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ABSTRACT

The kinematics of many nonlinear control systems, especially in the robotics field, admit a transitive Lie-
group symmetry, which is useful in high performance observer design. The recently proposed equivariant
filter (EqF) exploits equivariance to generate high performance filters for a wide range of real-world systems.
However, existing work on the equivariant filter, and equivariance of control systems in general, is based
on a continuous-time formulation. In this paper, we first present the equivariant structure of a discrete-time
system. We then use this to propose a discrete-time version of the equivariant filter. A novelty of the approach
is that the geometry of the symmetry group naturally appears as parallel transport in the reset step of the filter.
Preliminary results for linear second order kinematics with separate bearing and range measurements indicate
that the discrete EqF significantly outperforms both a discretized version of the continuous EqF and a classical
discrete EKF.

1 INTRODUCTION

Many nonlinear control systems are naturally posed on homogeneous spaces, that is manifolds that submit to a transitive group
action by a Lie group. Such systems carry the property of equivariance, that is, the defining dynamics can be mapped throughout
state-space by the group action. The geometry and symmetry of those systems have been recognized since the seventies [1],
[2], although this did not translate into observer and filter design until the 1990s. Salcudean proposed a non-linear observer for
the attitude estimation of a satellite [3]. Thienel and Sanner extended the original observer and incorporated bias estimation
[4]. Parallel work from Aghannan and Rouchon introduced a state observer design for Lagrangian systems using the invariance
property [5]. Later around 2005, with the emerging unmanned aerial vehicle industry, there was a burst of work to develop a
simple, robust observer design for attitude control. Mahony et al. [6] proposed an asymptotically stable complementary filter
for attitude estimation posed directly on the matrix Lie group SO(3), which has an almost-global convergence property. In
parallel, Bonnabel et al. proposed a general theory for the Invariant Extended Kalman Filter (IEKF) in a series of works [7],
[8]. They provided a design methodology for systems on Lie groups with invariance properties, which was later extended to the
class of ‘group affine’ systems [9]. These works fully exploited the underlying symmetry properties of the system and had great
impact in the control and robotics community. Recently, van Goor et al. [10] and Mahony et al. [11] proposed the Equivariant
Filter (EqF), a general filter design for systems on homogeneous space.

Less attention has been focused on the observer problem for discrete-time systems. There are two common approaches to
design a discrete filter for a continuous system with discrete-time measurements. The first is to design a continuous-time
filter and then discretize the filter, while the second approach is to discretize the continuous system and design a discrete-
time filter for the discrete system [12]. One of the advantages of the second is a range of existing geometric integrators to
discretize systems on manifolds, provided by Crouch et al. and Hairer et al. [13][14]. Nonetheless, both approaches introduce
approximation error into the system with the discretization process, although, the second is known to have better stability
properties [15]. Preliminary work on stochastic filtering of continuous- and discrete-time systems was carried out in the late
1970s and early 1980s, and is summarised in Maybeck’s book [16]. More recently, the question of discrete filtering for systems
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on Lie-groups has received considerable attention. Bourmaud et al. generalized the extended Kalman filter to matrix Lie groups
for discrete-time systems [17]. Barrau et al. proposed the IEKF for discrete-time dynamical systems on Lie groups, which has
been implemented for navigation problems [18].

In this paper, we propose an observer design methodology for a class of discrete-time systems on homogeneous spaces using the
equivariance property. This work is parallel to recent work on Equivariant filter (EqF) design [10], that has yielded filters that
are obtained as a discretization of a continuous-time filter design. We assume that a discretization of the continuous-time system
is provided as the model, exploiting for example the literature on discretization of systems on Lie-groups [13][14][19][20]. In
particular, these discretizations yield updates in the form of a symmetry transformation that approximates the integration of
the continuous-time system for constant input acting on the present state. The symmetry structure is exploited in the filter
development and we believe lies at the heart of the performance gains reported.

One of our key contributions is that we propose a novel approach to model filter reset as the parallel transport of covariance.
In a conventional extended Kalman filter, the update step provides an estimate of the new mean and covariance based on
the predicted state and new measurements. We implement Bayesian fusion in local coordinates centred at the predicted state
estimate generating both a new state estimate and covariance expressed in the local coordinates, and then, drawing from recent
insight [21], parallel transport the covariance to new coordinates centred at the updated state estimate. Our approach provides an
alternative, and we claim more general, perspective on work done by Markley in [22] twenty years ago and generalised recently
by Mueller et al. [23]. We apply the proposed filter to an example of second-order kinematics with separate range and bearing
measurements and run the comparison with a discretized version of a continuous-time EqF and conventional discrete extended
Kalman filter. The simulations demonstrate the advantage of both EqF filters versus the EKF due to proper modelling of the
reset step during the transient response, and significant performance gains of the discrete EqF compared to both comparison
filters in the asymptotic response. We believe this performance gain is due to the fact that the error incurred in a discrete state
update implemented as a symmetry transform is better adapted to the discrete equivariant filter equations than the error incurred
by the discretization of a continuous-time filter, even when the associated filter was based on equivariant design principles in
continuous-time.

2 PRELIMINARIES

Let M be a smooth manifold. The tangent space at a point ξ ∈ M is denoted TξM . A diffeomorphism on M is a smooth map
F : M →M .

Let X(M ) denote the space of vector fields over M . Let D (M ) denote the group (under function concatenation) of diffeomor-
phisms of M . Let f ∈ X(M ) then the flow F : R×M →M of f is defined as the family of diffeomorphisms F (t, ·) ∈ D (M ),
F (t, ξ0) = ξ(t), where ξ(t) is the solution of ξ̇ = f(ξ) for ξ(0) = ξ0.

Given a differentiable function between smooth manifolds h : M → N , its derivative at ξ◦ is written as

Dξ|ξ◦h(ξ) : Tξ◦M → Tξ◦N .

The notation Dh(ξ) : TM → TN denotes the differential of h with an implicit base point.

Let G be a general Lie group with Lie algebra g, id denotes the identity element of G. For arbitrary X,Y ∈ G, the left and
right translations are denoted LX and RX , and are defined by

LX(Y ) := XY, RX(Y ) := Y X.

The Lie algebra g is isomorphic to a vector space Rn with the same dimension. We use the wedge (·)∧ : Rn → g and vee
(·)∨ : g→ Rn operators to map between the Lie algebra and vector space. The adjoint map for G, AdX : g→ g is defined by

AdX U = DLXDRX−1U

for any X ∈ G and U ∈ g. When G is a matrix Lie group, we can define the adjoint matrix Ad∨X : Rn → Rn as

Ad∨X U = (AdX U)∨

For X ∈ G the inner automorphism IX : G→ G of G is the smooth map

IX(Z) := XZX−1 = LXRX−1Z, Z ∈ G.

A right group action of a Lie group G on a manifold M is a smooth map φ : G×M →M that satisfies

φ(X,φ(Y, ξ)) = φ(Y X, ξ) and φ(id, ξ) = ξ

for any X,Y ∈ G and ξ ∈ M . It induces the partial maps φX : M → M and φξ : G → M which are defined by
φX(ξ) := φ(X, ξ) =: φξ(X) respectively.
Proposition 2.1. Any right action φ : G ×M → M induces a right action on the group of diffeomorphisms of M , denoted
Φ : G×D (M )→ D (M ), and defined by

Φ(X,F ) = φX ◦ F ◦ φ−1
X , (1)

for any F ∈ D (M ).
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Proof. Let X,Y ∈ G and F ∈ D (M ). To prove compatibility, compute

ΦY (ΦX(F )) = ΦY (φXFφ
−1
X )

= φY (φXFφ
−1
X )φ−1

Y

= φXY Fφ(XY )−1 = ΦXY F.

To prove the identity,

ΦidF = φidFφid = F,

as required.

3 PROBLEM FORMULATION

3.1 Discrete-time System

Let M be a smooth manifold termed the state space, V be a vector space termed the input space. Let F : M × V → M be
a family of diffeomorphisms on M , and F (·, uk) ∈ D (M ) for all uk ∈ V. The class of discrete-time systems on M that we
consider can be written as

ξk+1 = Fuk+1
(ξk) = F (ξk, uk+1), ξ0 ∈M , (2)

The configuration output yk = h(ξk) is given by a function h : M → N ⊂ Rn, where N is a smooth manifold termed the
output space embedded in Rn. In practice, there will be disturbances on both the update and the measurements process. The
noise process for the measurement is a Gaussian modelled in the embedding space Rn, while for the process noise, we model
a Gaussian disturbance in the local exponential coordinates during the update step (the P matrix in (29)).

3.2 State Symmetry

Let G be a Lie group with Lie algebra g, and M be a homogeneous space of G, then there exists a smooth, transitive, right
group action of G on M ,

φ : G×M →M . (3)

A discrete lift for the system (2) is a map Λ : M × V→ G with the lift condition

φξk(Λ(ξk, uk+1)) = Fuk+1
(ξk), (4)

for every ξ ∈ M and u ∈ V. The lift Λ : M × V → G is used to define a lifted system on the symmetry Lie group G. First
choose an arbitrary origin ξ◦ ∈ M , that acts as the origin in a global coordinate parametrization φξ◦ : G → M . The lifted
system is written

Xk+1 = XkΛ(φξ◦(Xk), uk+1), X(0) ∈ G. (5)

Lemma 3.1. Consider the lifted system (5). If the initial condition X(0) ∈ G satisfies

φξ◦(X(0)) = ξ(0),

then the trajectory of the lifted system Xk projects down to the original kinematic system with the map φξ◦ : G→M

φξ◦(X) ≡ ξ, (6)

for all time.

Proof. Let Xk be a solution of (5) and let ξk = φξ◦(Xk). One has

ξk+1 = φξ◦(Xk+1) = φξ◦(XkΛ(φXk
(ξ◦), uk+1))

= φ(Λ(ξk, uk+1), φ(Xk, ξ
◦))

= φξk(Λ(ξk, uk+1))

= F (ξk, uk+1),

which satisfies (2).

3
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4 EQUIVARIANT SYSTEMS

4.1 Equivariance

A discrete-time system (2) is termed equivariant if there exists a group action

ψ : G× V→ V (7)

which satisfies
φX(F (ξ, u)) = F (φX(ξ), ψX(u)), (8)

for any X ∈ G, ξ ∈M and u ∈ V. Consider a discrete-time equivariant system with the group action, then

FψX(u)(ξ) = FψX(u)(φX(φ−1
X (ξ)))

= φX(Fu(φ−1
X (ξ))

= ΦXFu(ξ), (9)

where Φ is the group action on D (M ) (1). We can also conclude from (9) that if ψ exists, i.e. the system (2) is equivariant, then
ψ is implicitly determined by the induced group action Φ.

4.2 Equivariant Lift

For a system with state symmetry φ : G×M →M and input symmetry ψ : G× V→ V, the discrete lift is equivariant if

Λ(φ(X, ξ), ψ(X,u)) = X−1Λ(ξ, u)X = IX−1Λ(ξ, u), (10)

for any X ∈ G, ξ ∈M and u ∈ V.

5 OBSERVER ARCHITECTURE

In this section we provide the formulation of an equivariant observer for a discrete-time system. The key in the formulation is
the equivariant error which measures the global error between the manifold and the symmetry group.

5.1 Observer Formulation

Let M be a smooth manifold. Consider a kinematic model with state symmetry φ : G × M → M , input symmetry ψ :
G × V → V and trajectory denoted by ξk. Choose an arbitrary but fixed origin ξ◦ ∈ M . The lifted system is defined by the
evolution function

Xk+1 = XkΛ(φξ◦(Xk), uk+1), φ(X(0), ξ◦) = ξ(0) (11)

where X(0) ∈ G.

Define the observer X̂k dynamics on the symmetry Lie group by

X̂k+1 = exp(∆k+1)X̂kΛ(φξ◦(X̂k), uk+1), X̂(0) = id (12)

where ∆k+1 ∈ g is the time varying correction term that remains to be chosen. The corresponding state estimate of the observer
is given by

ξ̂k = φξ◦(X̂k).

The equivariant error is defined as
ek = φX̂−1

k
(ξk). (13)

This error is a key concept in equivariant filter design, since it measures the difference between the observer trajectory X̂k ∈ G

and the system trajectory ξk ∈ M which live in two different spaces. Note that if ξ̂k = ξk, i.e the observer estimate is correct,
then the error ek = ξ◦.

Define the origin input

u◦k+1 := ψ(X̂−1
k , uk+1), (14)

which is measurable because both X̂ and u are known.

4
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5.2 Error Dynamics

The EqF is derived by linearising the dynamics of the equivariant error ek.
Lemma 5.1. Consider an equivariant system with lifted model (5) and the observer (12), the error dynamics are given by

ek+1 = φ(Λ(ek, u
◦
k+1)Λ(ξ◦, u◦k+1)−1 exp(−∆k+1), ek), (15)

and only depend on the origin input u◦k+1 = ψ(X̂−1
k , uk+1) and the error ek itself.

Proof. Let Xk be a solution to the lifted model (5) satisfying φ(X(0), ξ◦) = ξ(0). Define the group error Ek := XkX̂
−1
k ,

compute the dynamics of E:
Ek+1 = XkΛ(φξ◦(Xk), uk+1)Λ(φξ◦(X̂k), uk+1)−1X̂−1

k exp(−∆k+1),

= EkX̂kΛ(φξ◦(EkX̂k), uk+1)X̂−1
k X̂kΛ(φξ◦(X̂k), uk+1)−1

X̂−1
k exp(−∆k+1),

= EkΛ(φξ◦(Ek), ψ(X̂−1
k , uk+1))Λ(φξ◦(I), ψ(X̂−1

k , uk+1))−1

exp(−∆k+1),

= EkΛ(φ(Ek, ξ
◦), u◦

k+1)Λ(ξ◦, u◦
k+1)−1 exp(−∆k+1),

= EkΛ(ek, u
◦
k+1)Λ(ξ◦, u◦

k+1)−1 exp(−∆k+1).

Note that
ek := φ(X̂k

−1, ξk) = φ(XkX̂k
−1, ξ◦) = φ(Ek, ξ

◦).

Substitute the dynamics of Ek into this relationship and one obtains
ek+1 = φ(Ek+1, ξ

◦),

= φ(EkΛ(ek, u
◦
k+1)Λ(ξ◦, u◦k+1)−1 exp(−∆k+1), ξ◦),

= φ(Λ(ek, u
◦
k+1)Λ(ξ◦, u◦k+1)−1 exp(−∆k+1), φ(Ek, ξ

◦)),

= φek(Λ(ek, u
◦
k+1)Λ(ξ◦, u◦k+1)−1 exp(−∆k+1)),

as required.

5.3 Linearisation

To linearise the error ek ∈ M requires a chart of local coordinates for the state. Fix a local coordinate chart Θ : M → Rm
around the origin ξ◦ and assume that e remains in a neighborhood of the origin for all time. We use the notation Θ and ε to
represent the chart and the local coordinates of the error respectively,

εk = Θ(ek). (16)
Proposition 5.2. Let Θ be a local coordinate chart on M in an open neighborhood around ξ◦. The linearised dynamics of ek
about εk = 0 and ∆k = 0 are

εk+1 ≈ Ak+1εk +O(|ε|2), (17)

Ak+1 = DΘ ·Dφξ◦(id) ·DRΛ(ξ◦,u◦
k+1

)−1(Λ(ξ◦, u◦
k+1))

·Dξ◦Λ(ξ◦, u◦
k+1) ·DΘ−1. (18)

Proof. Define the error drift term
Λ̃ξ◦(ek, u

◦
k+1) = Λ(ek, u

◦
k+1)Λ(ξ◦, u◦k+1)−1.

The global state error ek has the dynamics
ek+1 = φek(Λ̃ξ◦(ek, u

◦
k+1) exp(−∆k+1)). (19)

Then,
εk+1 = Θ(φε−1(εk)(Λ̃ξ◦(ε

−1(εk), u◦k+1) exp(−∆k+1))). (20)
Linearising the above equation (20) about εk = 0 and ∆k = 0 yields

Θ(φΘ−1(εk)(Λ̃ξ◦(Θ
−1(εk), u◦

k+1)))

≈ Θ(φΘ−1(εk)(Λ̃ξ◦(Θ
−1(0), u◦

k+1)))

+ DΘ ·Dφξ◦(id) ·DΛ̃(ξ◦, u◦
k+1) ·DΘ−1(εk) +O(|ε|2)

= Ak+1εk +O(|ε|2),

Ak+1 = DΘ ·Dφξ◦(id) ·DRΛ(ξ◦,u◦
k+1

)−1(Λ(ξ◦, u◦
k+1))

·Dξ◦Λ(ξ◦, u◦
k+1) ·DΘ−1,

as required.

5
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Now consider the global state error ek and the true system state ξk, the system output h(ξ) ∈ N ⊂ Rn can be written as

h(ξk) = h(φ(X̂k, ek)) = h(φX̂k
(Θ−1(εk))). (21)

Define the output residual ỹk ∈ Rn to be ỹk = h(ξk)− h(ξ̂k). Linearise ỹk at εk = 0,

ỹk = yk − ŷk,

= h(φX̂k
(Θ−1(0))) + Dh(ξ̂k) ·DφX̂k

(ξ◦)

·DΘ−1(εk) +O(|εk|2)− ŷk,

= Dh(ξ̂k) ·DφX̂k
(ξ◦) ·DΘ−1(εk) +O(|εk|2),

= Ckεk +O(|εk|2),

Ck = Dh(ξ̂k) ·DφX̂k
(ξ◦) ·DΘ−1. (22)

6 OBSERVER DESIGN

In this section, we use the concept of concentrated Gaussian distributions and pose the distributions with local coordinates.
Then we derive the EqF equations for predict, update and reset steps separately, which is based on the extended Kalman Filter
applied to the equivariant error.

6.1 Concentrated Gaussians on homogeneous spaces

We extend the concept of concentrated Gaussian distribution on Lie groups [24],[17] to homogeneous spaces and introduce the
extended concentrated Gaussian distribution, which is a generalization of the normal distribution on the Euclidean space.

Let ξ ∈ M be a random variable on the manifold. Fix an arbitrary origin on the manifold ξ◦ ∈ M . Fix h to be a horizontal
subspace of g. Define a local map φξ◦ · exph : h → M . Since h is horizontal, this map is always locally well defined and
injective. Now define a local coordinate chart Θh : M → h to be

Θh := (φξ◦ · exph)−1, (23)

on a neighborhood of ξ◦ ∈ M such that φξ◦ · exp is bijective. If the homogeneous space is reductive, then there is a natural
choice of h [25] which is the normal coordinate, however, the construction is always possible.

Given X ∈ G is an element on the symmetry group, define the following probability function:

p(ξ) = αe−
1
2 (Θh(φ(X−1,ξ))>Σ−1Θh(φ(X−1,ξ))), (24)

where α is a normalizing factor and Σ is a positive-definite matrix. Define ε as

ε = Θh(φ(X−1, ξ)) (25)

where the assumption is made that φ(X−1, ξ) remains in the domain of definition of the local coordinate chart. The concentrated
Gaussian distribution is obtained by assigning ε ∼ N(0,Σ) to a Gaussian distribution. We denote distribution induced on ξ via
(25) to be the concentrated Gaussian distribution and denote this by ξ ∼ Nφ(X, 0,Σ). By construction, the expected value of
ξ is E[ξ] = φ(X, ξ◦). Thus, for ξ ∼ Nφ(X, 0,Σ) one has ξ = φX(Θ−1

h (ε)), ε ∼ N(0,Σ) where X is called the reference and
ε is the local state error with mean 0 and covariance Σ.

We use the term extended concentrated Gaussian distribution to refer to the case where the local state error distribution has
non-zero mean. For µ ∈ Rm define ξ ∼ Nφ(X,µ,Σ) to be

ξ = φX(Θ−1
h (ε)). ε ∼ N(µ,Σ) (26)

One has

E[ξ] = φX(Θh(µ)). (27)

This extended notation allows us to explicitly model the update and reset step involving Bayesian fusion of new data and parallel
transport.

6.2 Prediction step

Consider a discrete-time system (2), assume there exists a state symmetry φ : G×M →M , an input symmetry ψ : G×V→ V
and an equivariant lift Λ : M ×V→ G. Let ξk ∈M denote the true system state whose trajectory is determined by the external
input uk ∈ V. It can be expressed as a concentrated Gaussian distribution ξk ∼ Nφ(X̂k, 0,Σk) on the homogeneous space.

6
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Lemma 6.1. Given a prior distribution ξk|k ∼ Nφ(X̂k|k, 0,Σk|k), the prediction of X̂k+1|k and Σk+1|k can be best approxi-
mated by

X̂k+1|k = X̂k|kΛ(φξ◦(X̂k|k), uk+1), X̂0 = id (28)

Σk+1|k = Ak+1Σk|kA
>
k+1 + P, Σ(0) = Σ0 (29)

where P ∈ S+(m) is a constant state gain matrix.

Proof. The log-likelihood function of ξk can be written as

L (ξk|k) =
1

2
‖Θh(φ(X̂−1, ξk|k))‖2Σk|k

=
1

2
‖εk|k‖2Σk|k

, (30)

where ‖·‖2Σ is the Mahalanobis norm and Θh is a local coordinate chart on M . Similarly, we can derive the log-likelihood of
ξk+1,

L (ξk+1|k) =
1

2
‖εk+1|k‖2Σk+1|k

. (31)

Using the linearisation of εk (17), one gets

L (ξk+1|k) =
1

2
‖Ak+1εk|k‖2Σk+1|k

. (32)

Since there is no new information added to the filter in this stage, the probability distribution should remain the same,

L (ξk+1|k) = L (F (ξk|k)) = L (ξk|k); (33)
1

2
‖Ak+1εk|k‖2Σk+1|k

=
1

2
‖εk|k‖2Σk|k

. (34)

Solving the Mahalanobis norm yields

Σk+1|k = Ak+1Σk|kA
>
k+1, (35)

as required.

6.3 Update step

The update step involves Bayesian fusion of the predicted state estimate ξk+1|k ∼ Nφ(X̂k+1|k, 0,Σk+1|k) with a measurement
yk+1 ∈ Rn associated with a generative noise model yk+1 ∼ N(h(ξk+1), Q) for Q ∈ S+(n) the measurement covariance.
We will solve this fusion problem in local coordinates centred at the predicted state estimate ξ̂k+1|k = φX̂k+1|k

(ξ◦). That is,
consider the predicted state distribution in local coordinates

Pr(εk+1|k) ∝ exp(−1

2
ε>k+1|kΣ−1

k+1|kεk+1|k), (36)

and the output likelihood l(εk+1|k|yk+1) ≡ Pr(yk+1|ξk+1|k) is given by

L (εk+1|k|yk+1) ∝ exp(−1

2
(yk+1 − ŷk+1)>Q−1(yk+1 − ŷk+1))

≈ exp(−1

2
ε>k+1|kC

>
k+1|kQ

−1Ck+1|kεk+1|k). (37)

Here Equation (22) is used to substitute for ỹk+1 = yk+1 − ŷk+1 and the second order error terms are ignored. The notation
Ck+1|k indicates that the linearisation is taken at the point ξ̂k+1|k.

The probability distribution for Pr(εk+1|k+1|εk+1|k, yk+1), for the fused estimate εk+1|k+1 in local coordinates, is the Gaussian
εk+1|k+1 ∼ N(µk+1,Σ

�
k+1|k+1) where the mean µk+1 and covariance Σ�k+1|k+1 are given by the standard update formula for

Gaussian fusion

Σ�k+1|k+1 = (Σ−1
k+1|k + C>k+1|kQ

−1Ck+1|k)−1, (38)

µk+1 = Σ�k+1|k+1C
>
k+1|kQ

−1ỹk+1. (39)

Since this information state lives in local coordinates centred at the predicted state ξ̂k+1|k then the updated information state
can be written as an extended concentrated Gaussian

ξk+1|k+1 ∼ Nφ(X̂k+1|k, µk+1,Σ
�
k+1|k+1),

using the notation introduced earlier. In particular, the update step computes the new non-zero mean µk+1 without changing
the reference point of the coordinates ξk+1|k. This leads naturally to posing the reset step as a coordinate transformation rather
than a part of the stochastic fusion process.
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6.4 Reset Step

In the previous subsection, the update step computed the new state estimate ξ̂k+1|k+1 in local coordinates with a non-zero
mean µk+1. However, the local coordinates are still centred at ξ̂k+1|k and the next update requires a state-estimate expressed in
coordinates centred at ξ̂k+1|k+1. The reset step computes X̂k+1|k+1 and Σk+1|k+1 such that

Nφ(X̂k+1|k, µk+1,Σ
�
k+1|k+1) ≈ Nφ(X̂k+1|k+1, 0,Σk+1|k+1)

where ξ̂k+1|k = φX̂k+1|k
(ξ◦) and ξ̂k+1|k+1 = φX̂k+1|k+1

(ξ◦). Finding X̂k+1|k+1 is relatively straightforward. Computing the
covariance Σk+1|k+1 is more challenging and is an active topic of research [23].

To compute X̂k+1|k+1 we use the mean µk+1 of the local state error to derive a correction term on the Lie algebra. Let
Dφξ◦(id)† denote a choice of right inverse of Dφξ◦(id); that is, Dφξ◦(id)Dφξ◦(id)† : Tξ◦M → Tξ◦M is the identity map. For
µk+1 ∈ Tξ◦M define

∆k+1 = Dφξ◦(id)†DΘ−1
h µk+1. (40)

The new group element is defined to be

X̂k+1|k+1 := exp(∆k+1)X̂k+1|k. (41)

By construction φξ◦(X̂k+1|k+1) = ξ̂k+1|k+1.

Left multiplication by the group element exp(∆k+1) can be interpreted as a left translation X̂k+1|k 7→ X̂k+1|k+1 =

Lexp(∆k+1)X̂k+1|k along the one-parameter subgroup exp(t∆k+1) for t ∈ [0, 1]. The Cartan-Schouten connections are
a collection of three invariant connections for which the one-parameter subgroups are geodesics [26]. The covariance
Σ�k+1|k+1 ∈ S+(m) can be thought of as a (2,0)-tensor and the inverse covariance, or information matrix, (Σ�k+1|k+1)−1 a
(0,2)-tensor. Interpreting the curve exp(t∆k+1) as a geodesic we propose to parallel transport the covariance tensor Σ�k+1|k+1

from the base point ξ̂k+1|k to the new base point ξ̂k+1|k+1 along the curve exp(t∆k+1). This approach provides a natural
geometric manner to reset the covariance although it requires the additional structure of an affine connection that we discuss at
the end of the section. We will use the Cartan-Schouten (0)-connection, the unique torsion-free invariant connection.

Let v ∈ g be a tangent vector at identity and ∆ ∈ g. The parallel transport Pexp(t∆)(v) for the Cartan-Schouten (0)-connection
is given by

Pγ∆(t)(v) = DLexp(t∆) Adexp(− t
2 ∆)(v). (42)

Let v(t) ∈ g represent the left trivialisation of V (t) ∈ Tγ∆(t)G; that is, v(t) := DLexp(−t∆)V (t). One has

v(t) = Adexp(− t
2 ∆)(v) = exp(− t

2
∆) v exp(

t

2
∆). (43)

Let Σ denote the parallel transport of Σ� over the curve exp(t∆). One has

(Σ�)−1(p1, p2) = Σ−1(Pexp(∆)(p1),Pexp(∆)(p2));

p>1 (Σ�)−1p2 = (Adexp(− 1
2 ∆)(p1))>Σ−1 Adexp(− 1

2 ∆)(p2);

p>1 (Σ�)−1p2 = p>1 Ad∨exp(− 1
2 ∆)

>
Σ−1 Ad∨exp(− 1

2 ∆)(p2), (44)

and hence
Σk+1|k+1 = Ad∨exp(− 1

2 ∆)(Σ
�
k+1|k+1)Ad∨exp(− 1

2 ∆)

>
.

This formula corresponds to those obtained recently in the literature [23].

A connection, or parallel transport is a geometric structure that is in addition to the differential geometric structure inherent
in the manifold structure of the Lie-group. However, the Cartan-Schouten connections are the only invariant connections for
which one-parameter Lie-subgroups (exponential curves) are geodesics. The (0)-connection or normal-connection is the only
torsion free Cartan-Schouten connection, although it does have curvature that is expressed in the formula for parallel transport.
We believe that the torsion free property is of key importance and that the curvature is a natural consequence of the non-linear
structure of the state-space.

6.5 Summary

Following the methedologies presented in this section, the Equivariant filter design for discrete-time system is

8
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Prediction:
X̂k+1|k = X̂k|kΛ(φξ◦(X̂k|k), uk+1), X̂(0) = id (45)

Σk+1|k = Ak+1Σk|kA
>
k+1 + P, Σ(0) = Σ0 (46)

Update:

Σ�k+1|k+1 = (Σ−1
k+1|k + C>k+1|kQ

−1Ck+1|k)−1, (47)

µk+1 = Σk+1|k+1C
>
k+1|kQ

−1ỹk+1 (48)

Reset:
∆k+1 = Dφξ◦(id)†DΘ−1

h µk+1, (49)

X̂k+1|k+1 = exp(∆k+1)X̂k+1|k, (50)

Σk+1|k+1 = Ad∨exp(− 1
2 ∆k+1) Σ�k+1|k+1Ad∨exp(− 1

2 ∆k+1)

>
. (51)

Note that we group the base point reset (50) within the reset step, rather than in the update step as would be normal in a statement
of the Extended Kalman Filter. This allows us to explicitly identify the updated observer state on the group separately from
the local coordinates. Noting that in a classical EKF the local coordinates are one-to-one with the manifold and this distinction
is unnecessary. Furthermore, in the classical EKF the underlying geometry used is flat (the local coordinates are treated as
Euclidean coordinates) and the covariance update (51) is the identity.

7 EXAMPLE: SECOND-ORDER KINEMATICS

In this section, we consider the example of linear second-order kinematics in R3 with separate bearing and range measurements.
Range and bearing measurements are common measurement modalities in modern robotics. These measurements could be used
to reconstruct the measurement of relative position directly, however, such reconstruction distorts the uncertainties in the model,
and is always better to use the raw measurements in filter design if possible.

7.1 System Definition

Second-order kinematics on R3 is given by
ṗ = v,

v̇ = a, (52)

where the system state is ξ = (p, v) ∈ R3 × R3, and a ∈ R3 is the external input. The measurement functions are given by

y1 := h1(p, v) =
p

|p|
∈ S2 (53)

y2 := h2(p, v) = |p| ∈ R+, (54)

where y1 and y2 are bearing and range measurements respectively. In this system, the state space is M := R3 ×R3 and output
spaces are N 1 := S2 ⊂ R3, N 2 := R+.

In this example, we extend the input space to V := R3×R3. An element in the input space can be thought of as two independent
inputs u = (ω, a) ∈ V, and in the implementation we will always use u = (0, a). Note that modelling ω ∈ R3 as an extra
input, even though it will be set to zero for all time, is critical for the equivariance of second order kinematic systems [27]. Let
t ∈ R be a fixed time interval. We derive the discrete system evolution function by integrating (52) with a piecewise constant
acceleration a = ak+1,

pk+1 = pk + t(vk + ωk+1) +
1

2
t2ak+1 (55)

vk+1 = vk + tak+1. (56)

Define the product Lie group G := SO(3)×MR(1)nR3, where MR is the group of positive reals under multiplication. The
identity element is (id3, 1, 0), and the inverse element is

(R, r, β)−1 = (R>,
1

r
,−1

r
R>β). (57)

The corresponding group multiplication is given by
(R1, r1, β1)(R2, r2, β2) = (R1R2, r1r2, β1 + r1R1β2). (58)

Define φ : G×M →M by

φ((R, r, β), (p, vp)) := (
1

r
R>p,

1

r
R>(v − β)). (59)

Clearly φ is a smooth, transitive right group action of G on M .

9
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7.2 Equivariant System

Given any (ω, a) ∈ V and (R, r, β) ∈ G, define ψ : G× V→ V by

ψ((R, r, β), (ω, a)) := (
1

r
R>(ω + β),

1

r
R>a). (60)

Define the function Λ : M × V→ G as

Λ((p, v), (ω, a)) = (RΛ, rΛ, βΛ). (61)

Let p′ = p+ t(v + ω) + 1
2 t

2a, then

RΛ = id3 + (
p′

|p′|
× p

|p|
)× +

1− p′

|p′|
> p
|p|

| p′|p′| ×
p
|p| |2

(
p′

|p′|
× p

|p|
)×

2

, (62)

rΛ =
|p|
|p′|

, (63)

βΛ = v − rΛRΛ(v + ta), (64)

where RΛ is the solution of RΛ
p′

|p′| = p
|p| .

7.3 Implementation

We simulate an oscillatory trajectory for second-order kinematics to verify the performance of the proposed filter. The state is
initialized with (p, v) = ((0, 0, 50), (0, 0, 0)) ∈ R3 × R3, with accelaration a = (0, cos(τ), 0). The trajectory is realized using
Euler integration at time step t = 10−4s, sampled at 100 Hz. The estimator has an acceleration sensor that reads ak ∈ R3 but
corrupted with piecewise constant zero-mean white Gaussian noise with variance 0.05m/s2 per axis. Additionally, the sensor
provides bearing and range measurements and is also corrupted with Gaussian noises µb ∼ N(0, 12) and µr ∼ N(0, 12) in
degrees and metres respectively. We implement the extended Kalman filter with linearised output, the continuous-time EqF
[10] and the discrete-time EqF. For the discrete-time EqF, we follow the design procedure presented in Section 6. The local
coordinate chart for the state is the normal coordinates on M derived from projecting exponentials from the Lie group to the
manifold through the group action. The gain matrices are chosen based on the true noise parameters. All filters are initialized
at (p, v) = ((0, 0, 50), (0, 0, 0)) with Gaussian noises µp ∼ N(0, 7.52) and µv ∼ N(0, 22) in meters and meters per second
respectively. The filters are running at 100 Hz.

To compare their performance, we plot the error in position and velocity, as well as the filter energy. The filter energy is
1
mε
>Σ−1ε where m is the dimension of the state. The expected value of filter energy should be 1, while smaller or larger

energy indicates the filter is either under-confident or over-confident about the estimation. The first comparison is between the
discrete-time EqF with and without reset covariance after the update, to demonstrate the effectiveness of the proposed method.
The second comparison is among the conventional EKF, continuous-time EqF and the proposed discrete-time EqF, to show the
advantage of the discrete-time filter in this example.

7.4 Simulation Results

Figure 1 shows the performance of the discrete-time EqF with (black, solid) and without (purple, dash-dot) the reset step. The
EqF with reset step clearly outperforms the same filter without the reset step. The improvement occurs during the transient
when the correction term in the filter is larger and the effect of parallel transport is more significant. Later in the plot (> 0.7s)
the filters have converged and the effect of the reset step is less noticeable (Fig. 2). The position error is less significant than
the velocity error although still appreciable. The likely reason for this lies in the fact that the position is directly observable
from range and bearing measurements, while the velocity estimation depends on correlation of error encoded in the covariance
estimate.

Figure 2 shows the performance of EKF (red, solid), discretized continuous-time EqF (blue, dash) and discrete-time EqF (black,
solid) over the same trajectory. The continuous-time and discrete-time EqFs (both with reset modification of the Riccati)
have very similar performance during the transient, while EKF (without reset modification) takes much longer to converge.
The discrete-time EqF has better asymptotic performance compared to the discretized continuous-time EqF, especially in the
velocity error. We hypothesise that this performance gain is due to the fact that the error incurred in a discrete state update
implemented as a symmetry transform is better adapted to the discrete equivariant filter equations than the error incurred by
the discretization of a continuous-time filter, even when the associated filter was based on equivariant design principles in
continuous time.
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Figure 1: Comparison of discrete-time EqF implementation with/without reset step in the transient stage. The black solid line
shows the discrete-time EqF without reset. The purple dashed line shows the discrete-time EqF with reset. The green horizontal
line in the third subplot is for filter energy = 1.

Figure 2: Comparison of three different filters for second order kinematics. The red solid line shows the Extended Kalman
filter with reconstructed position measurements. The blue dashed line shows the EqF with polar symmetry implemented in
continuous time. The black solid line shows the discrete-time EqF that we propose. The green horizontal line in the third
subplot is for filter energy = 1.
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8 CONCLUSIONS

This paper presents an equivariant filter design methodology for discrete-time systems on homogeneous spaces. The algorithm
contains an extra reset step which explicitly computes the parallel transport of covariance matrix using the invariant affine
connection. The example of second order kinematics system with range and bearing measurements is used to detail the imple-
mentation. The simulation demonstrates the convergence of discrete-time EqF as well as the improvement from the covariance
reset step. It is shown that the discrete system lift brings better asymptotic performance of the filter.
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