A security layer for JXTA core protocols

Joan Arnedo-Moreno'and Jordi Herrera-Joancomarti?
(1) Estudis d’Informatica, Multimedia i Telecomunicacions, Universitat Oberta de Catalunya, Rb. Poble nou 156, 08018 Barcelona
jarnedo@uoc.edu
(2) , Escola Tecnica Superior d’Enginyeria, Universitat Autonoma de Barcelona, Campus de Bellaterra
jherrera@deic.uab.cat

Abstract— JXTA defines a set of six core protocols specifically
suited for ad hoc, pervasive, multi-hop, peer-to-peer (P2P)
computing. These protocols allow peers to cooperate and form
autonomous peer groups. This paper presents a method that
provides security services to the core protocols: privacy, authen-
ticity, integrity and non-repudiation. The presented mechanisms
are fully distributed and based on a pure peer-to-peer model, not
requiring the arbitration of a trusted third party or a previously
established trust relationship between peers, which is one of the
main challenges under this kind of environments.

Keywords: peer-to-peer, security, peer group, JXTA, xmldsig,
xmlenc.

I. INTRODUCTION

In a peer-to-peer network, all involved parties share re-
sources and collaborate in order to provide basic services, such
as content, processing or messaging. Under this scenario, it is
also assumed [1] that all peers have equivalent capabilities,
and a central server with more processing power is no longer
necessary. JXTA [2] is a set of open core protocols that enable
the creation of such networks.

JXTA’s core protocols allow peers to cooperate and form
autonomous peer groups transparent to their location, as well
as providing the necessary services in order for any other
protocol to be used in JXTA applications and operate within
the network. Peers may use such protocols in order to advertise
and discover resources, join peer groups and dynamically route
messages across multiple network hops.

Since, ultimately, every JXTA application must rely on the
use of its core protocols in order to interact with other peers
within the network, it is very important to provide capable
methods to secure them in order to avoid possible attacks. The
current JXTA reference implementation addresses some of this
problems, but the provided methods are not fully satisfactory,
as they do not fully comply with the JXTA specification ideary
of XML data formatting and relies on the existence of a party
that must be trusted by all peer group members.

The standard security threats to be addressed under a P2P
environment can be divided into two different groups: passive
and active ones [3]. Passive attacks are those in which the
attacker just monitors activity and maintains an inert state
whereas in active attacks, communications are disrupted by
the deletion, modification or insertion of data.

The contribution of this paper is a modular method to
protect JXTA’s core protocols against both type of attacks in

This work is partially supported by the Spanish Ministry of Science and
Innovation and the FEDER funds under the grants TSI2007-65406-C03-03
E-AEGIS and CONSOLIDER CSD2007-00004 ARES.

a manner specifically suited to their idiosyncracies. Passive
attacks are avoided via data privacy whereas active attacks
are countered by providing authenticity, integrity and non-
repudiation. The presented method does not rely on external
parties, keeping the peer-to-peer model pure, and authenticity
is locally decidable (eliminating the possibility of collusion).
This is capital in an environment where messaging may be
continuous and other peer’s availability is not guaranteed.
This paper is organized as follows. Section II provides an
overview of JXTA core protocols and the current methods
for securing them. Section III describes the proposal for
improving the current methods, by following the JXTA ideary
of XML message formatting. Concluding the paper, section IV
summarizes the paper contributions and outlines further work.

II. AN OVERVIEW OF JXTA CORE PROTOCOL SECURITY

JXTA’s endpoint communication is structured in a clas-
sical layered approach, core protocols acting as a gateway
to networking operations under a peer-to-peer environment
(see Figure 1). This provides an abstraction layer to both
JXTA’s own services and custom made application dependant
ones (operating at the upper Services layer), enabling the
deployment of services in a transparent manner to the real
underlying transport methods or topology.

At the Peer layer, the higher level core protocols (PIP,
RVP, PBP and PDP) allow services to publish, locate and
exchange resources. The Endpoint layer manages routing and
addressing, via the ERP protocol, and specifies the format for
all query-response exchanges, using the PRP protocol. This
means that all core protocols’ queries sent across the network
are ultimately encapsulated into a PRP query. PRP queries
are then encapsulated as messages at the Messaging layer.
Finally, the message is sent across the network using any of
the wire transport protocols at the Wire Transport layer, such
as TCP, HTTP, TLS or multicast. The message created at the
Messaging layer is considered the application level data to be
sent by the wire transport protocol.

A message is essentially a set of name/value pairs, organized
as an ordered sequence, the most recently added element
appearing at the end of the message. As a message passes
down each layer, one or more named elements may be added
to the message. As a message passes back up the stack, each
layer will remove these elements. All core protocols are codify
messages as XML data, the message name being the root XML
element tag and its value the corresponding XML subtree.

It is not mandatory for JXTA implementations to deploy all
core services, but at least PDP and ERP must be supported in

Protocols
'4— Application specific
Peer '4—\ pip || rRvp |[Pep || POP]

Layers

‘ Services

‘ Endpoint '
\ Messaging .4— PRP ERP
| Wire Transport .4— [Tcpap | [HTTP | [TS | et

Fig. 1. JXTA protocol layers and protocols

order to provide addresses to peers and allow communication
between endpoints. The remaining protocols are optional,
but supporting them increases interoperability and provides
a wider degree of functionality. The current JXTA J2SE
implementation [4] supports all six of them.

In the current reference implementation, messaging has been
secured assumping that the Personal Security Environment
(PSE) acts as the group’s Membership Service. The Member-
ship Service is one of JXTA’s core services, providing group
membership and identity management within a peer group by
providing each group member with a credential, which may
be used to provide proof of group membership.

The PSE’s credentials are based on PKIX [5] certificate
chains. The group creator holds the root certificate, acting
as a certification authority. An identity is claimed by being
able to access the keystore entry which holds the private key
for that certificate chain. Since PSE is based on public key
cryptography, its credentials are chosen as a means to provide
asymmetric key management for messaging security services.

By using the PSE Membership Service, JXTA messages
may be secured at two different layers: at the messaging layer,
by using the CBJX [6] protocol, and at the wire transport
layer, via its own definition of TLS [7].

A. Messaging layer security

The messaging layer provides the capability to include
any type of digital signature elements into messages to be
sent across the network. However, current standard messaging
protocols never make use of this feature. CBJX (Crypto-Based
JXTA Transfer) is a JXTA-specific protocol which provides
lightweight secure message source verification by including
its own self-defined digital signature element into messages,
providing data integrity and authentication. This approach
provides protection against active threats.

Even though CBJX is specified as a wire transport protocol,
it can be truly considered to operate at the messaging layer (or,
more exactly, at a meta-messaging layer). The main reason is
that it lacks the capability to directly send messages between
endpoints, which is what ultimately defines a wire transport
protocol in JXTA. CBJX pre-processes messages in order to
generate a secure encapsulation, resulting in a new message
that is then relayed to an underlying wire transport protocol.
For that reason, we classify CBJX as message layer security.

In addition to the original message’s digital signature, an
information block, according to the definition shown in Listing
1, is also encapsulated with the secured message: a ChJxMes-
sagelnfo element, which contains the source peer credential
(a PSE certificate), both the source and destination addresses,
and the source peer ID.

This cryptographic information block is digitally signed as
well, generating two distinct signatures within the final CBJX
message. The certificate inside the cryptographic information
block is used to validate both signatures.

XML Listing 1 - CBJX crypto-information XML schema

<xs:complexType name="cbjx:CbJxMessageInfo">
<xXs:sequence>
<xs:element name="PeerCert" type="xs:base64binary"/>
<xs:element name="DestinationAddress" type="xs:string"/>
<xs:element name="SourceAddress" type="xs:string"/>
<xs:element name="SourceID" type="]jxta:JXTAID"/>
</xs:sequence>
</xs:complexType>

In order to generate both signatures, XML data is serialized
and processed as plain text by the signature algorithm. An
overview of message encapsulation is shown in Figure 2.
CBJX encapsulates signatures by using a single Signature
element containing a Base64-encoded PKCS#7 [8] binary
signature. Once the CBJX message is complete, it is sent just
like a standard message, via the wire transport layer.

On reception, the CBJX information block is unencapsu-
lated and both signatures are validated, acting in a transparent
manner as far as upper layer protocols is concerned by
providing the original message.

CBJX Message

‘ CBJXMessagelnfo ‘ Original Message

‘ Signature ‘ Signature

Fig. 2. CBJX secure encapsulation

Apart from digital signatures, CBJX provides an additional
lightweight authenticity method by using Crypto-Based
Identifiers (CBIDs [9]). This method provides authentic
messaging without the need of certificates issued by a TTP
(Trusted Third Party). Self-signed certificates are good enough.

B. Wire transport layer security

The JXTA definition of standard TLS provides private,
mutually authenticated, reliable streaming communications.
Thus, TLS provides protection against both passive and active
threats. As a wire transport protocol, it is responsible for
encoding message data and sending it across the network.

TLS provides connection security with two basic properties:
privacy and integrity. Privacy is achieved by using symmetric
cryptography for data encryption (e.g., DES, RC4, etc.) The

keys for this symmetric encryption are generated uniquely for
each connection and are based on a secret negotiated using
a handshake protocol. Integrity is obtained by means of a
message integrity check using a keyed MAC. Secure hash
functions are used for MAC computations. These properties
provide security against both active and passive attacks.

In the specific case of JXTA, messages are delivered se-
curely between endpoints even when multiple hops across
peers are necessary. Even though TLS is a binary protocol,
JXTA implements some of its data exchanges using XML
elements (which encompass binary content). Three element
types are defined in order to implement the protocol: TLS Con-
tent, which encapsulates transmitted secure data, Acknowl-
edgements, which acknowledge data reception, and Retries,
when a message is sent because of an apparent failure at
a previous transmission. The latter element will be always
present with a TLS Content element. All standard binary data
structures defined in TLS are included into the TLS Content
element.

IIT. AN INTEROPERABLE MODULAR SECURITY APPROACH

From the explanation in section II, the current security layer
in core protocol messaging has three main shortcomings which
could be improved:

o Lose of interoperability: Even though JXTA makes heavy
use of XML in its protocols, no XML standard is used
for signature generation at the messaging layer (namely,
in CBJX), which may become a hurdle if application
interoperability has to be maintained. Signatures are
generated by serializing XML as plain text, which is not
ideal for XML processing, as will be explained in section
III-B. Furthermore, under the current secure protocols,
endpoints must support and agree to use the provided
security layer in order to communicate. It is not possible
for a peer which chooses not to deploy the security layer
(for example, because of computational limitations) to
understand received messages.

o No privacy at the messaging layer: Currently, the only
way to achieve data privacy is using TLS. However, since
TLS is a wire transport protocol, it imposes a constraint
that cannot be ignored: no other transport protocol may
be used underneath. That means that it is not possible
to transparently secure neither other current JXTA wire
transport protocols such as message propagation via
multicast or HTTP proxying, nor any future ones (for
example, UDP or RTP).

o TTP-based trust model: The use of TLS forces peer
group management via the PSE Membership Service.
PSE provides an integrated secure environment in JXTA,
but for some applications it may become too restrictive by
constraining the peer group to use X509 certificates and a
TTP based trust model. This is not always desirable in a
dynamic and decentralized environment such as peer-to-
peer, specially when trying to maximize peer equality and
self-organization. Furthermore, the use of a TTP inherits
additional problems which increase system’s complexity
like, for instance, certificate chain management and revo-
cation.

In order to solve this issues, we move a step further from
the security proposal in [10] in order to deploy a security layer
at the Messaging layer, which is common to all of JXTA’s core
protocols. We define a data encryption and signature format
for message elements based on XML standards, making use
of the standard JXTA messaging signature capabilities at the
Messaging layer as explained in subsection II-A. Using this
method, the message format, as defined in the JXTA v2.0
protocols specification [11], is maintained.

This approach allows peers which do not support signature
to process messaging in a transparent way. As a result, each
peer may choose its own degree of security without being
constrained by other peer’s decision on that regard. Due to
JXTA’s layered protocol architecture, deploying security at the
Messaging layer ensures that this proposal may easily integrate
with existing applications, since this layer is completely trans-
parent to application data. This approach also allows different
secure protocols to coexist, both current ones (CBJX and TLS)
as well as future proposals, so applications may choose the one
that suits its specific needs.

We also take advantage of the same CBID format and
secure key distribution as proposed in [10] to guarantee public
key authenticity. It must be noted that advertisement security
is not overridden by this approach, both methods nicely
complement each other, since it may still be necessary to apply
persistent security to advertisements when finally delivered to
the Services layer and stored into the peer’s local cache.

A. Core protocol privacy

Core protocol privacy is achieved by encrypting the XML
message content. There are several approaches to achieve
selective encryption in XML documents [12], [13], [14].
For our proposal, we specifically use the xmlenc [14], since
in conjunction with its brother standard xmlidisg [15], both
provide a full security set for passive and active attacks against
XML data. Since all protocols in JXTA are XML-formatted,
it is a logical election. Additional advantages are its status as
an XML standard, its flexibility and its capability to guarantee
data privacy during transit or when stored in parties different
from the one which generated the document, which is not
supported in [12] and providing a reasonable result document
size, in contrast with [13].

Messages are selectively encrypted using a wrapped key
encryption scheme (such as the one defined in [16]). For
each message field to be encrypted, a symmetric key is
generated and used to encrypt the field. The symmetric key
is then encrypted (wrapped) using each recipient’s public key,
obtaining a set of encrypted keys, that can only be accessed
by only one of the recipients.

This scheme is applied at the message layer according to
the profile shown in Figure 3. Wrapped keys are included into
the encrypted message by encapsulating the original message
into an EncryptedMessage XML element and introducing an
additional XML element as a sibling, the KeyList element. For
each encrypted field, a set of wrapped keys is included in the
KeyList element. This relationship is represented by arrows in
the figure.

Under this scheme, it is not mandatory to provide an all
or-nothing approach, the sender may choose which message
fields will be encrypted and which will be left as plain text.

Encrypted Message

Plain Text Fields

Encrypted Field EF,
Encrypted Field EF,

Encrypted KeySet EKS,
Encrypted KeySet EKS

Fig. 3. Message encryption profile

Each wrapped key within a keyset is defined by an xmlenc
EncryptedKey element and contains all cryptographic informa-
tion necessary to decrypt such field. An EncryptedKey element
exists for each peer which may access the encrypted field

Encrypted fields within a message are defined by xmlenc
EncryptedData elements. Figure 4 shows how each Encrypted-
Data element is linked to its corresponding EncryptedKey
elements. Peers message security layer identifies which En-
cryptedKey fields may be decrypted with the local peer’s
private key by searching for its Peer ID in the Keylnfo field of
each contained EncryptedKey element. All CarriedKeyName
subelements within the same key set always point to the same
EncryptedData element.

Destination
Peer ID

EncryptedKey

EncryptionMethod .

KeylInfo

CipherData .

CarriedKeyName

EncryptedData

EncryptionMethod
Type = Element

KeyInfo

KeyName

CipherData '

EncryptedKey

Fig. 4. Xmlenc encryption profile

By using this XML profile and message schematics, it is
possible to accommodate selective entry encryption. Since the
final encrypted data is sent to wire transport protocols as a
standard JXTA message, encrypted fields become transparent
to its basic operation.

1) Encryption and decryption process: The process
of message encryption that generates the xmlenc profile
previously defined can be described as follows.

Encryption:

1) Peer A needs to send a core protocol message.
2) A new KeyList element is generated.

3) For each element in the message, peer A chooses the
subset of peers P;, for j = 1,---,m, which will be
able to access it.

4) Each element field F; is encrypted in the following
manner:

a) Both a random symmetric key k; and an identifier
id; are generated by A. A new KeySer element is
generated.

b) F; is encrypted according to xmlenc with k;. The
original field becomes an xmlenc EncryptedData
element.

c) For each peer P;, for j =1,--- ,m:

i) A retrieves PKj, the public key of P;.

ii) k; is wrapped (encrypted) using PKj, gen-
erating an xmlenc Encryptedkey element. Its
CarriedKeyName field of such element is set to
id;. Its Keylnfo field is set to P;’s Peer ID by
using a KeyName element as previously shown
in Figure 4.

iii) The EncryptedKey element is added to the
KeySet element.

d) Once all peers in P;, for j = 1,---,m, have
been processed, the KeySer element includes the
wrapped keys for all peers P;, for j =1,--- ,m.
That means, all peer which may access the field.

e) The newly generated KeySet element is appended
to the current KeyList element.

5) An encrypted message has been generated according to
the format previsouly defined. For each encrypted field
F;, a set of wrapped keys (a KeySer element) exists
within the KeyList element which may decrypt it.

6) The message is sent via the chosen wire transport
protocol.

A sample encrypted message after this process is shown
in Listing 2 (some ID’s and Base64 encoded data have been
shortened in order to improve readability). Specifically, this
message contains a PRP query. Only the original Query
element has been encrypted, and two recipients (with Peer
ID wurn:jxta:uuid-59...C03 and wurn:jxta:uuid-59...F03) may
properly decrypt it, as the existence of two EncryptedKey
elements demonstrates.

Decryption:

Whenever a peer B = P; for some j =1,--- ,m wants to
access to the resource:

1) Peer B’s Messaging layer receives an encrypted mes-

sage.

2) B locates the KeyList element.

3) B locates, within the KeyList element, the set of En-
cryptedKey elements, FK, which contain B’s Peer ID
in its Keylnfo field.

4) For each EncryptedKey, Enc;, in EK:

a) The encrypted field of the message, E'F;, to be
processed is located by matching its KeyName field
value with Enc;’s CarriedKeyName field value,
which must be equal.

b) B’s private key is used to decrypt the symmetric
key, k;, stored in the CipherData field of Enc; .

XML Listing 2 - Selectively encrypted message

<?xml version="1.0" encoding="UTF-8"?>
<xmlsecure:EncryptedMessage>
<jxta:ORes>
<ResolverQuery>
<HandlerName>urn: jxta:uuid-DEADBEEF...05</HandlerName>
<QueryID>0</QueryID>
<HC>0</HC>
<SrcPeerID>urn: jxta:uuid-59...503</SrcPeerID>
<xenc:EncryptedData xmlns:xenc="...xmlenc#"
Type="...xmlenc#Element">
<xenc:EncryptionMethod
Algorithm="...xmlenc#aesl28-cbc"/>
<ds:KeyInfo xmlns:ds="...xmldsig#">
<ds:KeyName>Message Key ID</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>Pr...It/4</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</ResolverQuery>
</jxta:ORes>
<KeyList>
<KeySet>
<xenc:EncryptedKey xmlns:xenc="...xmlenc#">
<xenc:EncryptionMethod Algorithm="...xmlenc#rsa-1_5">
<ds:KeyInfo xmlns:ds='...xmldsig#’>
<ds:KeyName>urn: jxta:uuid-59...C03</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CiphervValue>N9...9w==</xenc:CipherValue>
</xenc:CipherData>
<CarriedKeyName>Message Key ID</CarriedKeyName>
</xenc:EncryptedKey>
<xenc:EncryptedKey xmlns:xenc="...xmlenc#">
<xenc:EncryptionMethod Algorithm="...xmlenc#rsa-1_5">
<ds:KeyInfo xmlns:ds='...xmldsig#’>
<ds:KeyName>urn: jxta:uuid-59...F03</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>A3...7f==</xenc:CiphervValue>
</xenc:CipherData>
<CarriedKeyName>Message Key ID</CarriedKeyName>
</xenc:EncryptedKey>
</KeySet>
</KeyList>
</xmlsecure:EncryptedMessage>

c) The original EF; is recovered by decrypting it
using k;.
5) B obtains the original message where some elements
may still be encrypted. B has no access to such entries,
only to those he could satisfactorily decrypt.

B. Core protocol authenticity and integrity

Authenticity and data integrity (as well as non-repudiation)
are provided to core protocols by using XML signature (xmld-
sig) at the messaging layer. Since the process is very similar
to the method proposed in [10] for advertisement authenticity,
a general outline will be presented. However, it has been
specifically adapted for core protocol messaging.

Apart from keeping message readability, xmldsig offers
some capabilities which are important in this environment.

First of all, it maintains interoperability by taking into ac-
count XML canonicalization [17]. This is extremely important
when using XML, since documents which are syntactically
different may translate as semantically equal (for example,
changing order of sibling XML elements). Directly feeding
XML data to a signing algorithm (as is exactly the case for
CBJX) does not take this fact into consideration, since a single

different bit, however irrelevant to the XML semantics, will
invalidate a signature. This is not an improbable occurrence
in an heterogeneous network, where different peers may be
using different XML parsers (for example, simply because
they are running different operating systems). Only for that
reason, xmldsig is capital when signing XML data.

Finally, xmldsig is an open specification which allows the
definition and inclusion of new types of credentials in order
to transport the public keys which validate the signature.
This advantage allows to support a wide variety of standard
credentials, instead of being constrained to only PKIX certifi-
cates, and it is ready to support any new type of credential
which JXTA or any specific application decides to use, by
just assigning a new URI type to the xmldsig key transport
elements (the Keylnfo element).

In this proposal, a detached signature is used within the
message body, as shown in Figure 5. The XML signature
is included as a message signature, just as is the case in
CBJX, but instead of a self-defined single Signature element,
a full xmldsig signature is included. In contrast with CBJX, no
additional encapsulation is needed, since the XML signature
contains all needed information related to the security layer.
As a result, messages generated using this method may be
processed even by peers which do not support signatures
(they are able to decode the original message and ignore the
signature).

XML Signed Message

ds:Signature
SignedInfo

Reference

SignatureValue '
KeylInfo

Fig. 5. Xmlsig detached signature profile

As a detached signature, in this scenario it is enough to
use a default URI in the Reference element in order for the
Messaging layer to locate the corresponding signed data (the
original message). The KeyName element is used to retrieve
the signer’s public key.

1) Signature and validation process: The signature process
is straightforward, since the Messaging layer at the signing
peer holds all the required information: the peer’s private key
and the message to be signed.

In order to validate a signed message, the following steps
are necessary:

1) Retrieve the source peer’s public key.

2) Apply the SHA-1 hash algorithm to the public key to
generate a JXTA CBID.

3) Compare the resulting CBID with the source peer CBID.
If equal, key authenticity is proved.

4) Validate XML signature using the public key retrieved
in Step 1. If valid, integrity, authenticity and non-
repudiation are proved.

The reader can see [10] for the details about how the key
is retrieved and the CBID is generated in steps 1 and 2.

A sample message signature is shown in Listing 3 (some
ID’s and Base64 encoded data have been shortened). Notice
that, since it is a detached signature, it is not necessary for the
message to be present. The fact that it is a detached signature
can be noticed since an implicit URI is used at the Reference
element.

XML Listing 3 - Signed message (detached signature)

<ds:Signature
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm=
"http://www.w3.0rg/TR/2001/REC-xml1-c14n-20010315">
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm=
"http://www.w3.0rg/2000/09/xmldsig#rsa-shal">
</ds:SignatureMethod>
<ds:Reference>
<ds:Transforms>
<ds:Transform Algorithm=
"http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm=
"http://www.w3.0rg/2000/09/xmldsig#shal">
</ds:DigestMethod>
<ds:DigestValue>KoOR31wMpcJl7VAmtaUf7nS/KU4=
</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue> nloCRUg4WBOH+DcEAULKGYhqvsfdRCy4R. ..
...QYH8Czizo3P AkvLI1UGoMekOHRL2kI=
</ds:SignatureValue>
<ds:KeyInfo>
<KeyName>urn: jxta:uuid-596162...BCF0646C103</KeyName>
</ds:KeyInfo>
</ds:Signature>

Both xmlenc and xmldsig validation nicely integrate be-
cause XML signature processing automatically detects that
some signed data is encrypted, so it must be previously
decrypted before signature validation. This is achieved by
including an xmlenc Transform element within the signature
Reference element.

IV. CONCLUSIONS AND FURTHER WORK

A new proposal for core protocol messaging security in
JXTA has been presented. Its main contributions are threefold.

First of all, the proposed method provides two flavors of
security services in order to thwart network threats: on one
side, data privacy, and on the other side, authenticity, integrity
and non-repudiation. As a result, passive and active threats are
taken into account (in contrast to CBJX, which only subverts
active attacks). They are specified in a modular way and
without the need of a TTP, which is important in peer-to-peer,
as well as not being constrained to a specific Membership

Service o credential type (PKIX certificates). Services and
applications may choose which flavor of security is most
convenient and apply only the necessary one (or both).

In addition, by deploying security at the Messaging layer,
it is now possible to provide data privacy using any wire
transport protocol. In this manner, applications are not bound
to a specific one, and can choose which to use according to
their needs across the full range. As a result, it is now possible
to provide privacy to JXTA’s message propagation transport
protocols.

Finally, our proposal keeps a high degree of interoper-
ability by using the standard messaging signature element
inclusion capability, but via a xmldsig and xmlenc standards.
By applying security at the messaging layer, it is possible
communication between peers which choose to apply security
and those who do not. By using xmldsig, it is ensured that
signatures will be valid in heterogeneous networks, something
that current approaches may not guarantee. This is extremely
important in a peer-to-peer environment.

At this stage of research, further work goes toward experi-
mentally evaluating the approach, focusing in the study of its
impact on peer performance compared to current approaches
(both CBJX and TLS).

REFERENCES

[1] Andrew Oram, Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[2] Sun Microsystems, “Project JXTA”, 2001, http://www. jxta.org.

[3] Brookshier D. Govoni D., Soto J.C. and Krishnan N., “Jxta and
security”, JXTA: Java P2P Programming, pp. 251-282, 2002.

[4] “Jxta 2.5 rc1”, June 2007, http://download. java.net/jxta/
build.

[5] CCITT,
1988.

[6] D. Bailly, “Cbjx: Crypto-based jxta (an internship report)”, pp. 108-109,
July 2002.

[7]1 T. Dierks and C. Allen, “Ietf rfc 2246: The tls protocol version 1.0”,
1999, http://www.ietf.org/rfc/rfc2246.txt

[8] Kaliski B., “Pkcs#7: Cryptographic message syntax version 1.5”, 1998,
ttp://www.ietf.org/rfc/rfc2315.txt.

[9] Montenegro G. and Castelluccia C., “Crypto-based identifiers (cbids):

Concepts and applications”, ACM Trans. Inf. Syst. Secur., vol. 7, no. 1,

pp. 97-127, 2004.

Joan Arnedo-Moreno and Jordi Herrera-Joancomarti, “Persistent inter-

operable security for jxta”, in Proceedings of the Second International

Workshop on P2P, Parallel, Grid and Internet Computing (3PGIC) 2008.

2008, pp. 354-359, IEEEPress.

Sun Microsystems Inc., “Jxta v2.0 protocols specification”,

2007, https://jxta-spec.dev. java.net/nonav/

JXTAProtocols.html.

Kudo M. Hada S., “Xml access control language: Provisional autho-

rization for xml documents”, 2002, http://www.research. ibm.

com/trl/projects/xml/xss4j/docs/xacl-spec.html.

Geuer-Pollmann C., “Xml pool encryption”, XMLSEC '02: Proceedings

of the 2002 ACM workshop on XML security, 2002.

W3C, “Xml encryption syntax and processing”, 2002, http://www.

w3.org/TR/xmlenc-core/.

W3C, “Xml-signature syntax and processing”, 2002.

J. Staddon B. Kaliski, “Pkecsl: Rsa cryptography specifications. version

2.0”, 1998.

J. Boyer, “Canonical xml. version 1.0”, 2001,

org/TR/xml-cl4n.

“The directory authentication framework. recommendation”,

(10]

[11]

[12]

[13]
[14]

[15]
[16]

[17] http://www.w3.

