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Abstract—We consider an energy harvesting transmitter send-
ing status updates to a receiver over an erasure channel, where
each status update is of length k symbols. The energy arrivals and
the channel erasures are independent and identically distributed
(i.i.d.) and Bernoulli distributed in each slot. In order to combat
the effects of the erasures in the channel and the uncertainty
in the energy arrivals, we use channel coding to encode the
status update symbols. We consider two types of channel coding:
maximum distance separable (MDS) codes and rateless erasure
codes. For each of these models, we study two achievable schemes:
best-effort and save-and-transmit. In the best-effort scheme, the
transmitter starts transmission right away, and sends a symbol
if it has energy. In the save-and-transmit scheme, the transmitter
remains silent in the beginning in order to save some energy to
minimize energy outages in future slots. We analyze the average
age of information (AoI) under each of these policies. We show
through numerical results that as the average recharge rate
decreases, MDS coding with save-and-transmit outperforms all
best-effort schemes. We show that rateless coding with save-and-
transmit outperforms all the other schemes.

I. INTRODUCTION

We consider an energy harvesting single-user system, where

the communication channel between the transmitter and the

receiver is an erasure channel. The transmitter collects mea-

surements of a certain phenomenon and sends updates on this

phenomenon to the receiver; these updates are referred to as

status updates. The purpose of sending status updates is to

minimize the age of information (AoI) at the receiver.

Energy harvesting communications with the objective of

maximizing the throughput has been extensively studied, for

example, see [1]–[25]. The single-user channel is studied in

[1]–[4], extended to multi-user settings in [5]–[7], multi-hop

channels in [8]–[10], and two-way channels in [11], [12].

Effects of imperfect circuitry, receiver side processing, and

temperature increases are considered in [13]–[25].

In this paper, we consider an energy harvesting commu-

nication system with the objective of minimizing the average

AoI at the receiver. Status updates and AoI metric is studied in

many different settings, for example, see [26]–[40]. References

[26]–[30] study minimizing the AoI with a queuing theoretic

approach; penalty functions and non-linear costs are studied in

[31], [32]; the optimality of last-come-first-serve for multi-hop

settings is shown in [33]; and erasure channels are considered

in [34], [35]. The energy harvesting case and when the energy
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Fig. 1. An energy harvesting transmitter with an infinite battery. The
transmitter collects measurements and sends updates to the receiver over an
erasure channel.

arrivals are known only causally is studied in [36]–[38]. The

optimality of threshold policies for the case of unit batteries

is shown in [38]. Energy harvesting single-user and multi-hop

settings with non-causal energy arrival knowledge are studied

in [39], [40].

This paper is closely related to [35], in which coded status

updates are proposed in order to overcome channel errors.

We consider a single-user channel shown in Fig. 1, where

the transmitter is energy harvesting and further transmission

errors may occur due to energy outages. We consider two

different types of channel codes to encode the status updates.

First, we consider maximum distance separable (MDS) codes.

With MDS coding, the transmitter encodes the k status update

symbols into n symbols. The receiver receives the update

successfully if it receives any k of these n encoded symbols.

Next, we consider rateless codes, for example, fountain codes.

In this case, the transmitter encodes the k update symbols

into as many symbols as needed until k of these symbols are

received successfully. For each of these models, we consider

two different policies: best-effort and save-and-transmit. Best-

effort and save-and-transmit schemes were originally consid-

ered in [41], in the context of achieving the capacity of the

energy harvesting AWGN channel. In the best-effort scheme,

in each slot, the transmitted symbol may suffer from two

errors: channel erasure and energy outage. In the save-and-

transmit scheme, the transmitter remains silent at the beginning

to save energy and to reduce the errors due to energy outage.

For all these cases, we derive the average AoI. Through

numerical results, we show that as the average recharge rate

decreases, MDS codes with save-and-transmit outperforms all

the best-effort schemes. The gain becomes significant for low

values of average energy arrivals. We observe that rateless

coding with save-and-transmit outperforms all other policies.
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II. SYSTEM MODEL

We consider a single-user channel with a transmitter which

has an infinite-sized battery, see Fig. 1. The energy arrivals

are Bernoulli and i.i.d.: in slot i, a unit energy arrives with

probability p or no energy arrives with probability 1− p, i.e.,

P[Ei = 1] = 1 − P[Ei = 0] = p. The transmitter obtains the

measurements (status updates), which are packets of length k,

which should be sent to the receiver in a way to minimize the

average AoI at the receiver.

The total AoI up to time T is,

∆T =

∫ T

0

(t− u(t)) dt (1)

where u(t) is the time stamp of the latest received status update

packet and ∆(t) = t− u(t) is the instantaneous AoI.

An example evolution of the AoI is shown in Fig. 2. The

average long-term AoI in this case is calculated as,

∆ = lim
T→∞

∆T

T
= lim

i→∞

∑i

j=1
Qj

∑i

j=1
Tj

(2)

In all the subsequent analysis we will assume renewal policies,

i.e., where Qj and Tj are i.i.d. The AoI then reduces to,

∆ = lim
i→∞

1

i

∑i

j=1
Qj

1

i

∑i

j=1
Tj

=
E[Q]

E[T ]
(3)

where we dropped the subscript j as Qj and Tj are i.i.d.

The channel between the transmitter and the receiver is an

i.i.d. erasure channel. The probability of symbol erasure (loss)

in each slot is δ. In order to combat the channel erasures and

the energy outages, the transmitter encodes the status updates

before sending them through the channel.

We consider two types of channel codes: MDS and rateless

codes. We first consider MDS channel codes. For this case we

have an (n, k) channel coding scheme, where k is the length

of an uncoded status update and n is the length of an encoded

codeword which is sent through the channel with n ≥ k. When

the transmitter is done with sending the n symbols, it generates

a new update and begins sending it. This is irrespective of the

success of the transmission of these n symbols. The optimal

value of n depends on k, δ, and p. For MDS channel coding,

we study two achievable schemes. We first study a save-and-

transmit scheme in which the transmitter saves energy from the

incoming energy arrivals until it has at least n units of energy

in its battery. This in effect makes sure that errors which can

occur during the codeword transmission are only due to the

erasures in the channel. To ensure that the synchronization

is maintained between the transmitter and the receiver, the

transmitter remains in the saving phase for a number of slots

which is multiple of n. We then study a best-effort scheme,

in which the transmitter attempts transmission in each slot. In

this case, the error in each symbol can be either due to an

energy outage or a channel erasure or both.

We next study the case of rateless coding in which the trans-

mitter keeps sending the update until k symbols are success-

t

∆(t)

Q3
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Q2

Fig. 2. An example for the evolution of the age of information.

fully received. For this case, we also study two schemes: best-

effort and save-and-transmit. In the best-effort scheme, once

the update is successfully received, the transmitter generates a

new update and begins transmitting it immediately. In the save-

and-transmit scheme, once the update is successfully received,

the transmitter waits some time in order to save some energy

in the battery to prevent future energy outages. The transmitter

saves for m slots, where the optimal m should be obtained as

a function of the system parameters δ, k, and p.

III. AOI UNDER MDS CHANNEL CODING

A. Save-and-Transmit Policy

In the save-and-transmit policy, before the transmitter at-

tempts to transmit the coded update, the transmitter remains

silent for an integer multiple of n slots until the battery

has energy at least equal to n. The duration the transmitter

remains silent for the jth time while transmitting the ith

update is a random variable denoted by Zij ∈ {n, 2n, 3n, . . .}
which depends on the energy arrival distribution. The random

variable Zij can be expressed as:

Zij =

⌈

Wi

n

⌉

n (4)

where Wi is the random variable which denotes the number

of slots needed to save n units of energy and ⌈x⌉ denotes the

smallest integer greater than or equal to x. Since the energy

arrivals follow an i.i.d. Bernoulli distribution, Wi will follow

a negative binomial distribution as follows:

PWi
(w) =

(

w − 1

n− 1

)

pn(1− p)w−n, w = n, n+ 1, . . . (5)

The distribution of Zij can be obtained using (5) as follows:

PZij
(z) =

z
∑

w=z−n+1

PWi
(w), z = n, 2n, . . . (6)

After the saving phase, the transmission resumes for n slots.

After the transmitter is done transmitting the n coded symbols,

the transmitter again goes to the saving phase until it recharges

its battery to at least n. The transmitter alternates between

saving and transmission phases.

The update is successful if at least k symbols are received

without being erased; there will be no energy outage due to
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Fig. 3. An example for the evolution of the age of information under the
save-and-transmit scheme for the MDS channel coding case.

the saving phase. Hence, the probability of having a success

in a n slot of duration is,

ǫk,n(δ) =

n
∑

x=k

(

x− 1

k − 1

)

(1− δ)kδx−k (7)

Thus, in the n consecutive slots the transmission is successful

with probability ǫk,n(δ). Now, the update will be successful in

the V th transmission, where V is a geometrically distributed

random variable with a the following pmf,

PV (n)(v) = ǫk,n(δ)(1 − ǫk,n(δ))
v−1, v = 1, 2, . . . (8)

Hence, we may need to repeat the save-and-transmit phases

for V times before we have a successful status update.

We now characterize the random variable which identifies

the instant at which the update will be successful within the

n consecutive slots. We denote this random variable by X̃i

which has a conditional pmf PXi|Xi≤n(x) where

PXi
(x) =

(

x− 1

k − 1

)

(1− δ)kδx−k, x = k, k + 1, . . . (9)

Hence, X̃i is distributed as:

PX̃i
(x) =

(

x−1

k−1

)

(1− δ)kδx−k

ǫk,n(δ)
, x = k, k + 1, . . . , n (10)

An example which illustrates the AoI evolution is shown

in Fig. 3. In this figure, the transmitter at first waits 3n
slots in order to recharge the battery to at least the level

n. It then attempts to transmit. The transmission in this

case is not successful due to the channel erasures so the

transmitter again waits for n slots in order to charge the

battery. The transmission then proceeds again in the next slot.

The transmission is then successful and the receiver received

the update after X̃i transmissions, where k ≤ X̃i ≤ n.

We now consider a renewal policy which serves as an upper

bound for the save-and-transmit policy described above. We

assume that at the end of the update period, the transmitter

depletes all its battery. Thus, the transmitter renews its state

at the end of each successful update and always begins with

a depleted battery. In this case, the AoI can be written as:

∆MDS−ST =
E[Qi]

E[Ti]
(11)

Next, we evaluate E[Qi] and E[Ti]. We first obtain Qi as,

Qi =n



n (Vi − 1) + X̃i +

Vi
∑

j=1

Zij





+
1

2



n (Vi − 1) + X̃i +

Vi
∑

j=1

Zij





2

+
n2

2
−

X̃2
i

2
(12)

=n2Vi
2

2
+ nViX̃i + n

Vi
∑

j=1

Zij

+
[

n (Vi − 1) + X̃i

]

Vi
∑

j=1

Zij +
1

2





Vi
∑

j=1

Zij





2

(13)

We then obtain Ti as,

Ti = nVi +

Vi
∑

j=1

Zij (14)

Now, it remains to calculate the expectation of Qi and Ti.

We first calculate the first and second moments of
∑Vi

j=1
Zij ,

using [42, Theorem 6.13], as follows:

E





Vi
∑

j=1

Zij



 =
E [Z]

ǫk,n(δ)
(15)

Similarly, we have:

E











Vi
∑

j=1

Zij





2





=
E
[

Z2
]

ǫk,n(δ)
+

2− 2ǫk,n(δ)

ǫ2k,n(δ)
E [Z]

2
(16)

We then combine all these to obtain:

E [Ti] =
n

ǫk,n(δ)
+

E [Z]

ǫk,n(δ)
(17)

and

E [Qi] =
n2(2− ǫk,n(δ))

2ǫ2k,n(δ)
+

nµX̃

ǫk,n(δ)
+

n(2− ǫk,n(δ))E [Z]

ǫ2k,n(δ)

+
µX̃E [Z]

ǫk,n(δ)
+
1

2

E
[

Z2
]

ǫk,n(δ)
+
(1−ǫk,n(δ))E [Z]

2

ǫ2k,n(δ)
(18)

where E [Z] and E
[

Z2
]

can be calculated using (6) and

µX̃ can be calculated using (10). Hence, the average AoI

∆MDS−ST in (11) can be found by substituting with the

expressions in (17) and (18).

B. Best-Effort Policy

We now consider the case when the transmitter does not

wait at the beginning in order to save energy, instead it begins

transmission immediately. The error events in this case can be

either an erasure in the communication channel or an energy

outage at the transmitter. These two events may occur for

each transmitted symbol. Hence, for the symbol to be received

without an error, there should be no energy outage and no

channel erasure; this forms a Bernoulli random variable with
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Fig. 4. An example for the evolution of the age of information under the
save-and-transmit scheme for the rateless channel coding case.

probability of success equal to q , p(1− δ). The evolution of

AoI is similar to Fig. 3 but in this case, Zij is equal to zero

as the transmitter does not wait to save energy.

Using analysis similar to the previous scheme, but with

having the probability of success equal to q, the average AoI

in this case can be written as:

∆MDS−BE =
n

ǫn
−

n

2
+

kǫk+1,n+1(q)

qǫk,n(q)
(19)

This can also be obtained using the same analysis as in [35],

but with probability of success equal to q,

IV. AOI UNDER RATELESS CHANNEL CODING

A. Best-Effort Policy

We consider here the case when the transmitter begins

to transmit immediately. In each slot, the transmitter suffers

two possible error events. The first is channel erasure and

the second is energy outage. Hence, a symbol will be re-

ceived successfully if neither error occurs, which happens with

probability equal to q. The channel is now equivalent to an

erasure channel, similar to the one considered in [35], but with

probability of success equal to q. Following analysis similar

to the one in [35], but with probability of success equal to q,

the average AoI in this case is equal to:

∆RC−BE =
k

q

(

3

2
+

1− q

k

)

(20)

B. Save-and-Transmit Policy

In this policy, we consider the case when the transmitter

does not generate a new update immediately once the trans-

mission of the previous update is successful, but it waits for

a deterministic time of m slots. Here, m is a deterministic

number which both the transmitter and the receiver know in

advance; this m should then be optimized to minimize the

average AoI and will be a function of δ, p and k.

The transmission in this policy proceeds as follows: once the

previous update is successful, the transmitter begins a saving

phase of duration m slots. Then, the transmitter generates a

new update and begins transmitting it to the receiver. While

Yi

m

E1 E2

E1

number of

time duration

energy arrivals

E2

E3

Fig. 5. An example to illustrate the random variable Yi.

transmitting the update, the transmitter may receive more en-

ergy arrivals; however, the amount of energy in the battery will

always be non-increasing as the transmitter transmits a symbol

in each slot while the energy may not arrive at every slot. The

transmitter keeps transmitting the update until its battery state

hits zero; this declares the end of the no-outage phase. We

denote the number of symbols sent successfully in this phase

by ki. If ki ≥ k, then no more transmission is required and

the update is successful. Otherwise, the transmitter transmits

the remaining k − ki using the best-effort scheme described

in Subsection IV-A.

We denote the duration the transmitter transmits with no

outage by Yi and we denote the duration we transmit using

the best-effort scheme by Zi. An example for the evolution of

the AoI in this case is shown in Fig. 4. The average AoI can

be calculate as follows,

∆RC−ST =
E[Qi]

m+ E[Yi + Zi]
(21)

=
E

[

(m+ Yi+Zi)
2
+2 (m+Yi+Zi) (Yi−1+Zi−1)

]

2m+ 2E[Yi + Zi]
(22)

This AoI can be calculated explicitly once E[Yi], E[Y
2
i ], E[Zi],

E[Z2
i ] and E[YiZi] are calculated. We note that Yi and Zi are

dependent on each other while Yi and Yi−1 are independent

due to using a renewal policy.

We now define the random variables {Ei}
∞
i=1; the random

variable E1 represents the amount of energy harvested in the

first m slots. For i ≥ 2, the random variable Ei represents the

amount of energy harvested during the previous Ei−1 slots.

Hence, we have Ei ≤ Ei−1.

We now characterize the random variable Yi,

Yi =

∞
∑

i=1

Ei (23)

where E1 is Bin(m, p), and for i ≥ 2, Ei given Ei−1 = ei−1 is

Bin(ei−1, p); Bin(.) denotes binomial distribution. An example

for the evolution of Yi is shown in Fig. 5.

We can obtain the marginal pmf for the random variables

Ei, i ≥ 2, by applying [42, Theorem 6.12] and using [42,

Table 6.1]. Each Ei consists of a sum of i.i.d. Bernoulli

random variables and the number of these random variables is

distributed according to a binomial distribution of Ei−1 which

is independent of the Bernoulli random variables. Hence, the

marginal pmf of the random variable Ei is Bin(m,pi).

We can now calculate E[Yi] as,

E[Yi] =

∞
∑

i=1

E [Ei] =
mp

1− p
(24)



Next, we want to calculate E[Y 2
i ] which we calculate as

E[Y 2
i ] = var(Yi)+E[Yi]

2. The term var(Yi) can be calculated

as follows

var(Yi) =
∞
∑

i=1

var(Ei) + 2
∞
∑

i<j

cov(Ei, Ej) (25)

=
mp

1− p2
+ 2

∑

i<j

cov(Ei, Ej) (26)

This requires the calculation of cov(Ei, Ej), ∀i > j. To

calculate the covariance, we first calculate the conditional

probability P(Ej+1|Ei). For j > i, we have that P(Ej |Ei)
is distributed as Bin(Ei,p

j−i). This again follows by applying

[42, Theorem 6.12] and using [42, Table 6.1].

We now calculate for j > i cov(Ej , Ei) as follows:

cov(Ej , Ei) =E[EjEi]− E[Ej ]E[Ei] = mpj(1− pi) (27)

Next, we calculate
∑

i<j cov(Ei, Ej) as follows:

∑

i<j

cov(Ei, Ej) =

∞
∑

i=1

∞
∑

j=i+1

mpj(1− pi) (28)

=
mp2

(1− p)(1− p2)
(29)

Therefore, var(Yi) is equal to

var(Yi) =
mp

1−p2
+ 2

mp2

(1−p)(1−p2)
=

mp(1+p)

(1−p)(1−p2)
(30)

Hence, E[Y 2
i ] can be calculated as follows:

E[Y 2
i ] =

mp(1 + p)

(1− p)(1 − p2)
+

m2p2

(1 − p)2
(31)

Next, we calculate E[Zi], E[Z
2
i ] and E[YiZi]. The pmf of

Zi|Yi = k1 is negative binomial distribution as in (5) but with

number of successes equal to max(k−k1, 0) and with success

probability equal to q. The value of E[Zi|Yi = yi] can then

be calculated using conditional expectation as follows:

E[Zi|Yi = yi] =

yi
∑

w=0

(

yi

w

)

δyi−w(1− δ)w
g(w)

q
(32)

and the value of E[Z2
i |Yi = yi] can be calculated as follows

E[Z2
i |Yi=yi]=

yi
∑

w=0

(

yi

w

)

δyi−w(1−δ)w
g(w)(g(w)+(1−q))

q2
(33)

where g(w) , max(k − w, 0). Similarly, we can obtain

E[YiZi|Yi = yi]. Now, it remains to calculate the expectation

over the pmf of Yi. Due to the dependency between the terms

Ei and their infinite sum, there is no closed form for the pmf

of Yi and it can be found numerically.

V. NUMERICAL RESULTS

In this section, we compare the performances of the pro-

posed schemes. When there is no energy harvesting, i.e.,

energy arrives with probability p = 1 at every slot, rateless

coding has the best AoI (this mimics the result obtained in
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Fig. 6. Comparison of average AoI, p = 1.
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Fig. 7. Comparison of average AoI, p = 0.7.

[35]) and save-and-transmit with MDS coding has the worst

performance. The reason that the save-and-transmit with MDS

coding has the worst performance is that it requires a saving

phase of at least n slots, which is not necessary as the

energy arrives at all slots. When the probability of energy

arrivals decreases to p = 0.7, save-and-transmit with MDS

coding performs the same as the best-effort rateless coding

case, as shown in Fig. 7. Rateless coding with save-and-

transmit performs slightly better than all the other policies.

As the probability of energy arrival decreases further, save-

and-transmit with MDS coding outperforms all the best-effort

policies as shown in Fig. 8 and Fig. 9. As shown in Fig. 9,

the gain becomes significant for low values of p. The reason

for this is that save-and-transmit eliminates the errors due to

energy outage by saving sufficient energy before attempting

to transmit. For example, in Fig. 9, for the best-effort scheme,

the probability of success in transmitting a symbol is equal to

q = 0.2×0.7 = 0.14, while if we eliminate the energy outage

due to energy harvesting as in save-and-transmit scheme, the

success probability for reach symbol will be 0.7, which is

much higher than the best-effort scheme. Rateless coding with

save-and-transmit is better than MDS coding with save-and-

transmit, because rateless coding with save-and-transmit gives

more flexibility for the transmitter to choose just the right

saving duration, while in MDS coding case, the transmitter is

forced to save for a multiple of n slots.
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