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Abstract—In a Fog Radio Access Network (Fog-RAN), edge
caching is combined with cloud-aided transmission in order to
compensate for the limited hit probability of the caches at the
base stations (BSs). Unlike the typical wired scenarios studied
in the networking literature in which entire files are typically
cached, recent research has suggested that fractional caching
at the BSs of a wireless system can be beneficial. This paper
investigates the benefits of fractional caching in a scenario with
a cloud processor connected via a wireless fronthaul link to a BS,
which serves a number of mobile users on a wireless downlink
channel using orthogonal spectral resources. The fronthaul and
downlink channels occupy orthogonal frequency bands. The end-
to-end delivery latency for given requests of the users depends on
the HARQ processes run on the two links to counteract fading-
induced outages. An analytical framework based on theory of
Markov chains with rewards is provided that enables the opti-
mization of fractional edge caching at the BSs. Numerical results
demonstrate meaningful advantages for fractional caching due
to the interplay between caching and HARQ transmission. The
gains are observed in the typical case in which the performance is
limited by the wireless downlink channel and the file popularity
distribution is not too skewed.
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I. INTRODUCTION

In recent years, the placement of caches in communication
networks has progressively moved from the the Internet-
located data centers of Content Delivery Networks to the
core or access network of Internet Service Providers (as in
Netflix Open Connect). The logical end point of this trend is
edge caching, or femto-caching, that is, the storage of popular
content directly at the Base Stations (BSs) [1]. While initial
work in the networking literature on the subject provided
discouraging results due to low hit rates at the BSs, more
recent research has argued that the rapid decrease of the cost of
storage makes edge caching a potentially desirable technology
[1].

The vast literature on the topic of cache management in
wired content delivery networks by and large assumes the
indivisibility of each content in the library and focuses on the
design of online content replacement strategies under dynamic
models for the content requests, see, e.g., [2]. Furthermore,
initial works on femto-caching such as [1] are also based
on the assumption of indivisible contents, as well as on a
simplified modeling of the wireless channels in terms of
coverage areas.

In more recent research, starting with [3], the interplay
of interference management and edge caching was studied
by accounting for the superposition and broadcast properties

Fig. 1. System model with three MUs.

of wireless transmission. This line of work, including [4]-
[6] among others, concentrates on the high-signal to noise
ratio (SNR) regime. A main conclusion from these papers is
that fractional caching at the BSs of a wireless system can
be beneficial in terms of number of achievable degrees of
freedom. The key reason for the potential gain of fractional
caching is the enhanced flexibility afforded by fractional
caching in enabling coordinated transmission at distributed
BSs.

Despite the improvements in storage technologies, it is still
expected that the capacity of caches at the BSs will be able to
accommodate only a small, though possibly not negligible,
fraction of the contents that may be requested by mobile
users (MUs) (see, e.g., [7] [8]). Thus, the uncached requested
contents will have to be fetched from a content provider
via fronthaul or backhaul links so as to be available at the
BSs for delivery. Based on this observation, references [4],
[9]-[11], studied a more general set-up, which includes not
only edge caching but also a cloud processor with access
to the content provider. In this class of systems referred
to as Fog Radio Access Networks (Fog-RANs), the cloud
processor is connected to the BSs via fronthaul links that can
be used to deliver uncached information. References [4] [9]
[11] demonstrated the advantages of fractional caching in this
scenario and the dependence of the optimal caching strategy
on the fronthaul capacity.

This paper investigates the benefits of fractional caching
in a simple scenario with a cloud processor connected via
a wireless fronthaul link to a BS, which serves a number of
mobile users on a wireless downlink channel using orthogonal
spectral resources, as seen in Figure 1. Unlike the prior works
described above, here we model the impact of Hybrid Auto-
matic Repeat reQuest (HARQ) processes run on the two links
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to counteract fading-induced outages. The driving question of
this work is: Can fractional caching be advantageous even in
the absence of BS coordination? We answer this question in
the positive, demonstrating the interplay between edge caching
and HARQ. This is done by deriving an analytical framework
based on theory of Markov chains with rewards that enables
the minimization of the end-to-end latency over fractional
edge caching. It is noted that the effect of retransmissions
on caching design was also considered in [12]. Therein, an
MU is served by different BSs, each caching entire files, as it
roams the cells. If the requested file is not cached at the BSs
currently serving MU, or if it is transmitted with an error, the
MU will require a retransmission at a later time when it will
possibly be served by a different set of BSs. We emphasize
that [12] considers neither fractional file caching nor fronthaul
transmission.

The paper is organized as follows. In Section II we present
the system model. Section III provides details of the analysis
and optimization. Numerical insights can be found in Section
IV, and the paper is concluded in Section V.

II. SYSTEM MODEL

We consider a downlink transmission model consisting of a
cloud processor, a BS, and a number of MUs, as illustrated in
Figure 1. The cloud is connected to the BS via a wireless fron-
thaul link, while the BS communicates with the MUs over a
wireless downlink channel using orthogonal spectral resources.
The operation of a system is divided into a placement, or
caching, phase and a delivery phase, as in most related papers,
e.g., [3] [4] [9] [13].

We assume that there are F popular files and that each
file can be split into N packets, each to be transmitted in a
separate physical layer frame. All files are available in the
cloud. During the placement, or caching, phase, Nf packets
of any popular file f are stored in the BS’s cache, where
Nf ∈ {0, 1, .., N} and f ∈ {1, 2, .., F}. The F parameters
Nf will be the subject to optimization in Section III under a
cache capacity constraint

∑F
f=1Nf ≤ C, where C is the BS’s

cache capacity in numbers of packets.
In the delivery phase, the BS serves one MU at a time. Each

MU requests a file f with probability uf , with
∑F
f=1 uf = 1.

Requests are independent and the probability uf follows the
Zipf distribution (e.g., [14]):

uf = cf−γ , f ∈ {1, 2, .., F}, (1)

where γ ≥ 0 is a given popularity exponent and c > 0 is
the normalizing constant. Notice that γ = 0 yields a uniform
popularity distribution, while with larger γ the distribution
becomes more skewed, with files f = 1, .., F, sorted by
descending popularity.

The fronthaul and downlink wireless links use separate fre-
quency bands of the same size and are frame synchronous, so
that each packet transmission slot, or frame, can accommodate
two simultaneous transmissions, one on each link. The two
links are modeled as block-fading Rayleigh channel gains,
with independent zero-mean unit-power complex Gaussian

channel gains, which are constant during each transmission
slot and change independently with each (re)transmission.
The average signal-to-noise ratios (SNR) on the two links
are denoted as SNR1 and SNR2. The packet transmission
rate in bits per second per hertz (bit/s/Hz) is denoted as r.
We consider HARQ Type I protocol, whereby erroneously
received packets are discarded at the destination. All signaling
messages, such as ACK and NACK messages, are assumed to
be significantly shorter than the user data packets and to be
transmitted with perfect reliability.

The fraction of users at a given distance d from the BS is
evaluated by assuming a uniform MU’s placement distribution
within a circular cell of radius R. This fraction is proportional
to distance d and reads

v(d) =
2d

R2
, 0 ≤ d ≤ R. (2)

We note that any other distribution could be accommodated
in the analysis and that further details will be provided in
Section III-B. The average downlink signal to noise ratio
SNR2 follows the path-loss model

SNR2(d) =
K

dµ
, (3)

where µ is the propagation-loss exponent, and K is a constant
that depends on the transmission power of the BS and that sets
the signal-to-noise ratio SNR2 at d = 1 m.

As the performance metric, we use end-to-end average
delay, i.e., the average number of transmission slots required
to deliver all N packets of a requested file to all the MUs.

III. OPTIMAL CACHING POLICY

In this section, we first analyze the impact of the number
Nf of cached packets on the delay for a single MU requesting
file f in Section III-A. Then, in Section III-B, we incorporate
multiple MUs and tackle the problem of optimizing the cache
allocation to minimize the average delivery latency.

A. Delay Analysis For a Given File

Here, we evaluate the transmission delay as a function of
the number Nf of cached packets for a given requested file f .
The probability of successful transmission, i.e., the probability
that a retransmission is not required, is the probability that the
channel capacity can accommodate a transmission of rate r.
This can be found to be (e.g., [15]):

pl = e
− 2r−1

2SNRl , l ∈ {1, 2} (4)

where indices l = 1 and l = 2 identify the probability of suc-
cessful transmission on fronthaul and downlink, respectively.

In order to evaluate the end-to-end average delay, we use a
Markov chain analysis. Towards this goal, we define the state
of the Markov chain as the pair (i, j), where i = 0, 1, .., N, is
the number of packets at the BS that are yet to be delivered to
the MU, and j = 0, 1, .., N is the number of packets already
delivered to the MU. Note that a state (i, j) is admissible only
if the inequalities Nf ≤ i + j ≤ N are satisfied. The initial
state is (Nf , 0), while the absorbing, or sink, state is (0, N).



Fig. 2. Illustration of the outgoing state transitions for a non-sink state (i, j)
for the Markov chain analyzed in Section III-A.

Transitions from a state (i, j) 6= (0, N) are shown in Figure
2. The transition probabilities follow from the description of
the system model and can be derived as

pa =


1− p2, if i+ j = N

1− p1, if i = 0

(1− p1) (1− p2) , otherwise
(5a)

pb =


p2, if i+ j = N

0, if i = 0

(1− p1) p2, otherwise
(5b)

pc =


0, if i+ j = N

p1, if i = 0

p1 (1− p2) , otherwise
(5c)

and pd =

{
0, if i+ j = N or i = 0

p1p2, otherwise.
(5d)

Notice that the conditions i + j = N denotes the event that
there is no transmission on the fronthaul since the BS has
received all N −Nf packets from the cloud, while the event
i = 0 indicates that there is no transmission on the downlink
given that the MU has received all packets currently available
at BS.

To compute the average end-to-end delay, i.e., the average
number of transmission slots needed for the complete delivery
of N packets to the MU, we apply the theory of Markov chains
with rewards [16, Chapter 4]. Denote the average number of
transmission slots, or steps of the Markov chain, required to
reach the sink state from a state (i, j) as νi,j . These can be
obtained from Figure 2 and (5) as:

νi,j =



0, for (i = 0, j = N) (sink)
1 + (1− p2)νi,j + p2νi−1,j+1, for i+ j = N

1 + (1− p1)νi,j + p1νi,j+1, for i = 0

1 + (1− p1)(1− p2)νi,j + (1− p1)p2νi−1,j+1

+p1 (1− p2) νi+1,j + p1p2νi,j+1, otherwise.
(6)

For each of the four cases in (6), the parameter νi,j can be
expressed explicitly, yielding:

νi,j =


0, for (i = 0, j = N) (sink)
1+p2νi−1,j+1

p2
, for i+ j = N

1+p1νi+1,j

p1
, for i = 0

1+(1−p1)p2νi−1,j+1+p1(1−p2)νi+1,j+p1p2νi,j+1

1−(1−p1)(1−p2) ,otherwise.
(7)

This set can be easily solved recursively, starting from the
sink state (0, N) and moving backwards towards the initial
state (Nf , 0).

The average end-to-end delay is then equal to the average
number of steps required to reach the sink from the initial
state (Nf , 0), i.e.,

TNf
(SNR2) = νNf ,0. (8)

In the notation adopted in (8), we emphasized that the derived
delay depends on the number Nf of cached packets for the
requested file f and on the average signal-to-noise ratio SNR2

of the MU.

B. Caching Optimization

In this section, we use the result (8) to tackle the optimiza-
tion of the cache allocation variables Nf , f ∈ {1, 2, .., F}.
We discretize the BS-MU distances to a set of k distances
di = i/k · R, i = 1, .., k. Assuming a random and uniform
placement of MUs in a circular cell, the fraction of MUs at
distance di is given by

vi =
2i

k(1 + k)
, i = 1, .., k. (9)

The average end-to-end delay is obtained by averaging (8)
with respect to the MU distances from the BS, and over the
files popularity distribution, yielding:

T =

k∑
i=1

vi

F∑
f=1

ufTNf
(SNR2(di)) . (10)

We are interested in minimizing the average delay T in
(10) over the caching policy, i.e., over the variables Nf ,
f ∈ {1, 2, .., F}. For this purpose, let us introduce the binary
indicator optimization variables qfn for each file f , where
n ∈ {0, 1, ..., N}:

qfn =

{
1, if n = Nf

0, n ∈ {0, 1, .., N} \ {Nf}
(11)

With this definition, the number Nf of cached packets and the
delay TNf

can be expressed as Nf =
∑
N
n=0nqfn and TNf

=



∑
N
n=0qfnTn, respectively, for f ∈ {1, 2, .., F}. Furthermore,

the optimization can be formulated as:

min
k∑
i=1

F∑
f=1

N∑
n=0

viufqfnTn (SNR2(di)) (12a)

s.t. qfn ∈ {0, 1} (12b)
N∑
n=0

qfn ≤ 1, f ∈ {1, .., F} (12c)

F∑
f=1

N∑
n=0

nqfn ≤ C. (12d)

The inequalities (12b)-(12c) impose that, for a particular file f,
exactly one of the indicators qfn, n ∈ {0, 1, .., N}, equals to
one, while the others must be zero (recall (11)). The inequality
(12d) enforces the cache capacity constraint. The problem
(12) is a linear integer (binary) optimization problem, a class
of optimization problems which can be solved using readily
available fast algorithms [17].

IV. NUMERICAL RESULTS

In this section, we provide insights into the interplay be-
tween edge caching and HARQ retransmissions via numerical
results. Throughout, we set the file size to N = 20 packets,
and packet transmission rate to r = 2 bit/s/Hz.

Fig. 3. End-to-end average delay for a single user as a function of the number
Nf of cached packets for the requested file f , versus the fronthaul SNR SNR1

(SNR2 = 10 dB, r = 2 bit/s/Hz, N = 20 packets (file size)).

We start by investigating the impact of the number of cached
packets on the average delay for a given file request, as
detailed in Section III-A. Figure 3 shows the delay TNf

in
slots (packet transmissions) as a function of the number of
cached packets Nf for different values of the fronthaul SNR
SNR1 with SNR2 = 10 dB. As a first remark, the average
delay cannot drop below approximately 23 slots, which is the
minimum dictated by the downlink retransmissions. It can also
be observed that the larger the fronthaul SNR SNR1 is, the

smaller is the cache capacity, measured here by Nf , necessary
to reach the minimum average delay. Namely, when SNR1 is
large, the uncached packets can be fetched from the cloud
on the fronthaul during downlink transmission. This shows
that fractional caching, as opposed to the full caching of files,
typically assumed in the networking literature (see, e.g., [6]),
can be implemented without loss of optimality in the presence
of HARQ. A similar observation was made in [18].

Fig. 4. End-to-end average delay for a single user as a function of the number
Nf of cached packets for the requested file f , versus the downlink SNR
SNR2 (SNR1 = 0 dB, r = 2 bit/s/Hz, N = 20 packets (file size)).

In Figure 4, we study the effect of the downlink SNR SNR2

on the end-to-end average delay by showing the delay TNf
as a

function of the number of cached packets Nf , with SNR1 = 0
dB. In order to obtain the minimum delay for a given value
of SNR2, a larger number of cached packets is required for
larger values of SNR2 so as to compensate for the lower
fronthaul SNR. Another observation is that, for a small number
of cached packets Nf , the delay decreases linearly with Nf
and does not decrease significantly with the increase of SNR2,
as it is dominated by the quality of the fronthaul link.

We now turn to the end-to-end average delay under the
optimum caching policy discussed in Section III-B, while
accounting for the random placement of users in the cell. In
Figure 5, we show the minimum average delay as a function
of the Zipf exponent γ for different values of the fronthaul
SNR SNR1, with F = 5 files and a cache capacity equal to
C = 60 packets (i.e., three files). Additionally, the cell range
is taken as R = 100 m, with the user distance discretized to
k = 1000 values, and we set K = 40 dB (recall that K is
the value of SNR2 at distance d = 1 m), and propagation
factor µ = 2 (this yields 11.7 dB for the average SNR2).
Figure 5 also compares the delay under the optimum caching
policy derived in Section III-B whereby file fractions can be
cached, with the more conventional set-up where only whole
files can be cached. As expected, the former performs at least
as well as the latter. More interestingly, the performance of



Fig. 5. End-to-end average delay under optimum caching policy, as a function
of the Zipf exponent γ, versus the fronthaul SNR SNR1 (r = 2 bit/s/Hz,
N = 20 packets (file size), C = 60 packets (cache capacity), F = 5 files,
R = 100 m, K = 40 dB, µ = 2).

the two policies is identical for larger values of γ, i.e., for a
skewed Zipf distribution. In this regime, the popularity of files
is concentrated on the more popular files and it is optimal to
cache the complete most popular files. A general conclusion
here is that the design degree of freedom to cache fractions
of files is beneficial in presence of a more uniform popularity
distribution (i.e., a small γ).

Fig. 6. Optimum caching policy as a function of the Zipf exponent γ
(SNR1 = 0 dB, r = 2 bit/s/Hz, N = 20 packets (file size), C = 60
packets (cache capacity), F = 5 files, R = 100 m, K = 40 dB, µ = 2).

This point is corroborated in Figure 6, which presents the
optimum caching policies for different values of the Zipf
exponent γ, when SNR1 = 0 dB, and for the remaining
parameters as in Figure 5. The optimum caching policy is
to cache equal fractions of each file when the file popularity
distribution is uniform (γ = 0), while with the increase of γ,

the caching policy starts to resemble the conventional one of
caching the whole files.

V. CONCLUSIONS

The main conclusion of this work is that caching frac-
tions of files at a BS can significantly improve over the
standard approach of caching entire files when the perfor-
mance is limited by the wireless downlink channel and the
file popularity distribution is not too skewed. This is due
to the interplay between fractional caching and HARQ: as
the BS performs retransmissions on the downlink channel to
ensure reliable communication, the fronthaul link can deliver
uncached portions of a file. Interesting open aspects include
the investigation of the interaction between the gains identified
here and the benefits due to cooperation in the presence of
multiple BSs studied in [4].
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