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Abstract—Content caching at the edge nodes is a promising
technique to reduce the data traffic in next-generation wireless
networks. Inspired by the success of Deep Reinforcement Learn-
ing (DRL) in solving complicated control problems, this work
presents a DRL-based framework with Wolpertinger architecture
for content caching at the base station. The proposed framework
is aimed at maximizing the long-term cache hit rate, and it
requires no knowledge of the content popularity distribution. To
evaluate the proposed framework, we compare the performance
with other caching algorithms, including Least Recently Used
(LRU), Least Frequently Used (LFU), and First-In First-Out
(FIFO) caching strategies. Meanwhile, since the Wolpertinger
architecture can effectively limit the action space size, we also
compare the performance with Deep Q-Network to identify the
impact of dropping a portion of the actions. Our results show
that the proposed framework can achieve improved short-term
cache hit rate and improved and stable long-term cache hit rate in
comparison with LRU, LFU, and FIFO schemes. Additionally, the
performance is shown to be competitive in comparison to Deep
Q-learning, while the proposed framework can provide significant
savings in runtime.

Index Terms—Deep reinforcement learning, content caching,
Wolpertinger architecture.

I. INTRODUCTION

Recent years have witnessed rapid developments in rich

media-enabled applications on mobile devices, providing users

easier access to high-quality multimedia contents. With this,

users increasingly demand more multimedia content, which

usually has larger data size and requires more resources for

transmission. As a consequence, the contents that need to be

streamed in real-time have grown rapidly in terms of size and

volume, which has led to the congested data traffic at content

servers and degradation in user experience.

Content caching is a promising technique that enables

data offloading and alleviates the data traffic congestion. In

particular, this technique is aimed at pre-caching the contents

at the end users or the base stations from the content servers.

In this way, the time and resources needed to request and

transport contents from upper level content servers or original

content servers can be effectively saved, and data traffic can

be reduced.

However, with content caching arises the policy control

problem, in which we have to explore and decide which

contents to store in caches. Inspired by the success of Deep

Reinforcement Learning (DRL) in solving complicated control

problems, we in this paper design a DRL agent for content

caching decisions at an edge node, e.g., a base station. End-

users keep requesting content from the base station and these

requests are the input of the system. We suppose there is a

queue of requests to be served. The base station has a fixed

storage capacity C, which is the maximum number of contents

that can be cached at this base station.

The main contributions of this paper are summarized below:

• For the first time, we present a deep reinforcement learn-

ing framework (that utilizes Wolpertinger architecture)

for content caching problem. We define the state and

action spaces and the reward function for the DRL agent,

and employ this agent to make proper cache replacement

decisions to maximize the cache hit rate.

• We analyze the performance of this DRL agent in terms

of the cache hit rate. And we compare the performance

with other caching algorithms, including Least Recently

Used (LRU), Least Frequently Used (LFU), and First-

In First-Out (FIFO) caching strategies. The results show

that the DRL agent is able to achieve improved short-term

cache hit rate and improved and stable long-term cache

hit rate.

• We further confirm the effectiveness of the DRL agent

through comparisons with deep Q-network. The results

show that the DRL agent is able to achieve competitive

cache hit rates while having significant advantages in

runtime.

II. RELATED WORK

Content caching has attracted much interest recently. For

instance, the authors in [1] analyzed proactive content caching

from the aspect of big data analytics and demonstrated that

with limited cache size, proactive caching can provide 100%
user satisfaction while offloading 98% of the backhaul traffic.

In [2], three learning-based content replacement algorithms

were studied with each leading to different exploitation-

exploration trade-offs. The study in [3] proposed an age-based

threshold policy which caches all contents that have been re-

quested more than a threshold. Furthermore, popularity-based

content caching policies named StreamCache and PopCaching

were studied in [4] and [5], respectively. More recently,

increasing attention has been cast on machine learning based

methods. In [6], content popularity is estimated using the

multi-armed bandit algorithm. And the authors in [7] proposed

an extreme-learning machine framework for content popularity

prediction.

As seen in previous studies, content popularity distribution

is always the key to solve the content caching problem.

Considering the large scale of contents and the changing

popularities, we note that deep reinforcement learning is a
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particularly attractive strategy to tackle this problem. In [8],

[9] and [10], reinforcement learning methods are addressed.

For instance, the proposed reinforcement learning agent in [8]

is a typical multi-step return actor-critic architecture. The deep

deterministic policy gradient proposed in [9] describes how

the network is to be updated. And the Wolpertinger policy

proposed in [10] provides a solution for large discrete action

spaces.

III. SYSTEM MODEL

Data traffic is triggered by requests from the rapidly increas-

ing number of end-users, and the volume of requests varies

over time. In this setting, we propose a deep reinforcement

learning framework acting as an agent. Based on the users’

requests, this DRL agent makes caching decisions to store the

frequently requested contents at local storage. If the requested

contents are already cached locally, then the base station can

serve the user directly with reduced delay. Otherwise, the base

station requests these contents from the original server and

updates the local cache based on the caching policy.

In this work, we consider a single base station with cache

size of C. We assume that in a given time slot, the total

number of contents that users can request from this base station

is fixed and denoted as N . We give every content a unique

index, and this index acts as the content ID. We assume that

all contents have the same size. The list of users’ requests

is denoted as Req = {R1, R2, R3, ...}. Here, Rt denotes the

ID of the requested content at time t. For each request, the

DRL agent makes a decision on whether or not to store the

currently requested content in the cache, and if yes, the agent

determines which local content will be replaced.

We define A as the action space, and let A =
{a1, a2, a3, ..., am}, where aυ denotes a valid action. And in

our case, m has a finite but generally a large value, describing

the total number of possible actions. For each content, there

are two cache states: cached, and not cached. The cache state

gets updated based on the caching decision. Here, we define

two types of actions: the first one is to find a pair of contents

and exchange the cache states of the two contents; the second

one is to keep the cache states of the contents unchanged.

Theoretically, multiple actions can be executed at one decision

epoch. To reduce the computational complexity, we need to

limit the action space size m and the number of actions to be

executed in one decision epoch, which will discussed in detail

in Section IV.

The reward should reflect the objective of the framework,

which, in our case, is to reduce the data traffic. In our setting,

all requests are served by the base station, all contents have

the same size, and there are no priorities for users. Therefore,

the reduction in data traffic can be evaluated in terms of the

cache hit rate. Here, we define the cache hit rate CHR in T
requests as

CHRT =

∑T

i=1 1 (Ri)

T
(1)

where indicator function 1 (Ri) is defined as

1 (Ri) =

{

1, Ri ∈ CT ,

0 Ri /∈ CT
(2)

where CT stands for the cache state in this period. Therefore

the reward in T requests can be defined as

rT = CHRT . (3)

For each decision epoch t, we obtain reward rt, which can be a

weighted sum of short-term and long-term cache hit rates. We

more explicitly introduce the definition of rt for the proposed

framework in Section IV below.

The objective of the DRL agent is to find a policy, σ∗, that

maximizes the long-term cache hit rate:

maximize
σ∗

E[rt|σ
∗]. (4)

We are interested in developing a model-free learning algo-

rithm to solve problem (4) that can effectively reduce the data

traffic with fixed cache capacity at the base station.

IV. DRL-BASED CONTENT CACHING FRAMEWORK

In this section, we present the DRL-based content caching

framework, which is aimed at maximizing the cache hit rate in

order to reduce the data traffic. To solve the content caching

problem with high-dimensional state and action spaces (due

to the large number of contents and cache sizes in practical

scenarios), we propose a framework based on the Wolpertinger

architecture [10] to narrow the size of the action space and

avoid missing the optimal policy at the same time.

A. Algorithm Overview

Based on the Wolpertinger Policy [10], our framework con-

sists of three main parts: actor network, K-nearest neighbors

(KNN), and critic network. We train the policy using the Deep

Deterministic Policy Gradient (DDPG) [9]. The Wolpertinger

architecture is employed for two reasons: 1) as an online

algorithm, this framework can adapt to data, and enables us

to develop a long-term policy; 2) actor network can avoid

the listing and consideration of very large action space, while

the critic network can correct the decision made by the actor

network, and KNN can help to expand the actions to avoid

poor decisions. This algorithm work in three steps. Firstly,

the actor network takes cache state and the current content

request as its input, and provides a single proto actor â at its

output. Then, KNN receives the single actor â as its input,

and calculate the l2 distance between every valid action and

the proto actor in order to expand the proto actor to an action

space, denoted by Ak, with K elements and each element

being a possible action aυ ∈ A. And at the last step, the critic

network takes the action space Ak as its input, and refines

the actor network on the basis of the Q value. The DDPG is

applied to update both critic and actor networks.

Below we provide a more detailed description of the key

components of the algorithm.

The actor: We define the actor as a function parameterized

by θµ, mapping the state S from the state space R
s to the

action space R
a. The mapping provides a proto-actor â in R

a

for a given state under the current parameter. Here, we scale

the proto-actor to make sure â is a valid action that â ∈ A:

µ(s|θµ) : S → R
a
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µ(s|θµ) = â. (5)

K-nearest neighbors: The generation of proto-actor can help

reduce the computational complexity caused by the large size

of the action space. However, reducing the high-dimensional

action space to one actor will lead to poor decision making.

So, we apply the K-nearest neighbors mapping, gk, to expand

the actor â to a set of valid actions in action space A. The set

of actions returned by gk is denoted as Ak:

Ak = gk(ât)

gk =
k

argmax
a∈A

|a− â|2. (6)

The critic: To avoid the actor with low Q-value being

occasionally selected, we define a critic network to refine the

actor. This deterministic target policy is described below:

Q(st, aj |θ
Q) = Ert,st+1∼E [r(st, at)+γQ(st+1, µ(st+1|θ

µ)|θQ)]
(7)

where γ ∈ (0, 1] is the discount factor which weigh the future

accumulative reward Q(st+1, µ(st+1|θµ)|θQ). Here, the critic

takes both the current state st and the next state st+1 as its

input to calculate the Q value for each action in Ak. Then,

the action that provides the maximum Q value will be chosen

as at, i.e.,

at = arg max
aj∈Ak

Q(st, aj |θ
Q) (8)

Update: The actor policy is updated using deep determin-

istic policy gradient, which is given as

∇θµJ ≈
1

N

∑

i

∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si .

(9)

The update of critic network parameter θQ and actor network

parameter θµ are given as

θQ
′

←− τθQ + (1 − τ)θQ
′

(10)

θµ
′

←− τθµ + (1 − τ)θµ
′

(11)

where τ ≪ 1.

B. Workflow

In this part, we introduce the workflow of the proposed

framework. The framework consists of two phases, namely

offline and online phases.

Offline phase: In the offline phase, the actor and critic

networks are constructed and pre-trained with historic tran-

sition profiles. This process is the same as in the training of

a deep neural network. In the offline phase, when we train

the networks with sufficient number of samples, the critic and

actor will be sufficiently accurate, and the updated parameters

θQ and θµ will be stored in order to provide a good initial

point for the online phase.

Online phase: The online phase is initialized with the

parameters determined in the offline phase. The system is

dynamically controlled in the online phase. In each epoch t, if

the requested content is not cached, the DRL agent observes

the state st from the environment, and obtains the proto

actor and Q value from the actor network and critic network,

respectively. Then, an ǫ-greedy policy is applied at selecting

the execution action at. This policy can force the agent to

explore more possible actions. After the action at is executed,

the DRL agent observes the reward rt and next state st from

the base station cache, and the transition (si, ai, ri, si+1) will

be stored to the memoryM at the end of each epoch. The DRL

agent updates the parameters θQ and θµ with NB transition

samples from memory M based on the DDPG.

In our implementation, the actor network has two hidden

layers of fully-connected units with 256 and 128 neurons,

respectively; and the critic network has two hidden layers of

fully-connected units with 64 and 32 neurons, respectively.

The capacity of memory NM is set as NM = 10000, and the

mini batch size is set as NB = 100. The discount factor γ
introduced in (7) is set as 0.9.

Then, we define the state and action spaces, and the reward

function of the DRL agent as follows:

State Space: The DRL agent assumes the feature space of

the cached contents and the currently requested content as

the state. The feature space consists of three components:

short-term feature Fs, medium-term feature Fm, and long-

term feature Fl, which represent the total number of requests

for each content in a specific short-, medium-, long-term,

respectively. These features vary as the cache state is updated.

For each decision epoch, we assign a temporary index to every

content from which we need to extract features. Since we only

extract the features from cached contents and the currently

requested content, let the index range from 0 to the cache

capacity C. The index of the currently requested content is

0, while the index of the cached content varies from 1 to C.

This temporary index is different from the content ID and

is only used for denoting the feature. Then, we let fxj , for

x ∈ {s,m, l} and j ∈ [0, C], denote the feature of a specific

content within a specific term. Thus, the observed state is

defined as st = {Fs;Fm;Fl} where Fs = {fs0, fs1, ..., fsC},
Fm = {fm0, fm1, ..., fmC}, and Fl = {fl0, fl1, ..., flC}.

Action Space: In order to limit the action size, we restrict

that the DRL agent can only replace one selected cached

content by the currently requested content, or keep the cache

state the same. With this, we define A as the action space, and

let A = {0, 1, 2, ..., C}, where C is again the cache capacity

at the base station. And we assume that only one action can

be selected in each decision epoch. Let at be the selected

action at epoch t. Note that, for each caching decision, there

are (C + 1) possible actions. When at = 0, the currently

requested content is not stored, and the current caching space

is not updated. And when at = υ with υ ∈ {1, 2, ..., C}, the

action is to store the currently requested content by replacing

the υth content in the cache space.

Reward: As stated in the previous section, we select the

cache hit rate as the reward to represent the objective of the

proposed framework. The reward for each decision epoch de-

pends on the short and long-term cache hit rate. For example,

we set the short-term reward as the number of requests for
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local content in the next epoch, i.e., the short-term reward rst
can be either 0 or 1. And let the total number of requests for

local content within the next 100 requests as the long-term

reward rlt ∈ [1, 100]. The total reward for each step is defined

as the weighted sum of the short and long-term rewards

rt = rst + w ∗ rlt

where w is the weight to balance the short and long-term

rewards, so that we can give more priority to the short-term

reward to maximize the cache hit rate at every step given the

chosen action.

The major notations are listed in Table I below.

TABLE I
NOTATIONS

Notation Description

C Cache capacity at base station

i ID, or index of contents

N Total number of contents

Rt Content requested at epoch t
A Action space

at The chosen action in the epoch t
rt The reward obtained in the epoch t
st The observation state in the epoch t
F Feature space

Fs, Fm, Fl Short/ mid/ long term features

fsi, fmi, fli Short/ mid/ long term feature of content i
k The number of nearest neighbors

V. SIMULATION RESULTS

A. Simulation Setup

Data Generation: In our simulations, the raw data of users’

requests is generated according to the Zipf distribution. We

set the total number of files as 5000, and we have collected

10000 requests as the testing data. We generate two types

of data sets. Initially, we analyze the performance with fixed

content popularity distribution, and the data set was generated

with unchanged popularity distribution with Zipf parameter set

as 1.3. Subsequently, we study how long-term cache hit rate

varies over time as the content popularity distribution changes.

In this case, the data set was generated with a varying Zipf

parameter, and changing content popularity rank. Note that,

although we generate the data using the Zipf distribution,

the proposed framework is applicable to arbitrarily distributed

popularities, and indeed requires no knowledge regarding the

popularity distribution.

Feature Extraction: From the raw data of content requests

we extract the feature F and use it as the input state of the

network. Here, as features, we consider the number of requests

for a file within the most recent 10, 100, 1000 requests.

B. Performance Comparison

To analyze the performance of our algorithm, we evaluate

the cache hit rate and provide comparisons with other caching

strategies.

Algorithm 1 DRL-based Content Caching Algorithm

Offline:

1: Randomly initialize critic network Q(s, a|θQ) and actor

µ(s|θµ) with weights θQ and θµ.

2: Initialize target network Q′ and µ′ with weights θQ
′

←−
θQ, θµ

′

←− θµ

3: Initialize replay buffer M with capacity of NM

4: Initialize a random process N for action exploration

5: Initialize features space F
6: Pre-train the actor and critic network with the pairs <

s, a > and the corresponding Q(s, a|θQ).
Online:

7: for t = 1, T do

8: The base station receive a request Rt

9: if Requested content is already cached then

10: Update cache hit rate and end epoch;

11: else

12: if Cache storage is not full then

13: Cache the currently requested content

14: Update cache state and cache hit rate

15: End epoch;

16: end if

17: Receive observation state st
18: Actor:

19: Receive proto-ation from actor network ât =
µ(st|θµ).

20: KNN:

21: Retrieve k approximately closest actions Ak =
gk(ât)

22: Critic:

23: Select action at = argmaxaj∈Ak
Q(st, aj |θQ)

according to the current policy.

24: Execute action at, and observe reward rt and

observe new state st+1

25: Store transition (st, at, rt, st+1) in M
26: Sample a random mini batch of NB transitions

(si, ai, ri, si+1) from M
27: Set target yi = ri + γQ′(si+1, µ

′(si+1|θµ
′

)|θQ
′

)
28: Update critic by minimizing the loss: L =

1
N

∑

i(yi −Q(si, ai|θQ))2

29: Update the actor policy using the sampled policy

gradient:

30: ∇θµJ ≈
1
N

∑
i
∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θ

µ)|si
31: Update the target networks:

32: θQ
′

←− τθQ + (1− τ)θQ
′

33: θµ
′

←− τθµ + (1 − τ)θµ
′

34: Update the cache state

35: Update features space F
36: Update cache hit rate

37: end if

38: end for
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a) Cache Hit Rate: In this part, comparisons are made

between our proposed frame work and the following caching

algorithms:

• Least Recently Used (LRU) [11]: In this policy, the

system keeps track of the most recent requests for every

cached content. And when the cache storage is full, the

cached content, which is least requested recently, will be

replaced by the new content.

• Least Frequently Used (LFU) [12]: In this policy, the

system keeps track of the number of requests for every

cached content. And when the cache storage is full, the

cached content, which is requested the least many times,

will be replaced by the new content.

• First In First Out (FIFO) [13]: In this policy, the

system, for each cached content, records the time when

the content is cached. And when the cache storage is

full, the cached content, which was stored earliest, will

be replaced by the new content.

Here, we consider both short-term and long-term perfor-

mance. For the short-term analysis, we study the relationship

between the cache capacity and cache hit rate. Regarding the

long-term performance, we are interested in the stability and

robustness of the proposed DRL framework, i.e., we seek to

characterize how the cache hit rate changes over time with the

changing popularity distribution of contents.

Figure 1 shows the overall cache hit rate achieved by

the proposed framework and the other caching algorithms

introduced above. In this study, we set the Zipf distribution

parameter as 1.3. We can see that our proposed framework

provides a higher cache hit rate for all cache capacity values.

When the cache capacity is small, the performance of LFU is

very close to our proposed framework. As the cache capacity

increases, the gap between proposed framework and other

three caching algorithms increases at first, and then gradually

decreases. At cache capacity C = 500, the cache hit rate

of all four algorithms are close to each other at around 0.8.

And at this point, the cache hit rates achieved by different

policies tend to converge because the cache capacity is high

enough to store all popular contents. From this point on,

increasing the cache capacity will not improve the cache hit

rate effectively any more, and the cache hit rate is now limited

by the distribution of the content popularity.

In Fig. 2, we address the long-term cache hit rate, and

based on the long-term performance we evaluate the capability

that the policy can maintain the good performance as content

popularities vary over time. Specifically, we design a data set

with a changing popularity distribution based on the Zipf dis-

tribution. In addition to the parameter of the Zipf distribution,

the rank of the contents also vary over time. All the Zipf

distribution parameter values and the ranks of contents are

generated randomly. From the figure, we can observe that the

proposed DRL framework doesn’t show advantage initially, but

soon the cache hit rate increases. This is because the proposed

framework needs to update the deep neural network to adapt to

the changing content popularity distribution. After that, the hit

rate curve of proposed framework reaches the peak and then

deceases only slightly, maintaining a relatively stable cache
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Fig. 1. Cache hit rate vs. cache capacity. We vary the cache capacity as
C = 1, 5, 25, 50, 150, 300, 500.
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Fig. 2. Cache hit rate as the content popularity distribution changes over time,
with cache capacity fixed at C = 300.

hit rate. Meanwhile, the LFU curve starts at a relative high

cache hit rate and then drops rapidly. This poor performance

is caused by the frequency pollution, which is an inevitable

drawback of the LFU policy. Because the number of requests

are accumulative, when the popularity distribution changes, the

previous record will mislead the system. For LRU and FIFO,

the performance are relatively stable but the performance is

not competitive with respect to our DRL agent. Based on

the analysis, our proposed framework will be more suitable

for applications that require robustness and a long-term high

performance.

b) Efficiency: In this part, we compare our proposed

framework with the Deep Q-learning based caching algorithm.

The most significant difference between these two algorithms

is that our proposed algorithm only considers a set of valid

actions expanded from the actor, but the Deep Q-learning

based algorithm calculates the value for all valid actions. Intu-

itively, our proposed framework will reduce the computational

complexity, but since the Deep Q-learning algorithm receives

more possible actions, it may lead to better performance.

To address this key tradeoff, we compare the cache hit

rates and the corresponding runtimes of these two deep

learning schemes. In Fig. 3, the cache capacity values vary

as {1, 5, 25, 50, 150, 300, 500}, and the cache hit rates are
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Fig. 3. Cache hit rate vs. cache capacity.

plotted when the content requests are generated using the Zipf

distribution parameter 1.3. The curve labeled DQN represents

the performance of the deep Q-network. K1 and K2 denote

two different settings of proposed framework. In the case of

K1, the KNN returns k1 = ⌈0.15C⌉ actions to the expanded

action space Ak. For K2, the KNN returns k2 = ⌈0.05C⌉
actions to the expanded action space Ak. As we can see in

the figure, when cache capacity is C = 1, all three curves

intersect at the same point, because all three policies are

trained to find the one most popular content. Then, as cache

capacity increases, the gap between this three policies become

obvious. Especially when the cache capacity is C = 5, DQN

consider all possible actions, while both K1 and K2 only

take the proto actor. The gap between K1 and K2 reflects

the randomness that might be introduced by the proto action.

And then, the gap between K1 and DQN gradually decreases.

These results demonstrate that the proposed framework can

achieve competitive cache hit rates compared to DQN.

Moreover, the proposed framework can achieve this com-

petitive performance with significantly lower runtimes. With

cache capacity fixed at C = 300, we record the time needed

for 1000 decision epochs, and show the average runtime results

in Table II below. As can be seen, the DQN needs much more

time at each epoch. In practice, this increased computational

cost often leads to storage problems, which makes the deep Q

network less competitive in solving large scale problems than

the proposed framework.

TABLE II
RUNTIME/DECISION EPOCH

DQN K1 K2

Runtime (s) 1.2225 0.3224 0.1163

VI. CONCLUSION

In this paper, we have proposed and developed a deep

reinforcement learning based content caching policy. We built

the framework based on the Wolpertinger architecture and

trained it using the deep deterministic policy gradient. We

have evaluated the performance of the proposed framework

and compared it with both short-term and long-term cache hit

rates achieved with LRU, LFU, and FIFO policies. The results

show that the proposed framework provides improvements

on both short-term and long-term performance. Additionally,

we have further confirmed the effectiveness of the proposed

framework by comparing the cache hit rate and runtime with

those achieved with the deep Q-learning based policy. This

comparison has demonstrated that the proposed framework can

achieve competitive cache hit rates while effectively reducing

the runtime. This makes the proposed framework efficient in

handling large-scale data.

This work opens up several directions for future research.

First, this current study only considers a scenario involving a

single base-station or an access-point. It would be interesting

to investigate how to develop a suitable DRL agent for

scenarios in which multiple base stations can collaborate with

each other. Second, in this work, we assume all contents have

the same size, and individual user preferences are not explicitly

addressed. It would be practically more appealing to take

these factors into consideration. Finally, if both goals can be

achieved, we can further develop this framework to address

the caching problem in device-to-device communications.
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