA⊤k+1 +R+
k+1,

where R+
k+1 is a solution to the distribution transformation

NF(ξk,u)(ξ |0,Rk+1)≈ NF(ξ̂k|k,u)
(ξ |F(ξk,u)⊟F(ξ̂k|k,u),R

+
k+1).

However, solving for R+
k+1 requires knowledge of F(ξk,u), and by extension ξk, which is unavailable in practice. We do not

address this issue in the present paper.

5.2 Geometric Update

Figure 1: Demonstration of prior and measurement likelihood in normal coordinates. The prior p(ξk+1) is defined on the
normal coordinate around ξ̂k+1|k, shown in blue. The measurement likelihood p(yk+1|ξk+1) is defined on the normal coordinate
h(ξk+1), shown in red.

As stated in Section 4.0.4, the measurement fusion problem is solved by linearising the innovation yk+1 ⊟ ŷk+1|k in terms
of εk+1|k around zero. The covariance Ck+1Σk+1|kC⊤k+1 associated with the filter state estimate correctly captures the change
of coordinates from those centered at ξ̂k+1|k to those centered at ŷk+1|k = h(ξ̂k+1|k), up to linearisation error. However, the
linearisation (25) also implicitly changes the base point of the noise process νk+1 from the true output h(ξk+1) to the estimated
output h(ξ̂k+1), introducing error into the Kalman gain computation (28). To address this, we propose a novel geometric update
step in the filter design, which translates the likelihood distribution from Th(ξk+1)

N to Tŷk+1N in a manner compatible with the
affine connection of N . Our goal is to approximate

yk+1 ∼ Nh(ξk+1)
(y|0,Q)≈ Nŷk+1(y|h(ξk+1)⊟ ŷk+1,Q+), (31)

where Q+ denotes the transformation of the original measurement covariance Q to Tŷk+1N . By modelling Q as a (2,0)-tensor
on Th(ξk+1)

N , it follows that

Q+ = Pγ(1)Q, (32)

where γ(t) = h(ξk+1)⊞ t(ŷk+1|k ⊟h(ξk+1)) is the geodesic from the true output h(ξk+1) to the estimated output ŷk+1. With this
new covariance Q+, the standard filter update step can be applied.

The parallel transport (32) requires knowledge of the true output h(ξk+1) which is not available in practice. Here we propose
two choices of approximation.
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5.2.1 Measurement yk+1

The measurement yk+1 can be used as an approximation of h(ξk+1). As shown in Fig 1, the likelihood distribution is centred
at h(ξk+1). When the state estimate is poor relative to the measurement, one may take the likelihood to be centred at yk+1, and
thus approximate the parallel transport from h(ξk+1) to ŷk+1 by the one from yk+1 to ŷk+1.

5.2.2 Naive posteriori

Another alternative is given by the posterior estimated by the original filter update; that is, without geometric update. Fol-
lowing the process in Section 4.0.4, one can compute an estimate of the posterior ξ̂k+1|k+1. This new estimate can be used
to approximate the true output yk+1 and repeat the update step to perform the geometric update. This process of estimating a
more accurate posterior can be iterated to achieve better performance, at a higher computational cost. Algorithm 1 provides
pseudocode for this iterated update.
Remark 5.1. Some existing filter designs, such as the iterated Kalman filter [34] and the iterated EKF on Lie groups [35], use
an iterative scheme to generate a more accurate estimation of the output matrix Ck+1 than can be obtained through a single
linearisation step. In contrast, Algorithm 1 uses iteration to better approximate the measurement noise covariance Qk+1 in the
correct coordinates, while the output matrix is computed in a single step.

Algorithm 1: Iterated geometric update in the proposed EKF

Input: prior (ξ̂k+1|k,Σk+1|k), likelihood Qk+1
Input: measurement yk+1
Q0

k+1← Qk+1,
for i in range (num of iter) do

K′k+1 = Σk+1|k C⊤k+1 (Ck+1Σk+1|kC
⊤
k+1 +Qi

k+1)
−1,

µ
′
k+1 = K′k+1ỹk+1,

ξ̂
′
k+1|k+1 = ξ̂k+1|k ⊞µ

′
k+1,

ȳ′k+1 = h(ξ̂ ′k+1|k+1),

Qi+1
k+1 = Pγ(t)Qk+1 where γ(t) = ȳ′k+1 ⊞ t(ŷk+1 ⊟ ȳ′k+1),

end
Update:

Kk+1 = Σk+1|k C⊤k+1 (Ck+1Σk+1|kC
⊤
k+1 +Qi+1

k+1)
−1,

µk+1 = Kk+1ỹk+1,

Σk+1|k+1 = (I−Kk+1Ck+1)Σk+1|k.

5.3 Geometric Reset

There have been several works on the covariance reset in error-state Kalman filters. It was first mentioned by Markley [36] in
the context of multiplicative EKF, recently generalised by Muller et al. [28][29]. The authors proposed the covariance reset
step using parallel transport in [20][22] for filtering on homogeneous spaces. The same concept can be extended onto a smooth
manifold.

At the end of the update step, the posterior distribution (27) is a concentrated Gaussian about the predicted state ξ̂k+1|k, but
with a non-zero mean µk+1 and updated covariance Σk+1|k+1. However, the next filter iteration requires that the state estimate
is expressed in coordinate centred at ξ̂k+1|k+1 = ξ̂k+1|k ⊞µk+1 so that the mean of the distribution is zero. The goal of the reset
step is to identify Σ

+
k+1|k+1 such that

ξk+1 ∼ N
ξ̂k+1|k

(ξ |µk+1,Σk+1|k+1)≈ N
ξ̂k+1|k+1

(ξ |0,Σ+
k+1|k+1). (33)

Similarly to the geometric update, this may be solved using parallel transport on M . The covariance Σ is modelled as a
(2,0)-tensor on TM . Then the reset covariance Σ

+
k+1|k+1 is found to be

Σ
+
k+1|k+1 = Pγ(1)Σk+1|k+1, (34)

where γ(t) is the geodesic curve γ(t) = ξ̂k+1|k ⊞ tµk+1. Unlike the geometric update step, all the information required to solve
(34) exactly is available in practice.
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6 SIMULATION

In this section, we use an example of attitude estimation from two directional measurements to demonstrate the algorithm
performance. The results of different choices of reference are compared.

6.1 System Formulation

We consider an attitude estimation problem with gyroscope input and measurements of two known directions. Let {G} and
{I} denote the global reference frame and the body-fixed reference frame, respectively. Let GR ∈ SO(3) denote the rigid body
orientation of a moving rigid platform. The onboard gyroscope, which has the same orientation as the platform, returns the
bias-free angular velocity Iω ∈ R3. With non-rotating, flat earth assumption, the deterministic system kinematics is given by

RG
k+1 = RG

k exp
(

ω
I ∧

δ t
)
. (35)

For the estimation problem, we consider the measurements of two known directions d1,d2. The output space is then defined to
be N := S2×S2. The configuration output is written

h(GR) = (GR⊤d1,
GR⊤d2), (36)

where d1 and d2 satisfy d1×d2 ̸= 0; i.e. the state is always observable.

6.2 Implementation

We simulate an oscillatory trajectory for attitude estimation (35). The state GR is initialized with identity rotation matrix. The
angular velocity input is defined to be Iω = (0.1×cos(τ),0.1×sin(τ),0.1×sin(τ)) rad/s. The trajectory is realized using Euler
integration at time step δ t = 0.02s. The estimator has an onboard gyroscope which reads the angular velocity but is corrupted
by piecewise constant zero-mean white Gaussian noise with variance 0.02 (rad/s)2 per axis. Additionally, there are sensors that
provide measurements of two known directions d1 = (0,1,0) and d2 = (1/

√
2,0,1/

√
2). The directional measurement (36) are

corrupted by Gaussian noise with zero-mean and non-homogeneous covariance diag(0.01,0.03,0.05) rad2.

We implement the geometric extended Kalman filter described in Section 4, where the manifold SO(3) is equipped with the
Cartan-Schouten 0-connection [37]. Consequently, the normal coordinates are exactly the Lie group exponential coordinates,
and the extended Kalman filter is equivalent to the Equivariant filter described in [38]. The parallel transport on the state space
SO(3) is solved using the Cartan-Shouten 0-connection on Lie groups. On the output space S2×S2, we use the canonical affine
connection induced by the Cartan-Shouten 0-connection on the Symmetry Lie group SO(3) [37]. For comparison, we study
the proposed filter with and without our proposed geometric update and covariance reset. All filters are initialized by sampling
the concentrated Gaussian distribution R̂0 ∼ NI3(0,1.5

2I3).

6.3 Simulation Results

To compare their performance, we plot the error in the attitude estimate as well as the filter energy. The filter energy is 1
m ε⊤Σ−1ε

with m being the dimension of the system state and follows a χ2 distribution. The expected value of filter energy is 1, while a
smaller or larger value indicates the filter is under-confident or over-confident in its estimation, respectively.

Figure 2 shows the performance of the filter with and without the proposed geometric modifications. Due to the large initial
error in the state estimate, relative to the measurements, the proposed geometric update is seen to make a significant improve-
ment to the convergence of the filter in the transient period. The black trajectory is obtained by using the true output for parallel
transport in the geometric update, and is presented only as a reference since this is not possible in practice. It has the best
performance over all four implementations. The green and purple trajectories, which are using the naive posterior and mea-
surement for parallel transport, respectively, perform similarly in the transient period, and both outperform the conventional
EKF implementation (in red). In terms of the asymptotic behavior, however, the EKF using measurements for parallel transport
generally performs worse than all alternatives. The reason is that once the filter is converged, the state estimate tends to be more
accurate than the measurement in approximating the true output. In this case, using the measurement as an approximation of
the true output will only decrease filter performance.

Figure 3 shows the results of EKF implementations with iterated geometric updates discussed in Algorithm 1. We implement
the EKF with 0, 5, 10, and 15 iterations in the geometric update. As in Figure 2, an EKF where the true output is used for the
geometric update is provided as a reference for comparison. One observes that the performance of the EKF with iterated update
improves as more iterations are used, and approaches that of the EKF with true output update. Each iteration requires additional
computation and this must be balanced with improved accuracy; however, these results clearly demonstrate the advantage of
including the proposed geometric update in an EKF design.
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Figure 2: The rotation estimation error and filter energy are shown for various EKF implementations. The original EKF
implementation (—) discussed in Section 4 is compared with the EKF with covariance reset and geometric update obtained
from the true output (—), the measured output (—), and the naive posterior (—). The yellow horizontal line in the second
subplot is for filter energy 1.

7 CONCLUSIONS

This paper presents an error-state extended Kalman filter design methodology for smooth manifolds with affine connections.
The proposed algorithm includes additional geometric modifications in the filter update and error reset steps by applying parallel
transport to the state and measurement covariance matrices. The theory is applied to an example problem of attitude estimation
with two directional measurements. The simulation results demonstrate the convergence of the proposed EKF, and show the
improvements in performance gained from applying the proposed geometric modifications.
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