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Abstract—IoT devices have become popular targets for various
network attacks due to their lack of industry-wide security
standards. In this work, we focus on the classification of smart
home IoT devices and defending them against Distributed Denial
of Service (DDoS) attacks. The proposed framework protects
smart homes by using VLAN-based network isolation. This
architecture includes two VLANs: one with non-verified devices
and the other with verified devices, both of which are managed
by a SDN controller. Lightweight, stateless flow-based features,
including ICMP, TCP and UDP protocol percentage, packet
count and size, and IP diversity ratio, are proposed for efficient
feature collection. Further analysis is performed to minimize
training data to run on resource-constrained edge devices in
smart home networks. Three popular machine learning models,
including K-Nearest-Neighbors, Random Forest, and Support
Vector Machines, are used to classify IoT devices and detect
different DDoS attacks based on TCP-SYN, UDP, and ICMP. The
system’s effectiveness and efficiency are evaluated by emulating
a network consisting of an Open vSwitch, Faucet SDN controller,
and flow traces of several IoT devices from two different testbeds.
The proposed framework achieves an average accuracy of 97%in
device classification and 98% in DDoS detection with average
latency of 1.18 milliseconds.

Index Terms—IoT, SDN, machine learning, DDoS, OVS

I. INTRODUCTION

The Internet of Things (IoT) marketplace has experienced
exponential increases over the past few years. According to
[1], IoT is reported to contribute anywhere between 4-11
percent of the total global GDP by 2025. Unsurprisingly, IoT
devices were first adopted in commercial settings such as smart
building environments before 2017. After 2017, IoT started to
explode into the smart home sector, where the smart home
sector was valued at 79.13 billion in 2020. This growth is
projected to continue to reach 319.25 billion dollars by 2026
[2].

However, the safe adoption of home IoT systems presents
a unique set of challenges. One of these challenges is the
heterogeneity of these devices. Due to the many different
types of IoT devices developed by a variety of manufacturers,
uniform management of these devices is challenging [3],
[4]. This is due to the explosive growth of demand for IoT
home devices. Secondly, these devices are low on resources
both in storage and computation, which creates difficulties in
providing robust security solutions. By 2021, an anticipated
25% of attacks on businesses would result from compro-
mised IoT devices [4]. Thirdly, IoT systems generate massive
amounts of data, evidenced by 6.2 Exabyte (EB) produced in

2018 with an anticipated 478% increase through 2021, posing
significant challenges to security-related data analysis [3], [4].
These challenges require smart home systems to incorporate
enhanced security visibility.

Traditional systems are inadequate due to the high volume
of data and a large amount of connected devices in IoT
deployments [5], [6]. However, Software-Defined Networking
(SDN) offers a promising solution. SDN centralizes network
management and decouples the network and data planes. By
providing flow-based statistics, SDN offers immediate network
visibility and simplifies intrusion detection [7]. This poises
SDN to offer an effective and efficient framework for handling
heterogeneous networks while providing network visibility
and control via flow monitoring and management of data
plane. Additionally, SDN-based systems can be augmented
to develop managed and flexible solutions and intelligent
decisions. By adopting machine learning techniques, these
systems can offer promising solutions to enhance security
in resource-constrained IoT home networks [8]. Firstly, by
classifying devices, SDN policies can be crafted to specific
device types such as cameras, hubs, switches, or triggers. This
provides an insight into the home network and the ability to
provide particular security policy and Quality of Service (QoS)
for specific devices [9]. Secondly, machine learning based
Distributed Denial of Service (DDoS) detection can protect
smart home IoT devices from denial of service that disrupts
normal functionality [10]. These attacks occur when a congre-
gation of different devices sends a massive amount of packets
to overwhelm the target device and disconnect it from the
network. These attacks, whether resulting from compromised
devices on the network or from external attacking devices,
consume network resources and cause difficulties for smart
home users [11].

For the home network use case, we identify several major
design goals that are reflected in our contributions. First,
the solution needs to be easy to use and cost-efficient for
deployment. Building off of this, the solution must be opti-
mized to take as few resources as possible and must be real-
time. Next, the solution must have high accuracy in device
classification and DDoS detection; particularly, false positives
must be minimized in order to mitigate user interactions with
the anomaly detection system. Finally, the system must be
robust in order to handle different types of IoT devices and
protect privileged devices from compromised IoT devices. To
these ends, our primary contributions are as follows.
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• A novel SDN-based architecture is designed and im-
plemented with a Faucet controller and Open vSwitch
(OVS) using the GNS3 network simulator. The proposed
architecture is deployable on a low-cost edge system,
such as a Raspberry Pi, and uses VLANs to separate
verified devices from unverified ones within a home
network.

• We propose a minimum set of stateless flow-based fea-
tures to perform both device classification and DDoS
detection on the smart home network. We achieve an
average accuracy of 97% in device classification and 98%
in DDoS detection.

• We utilize non-cumulative statistics to increase classifi-
cation and DDoS accuracy while reducing the controller
and switch communication overhead on the SDN system.

• Two real-world datasets from two different testbeds are
used to validate the efficacy and reliability of the pro-
posed features and machine learning models. Further-
more, the number of samples in the datasets are reduced
to a minimum size to meet a 95% accuracy threshold. The
accuracy and latency of K-Nearest-Neighbors (KNN),
Random Forest (RF), and Support Vector Machine with
linear kernel (LK-SVM) models are investigated in details
with varying polling intervals.

The rest of this paper is organized as follows. We overview
the related work in Section II, discuss the proposed testing
environment in Section III, and present the proposed secure
home architecture scheme for device and DDoS classification
in Section IV. The classification and DDoS detection results
are discussed in details in Section V, followed by a conclusion
in Section VI.

II. RELATED WORK

Although various IoT management approaches have been
proposed [12]–[16], they struggle to adapt to the complex
design requirements present in IoT networks. For example,
Amaral et al. [12] utilize Deep Packet Inspection (DPI) with
distributed network nodes that act as ‘watchdogs’. These nodes
act as lightweight network intrusion detection system (IDS)
units that are dispersed throughout a network and buffer
chunks of packets, which are then compared to the IDS access
rules. The ‘watchdogs’ help to perform the heavy computa-
tional task of packet inspection in a distributed way, but the
design still suffers from scalability issues due to the intense
processing requirements for DPI. Similarly, researchers in [13]
propose RADAR, which can detect 90% of DDoS attack data
within 90 seconds regardless of the number of bots involved
in the attack. However, RADAR can only detect 50% of attack
data within 60 seconds of operation, and struggles to create
an IoT defense system with accurate real-time classifications.
Again this is due to the heavy processing burden necessary for
DPI. Many other DPI systems [14]–[16] show similar delay
shortcomings or do not utilize resources efficiently.

SDN systems have been proposed to address the above
challenges faced by DPI based solutions [17]–[19]. Hameed
et al. [17] have identified many of these vulnerabilities and

suggested that SDN can be a solution. Similarly, Bizanis et
al. [18] outline how SDN and Network Function Virtualiza-
tion (NFV) technology can be combined with wireless IoT
networks to enhance network management. Salman et al. [19]
have identified several privacy and security concerns in IoT
and suggest that SDN is an optimal paradigm to manage
heterogeneous networks and handle scalability complications.

Recently, the advantages of SDN are augmented by machine
learning models, especially for enhancing security function-
ality. This is mostly realized by commercial vendors, while
research efforts have been slow to leverage these technologies
for security purposes [20], [21]. Some of the first efforts relied
on dedicated hardware middleboxes or inspection engineers.
Liu et al. [21] presented a middlebox-guard that leverages
SDN-based intelligent processing to minimize network latency
and provide security functionalities. An SDN-based middlebox
is placed into a network to handle all of the security process-
ing. However, this system requires periphery hardware that
raises cost for the end user. Similarly, Han et al. [22] propose
OverWatch, a program that constantly monitors every flow
to classify attacks. However, the flow inspection technique
noticeably increases the overhead of the system. Both of these
works add either additional hardware or extra computational
requirements that make these systems difficult or too expensive
to deploy for home networks.

Some of the most recent works focus on leveraging both
SDN and machine learning without requiring periphery dedi-
cated hardware. Hamza et al. [23] perform enhanced anomaly
detection by translation of MUD profiles for IoT gateways.
They use both stateful and stateless network statistics to de-
tect anomalous traffic patterns in a MUD-compliant network.
Specifically, the system mitigates benign and volumetric at-
tacks with very high accuracy. Furthermore, work from Doshi
et al. [24] and Yang et al. [25] show an accuracy of 99.8%
for DDoS detection using a customized testbed and the KD99
dataset, respectively. This combination of machine learning
and SDN has also been applied for device classification. Sim-
ilarly work from Owusu et al. [26] has subsecond inference
speeds for device classification in IoT environments with peak
accuracy of 92.7%. Reza et al. [27] and Xu et al. [28]
also propose methods for low-latency device classification,
which achieve accuracy as high as 97.6%. However, recent
works do have certain drawbacks. Specifically, these works
do not fully consider the spacing and latency requirements for
a gateway at the edge. The SDN controller is resource con-
strained and thus must be able to operate in edge environments.
Furthermore, many of the machine learning models require a
significant number of features. This requires a high amount
of storage resources and creates additional dependencies that
limit deployment. Moreover, most of the existing works only
use one dataset which may lead to models overfitting the
singular dataset, whereas training with multiple datasets can
make models more robust to dynamic changes that are seen
in IoT environments. Finally, to our knowledge, no previous
work has proposed an SDN-based solution that combines both
classification and DDoS detection into a single model. Our
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Fig. 1. (a): Testbed setup used for benign and DDoS dataset collection. (b)
A virtualization-based system setup using the GNS3 simulator.

work seeks to combine both of these systems to a single and
unified machine learning approach which saves space and time
compared to separate models.

It is important to note that some of the features proposed
in this paper, such as ICMP, TCP, and UDP distribution,
packet size and packet count, have been adopted in prior
works [23], [29], [30] for DDoS detection. However, even
with these features, existing literature typically requires more
than fifteen features to successfully perform DDoS detection.
In this work, we propose a unique feature as IP diversity ratio,
which is combined with ICMP, TCP, and UDP distribution,
packet size and count, to form a minimal set of features. More
importantly, this minimum set of features are used for not only
DDoS detection, but also device classification and reducing
processing overhead. In summary, we propose a secure smart
home architecture by adopting SDN and machine learning
models, which performs both device classification and DDoS
detection with high accuracy. The stateless and flow-based
features proposed in this paper are efficient to extract, and the
low-overhead of this solution distinguishes this paper from
the current literature by considering memory constraint and
reducing computational complexity.

III. PROPOSED TESTING ENVIRONMENT

This section discusses the testbed setup, the GNS3 virtual
environment’s overview, and the proposed features for IoT
device classification and DDoS attack detection.

A. Smart Home Network

We setup a smart home network with consumer IoT devices
to collect benign and DDoS attack data, as shown in Figure

1 (a). For benign data collection, we configure two Linux
machines. One machine acts as a WiFi access point (AP),
and another machine acts as a sniffer to log the packets in the
pcap (packet capture) file. The proposed testbed includes the
following IoT devices: Google Home, Amazon Echo, Nest
Camera, Ring Camera and an Android phone. We install
hostapd on the AP machine to enable AP functionalities.
Also, tshark is installed on the sniffer for packet collection.
tshark is a command line tool, which helps to reduce the
GUI overhead on Linux machines.

The IoT devices are connected to the WiFi AP. To collect
IoT devices’ benign traffic, we interact with each IoT device
for 24 hours and record the pcap files. These interactions
are launched based on real activities that would occur during
regular device usage, including streaming videos from Nest
and Ring Camera, playing songs, and asking questions from
Amazon Echo and Google Home.

To collect DDoS attack traffic, the following three typical
DDoS attacks are generated: ICMP, TCP-SYN, and UDP. A
Linux machine is used as the attacker. Also, the DDoS attacks
are launched by the hping3 utility, which helps to dynami-
cally change the IP source address, IP destination address, at-
tack type, and attack duration. For each type of DDoS attacks,
the attacker targets each IoT device for 10 minutes while the
sniffer records the pcap files of the attack traffic. This process
produces a dataset including 3,066,585 packets, composed of
1,264,392 malicious packets and 1,802,193 benign packets.

To confirm the proposed features’ robustness, in addition to
our lab (SIOTLAB) dataset, we also use the UNSW dataset
[23], consisting of 802,580 benign packets. UNSW dataset
comprises ten smart home devices including Wemo Motion
Sensor and Power Switch, Samsung and Netatmo Camera,
TP Link Smart Plug, Hue Bulb, Amazon Echo, Chromecast,
iHome, and LiFX ligthbulb. Next, the DDoS packets are
consolidated with SIOTLAB and UNSW benign dataset for the
DDoS detection. Also, we combine SIOTLAB’s dataset and
UNSW’s dataset to ensure that the machine learning models
are not biased.

B. GNS3 Environment

We build a virtual SDN-based smart home environment
using the GNS3 network simulator. Figure 1 (b) presents this
environment, which includes four virtual machines (VMs). The
first VM acts as the Faucet SDN controller. The second VM
acts as an OVS switch, which is an open-source OpenFlow
switch. We choose the OVS switch as it is well suited to
function as a virtual switch in virtualized environments. The
third VM operates as an IoT device, and the fourth VM serves
as an attacker.

To evaluate the classifier’s performance, we use
tcpreplay to playback the benign and DDoS packets.
tcpreplay is a Linux tool that helps in replaying previously
captured network traffic. Besides, it is commonly used to
simulate attacks to test intrusion detection systems. To
determine each dataset’s performance, namely, SIOTLAB,
UNSW, and the integration of SIOTLAB with UNSW, we
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Fig. 2. The distinct difference between the distribution of TCP, UDP, ICMP,
and other flows among device types enables us to successfully classify devices.

replay packets belonging to each dataset one by one and
test the classification and DDoS detection of the proposed
solution.

In traditional SDN networks, the controller polls all the
network switches periodically to collect flow statistics. In
response, switches send cumulative statistics of sent and
received packets to the controller. To generate accurate flow
statistics, the controller polls at lower intervals which increases
the network congestion between the switch and the controller.
This highlights an important tradeoff between the accuracy
of the statistics gathered from the switch and the network
management overhead [31], [32]. However, in this work, we
seek to mitigate this tradeoff by using non-cumulative statistics
instead of cumulative statistics. This means that every poll
from the controller to the switch resets the flow gauges on
the controller. It is important to note that this functionality
is not supported on many SDN controllers; therefore, it is
accomplished by reading the latest polling interval’s flow
details from the switch and subtracting the previous poll value.
This allows each non-cumulative statistic to be treated inde-
pendently; hence, it increases visibility into the new interval
by not including the events that happened before this period.
To identify the optimized non-cumulative polling length, we
train the classifier for varying polling intervals from 1 to 120
seconds for each dataset.

C. Proposed Stateless Flow-based Features

We explore stateless flow-based features and analyze their
suitability for IoT device classification and DDoS detection.
These features can be generated without splitting the incoming
traffic streams based on IP sources, making them flow-based
features. These features are also stateless because only easily
accessible header information is used and the packets are
never decapsulated. Furthermore, these proposed features are
adopted for both device classification and DDoS detection,
making it efficient for feature extraction.

All of the IoT home devices present in the SIOTLAB
and UNSW datasets are listed in Table I. Please note that
even though we listed switches and triggers as one device
category, they are distinct. Switches are the devices that help
turn on/off the connected appliances, such as the TP-Link
Smart Plugs, while triggers are the devices that activate on
an event, for example, WeMo Motion Sensors. The average
distribution of TCP, ICMP, UDP, and other protocols reveals

TABLE I
IOT DEVICE CATEGORY AND TYPE: SIOTLAB AND UNSW DATASET

Device Category Device

Switches/Triggers WeMo Motion Sensor and Power
Switch, TP Link Smart Plug, Chrome-
cast

Camera Systems Ring Camera, Nest Camera, Samsung
Camera, Netatmo Camera

IoT Hub Devices Amazon Echo, LiFX, Hue Bulb,
iHome, Google Home

three important patterns. Firstly, Figure 2 (a) shows that the
percentage of UDP traffic with switches/triggers is 99.57%.
This is because switches/triggers require minimal delay and
exchange very small amounts of data. Therefore, they can
perform application-layer-controlled retransmissions to ensure
reliability [33]. The switches/triggers also generate the burst
flows, which inflates the average number of packets per non-
cumulative statistic as seen in Figure 3 (i).

Secondly, Figure 2 (b) shows camera systems have adopted
the highest TCP percentages in the dataset. This is due to
the increase in popularity of TCP, as modern camera systems
are integrated into front-end connection-oriented application
platforms [33]. Also, camera systems employ large payload
sizes for images to be displayed on front-end applications
as seen in Figure 3 (h). Cameras exchange an average of
6.9 packets per non-cumulative statistic, which is more than
that of hubs and less than that of switches/triggers as seen in
Figure 3 (i). This is due to cameras requiring to transmit large
amounts of image data while also using large payload sizes
in the packets. This keeps the average packet count below
those of switches/triggers, but also greater than IoT hubs. The
camera systems also have a low IP diversity ratio as seen in
Figure 3 (g); therefore, they mainly interact with one to two
other devices in any given non-cumulative statistic.

Thirdly, Figure 2 (c) shows that IoT hub devices generate
UDP packets because they are mainly real-time voice assis-
tants which require minimal latency, but at the same time they
show a higher TCP percentage because they typically com-
municate with external services to respond to user queries and
requests [33]. These devices typically interact with a variety
of unique IP destination addresses and send high number of
packets. This causes the IP diversity ratio to average at around
0.6 as seen in Figure 3 (g). This means that hub devices talk
to many different users at once and spread out their traffic
to respond to these destination IP addresses. This is because
hubs have to communicate with users and backend servers
to respond to user requests. Therefore, their communication
typically demonstrates bursty flows with small payload sizes
that are destined to a wide variety of IP addresses. Finally,
these systems tend to have the idlest time, with an average of
4.8 packets per non-cumulative statistic as seen in Figure 3
(i).

When looking at the differences between attack and benign
data, important differences emerge. Firstly, DDoS attacks
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Fig. 3. The higher shift in IP diversity ratio, packet size, and packet count allows us to classify devices and identify DDoS attacks with a threshold accuracy
of 95%. All of these values are obtained from flow data with an optimized polling interval of 24 seconds. The benign samples are collected for 24 hours
while the attack samples are collected over 10-minutes time frames.

typically target one victim device. This drastically drives down
the IP diversity ratio. This is is highlighted in Figure 3 (a) and
(d). The IP diversity ratio during attacking scenarios is under-
neath 0.002 which is significantly lower than in benign flows.
Secondly, devices seeking to perform a DDoS attack will
attempt to flood a system; therefore, packet size is minimized
in order to get the highest throughput for packets highlighted
in Figure 3 (b) and (e). Finally, the packet count per non-
cumulative statistic is also significantly higher during an attack
period versus a benign period as seen in Figure 3 (c) and (f).
This allows these features to perform both classification and
DDoS detection. These features are summarized below:

• Protocol percentage: For each polling interval, the per-
centage of ICMP, TCP, and UDP packets is calculated.
Figure 2 shows the traffic generated by the IoT devices
exhibit varying protocol distributions that help to classify
IoT devices. Summarily, this distribution changes when-
ever an attack occurs. For example, TCP-SYN attacks
cause the percentage of TCP packets to increase from a
device’s normal distribution of features.

• IP diversity ratio: This metric is calculated as the
number of unique IP addresses divided by the total
packets sent by a device in a polling interval. Typical
IoT devices usually communicate with a limited number
of devices and servers on their network, while victim
devices typically receive attack packets from much more
diverse attacking devices. This causes the attacking flows
to have a significantly lower IP diversity ratio compared
to benign devices. Figures 3 (a) and (d) highlight this
effect.

• Packet count and size: These features are based on the
observation that the distribution of packet size differs
significantly among IoT devices and among benign and

DDoS attacks. The attacker keeps the size of the attack
packet as small as possible to avoid extra overhead, and
the payload size typically small and has minimal variance
in DDoS attacks [24]. This is due to flooding DDoS
attacks requiring high transmission rates. Furthermore,
DDoS attacks typically have high packet counts per non-
cumulative statistic. These observations are shown in
Figures 3 (b), (c), (e), and (f).

IV. PROPOSED SECURE HOME ARCHITECTURE

The proposed architecture operates in two phases: in phase
I, the SDN controller places a device in the unverified VLAN
with lower QoS. Later, the OVS switch generates the flow data.
The Faucet controller collects this flow data by polling the
OVS switch. Later, the Faucet controller extracts the features
on a per-device basis (using their IP addresses) and feeds the
features to the classifier. The classifier then predicts whether
each device is malicious or benign along with the device
category. Suppose a device falls into one of the categories as
shown in Table I. In that case, the controller moves it to the
verified VLAN; else, it is flagged and remains in the unverified
VLAN, and the second phase is initiated. During phase II, for
the flagged devices, the controller runs the classifier, and if
an attack is detected, the device is removed from the network,
blocking the attack.

V. RESULT AND DISCUSSION

We test three machine learning models for IoT device
classifications and DDoS detection.

• K-Nearest-Neighbors (KNN)
• Support Vector Machine with linear kernel (LK-SVM)
• Random Forest using Gini impurities (RF)

These machine learning models are chosen because of their
widespread usage in the literature for IoT device classification
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Fig. 4. Accuracy of KNN, RF, and LK-SVM for (a) SIOTLAB dataset, (b) UNSW’s dataset, and (c) the combination of both datasets. All models demonstrate
accuracy improvement versus increasing polling interval.

and DDoS detection [17], [23], [30], [34]. We use these
machine learning models implemented in the Scikit-learn
Python library [35]. Since our major focus is to evaluate
the effectiveness of the proposed feature set, all the hyper-
parameters are the default unless otherwise stated. We split
each dataset into 75% training data and 25% testing data.
Furthermore, each class type is balanced in order to ensure
strong validation results and to mitigate bias in the machine
learning models.

To determine the association between polling intervals and
the accuracy of machine learning models, we train and test
them against various non-cumulative statistics gathered at
different polling intervals. Figure 4 shows that an increase
in polling interval results in a higher accuracy for all three
models (KNN, LK-SVM, and RF). The is because compared
to a small polling interval, more non-cumulative statistics are
collected during a long polling interval, and this results in
lower variations of the features. This is seen in Figure 5
where the standard deviation of the features remains below 0.1
or drops drastically as the polling interval is increased. This
allows the features to stabilize without utilizing historic data
as long as the polling interval is sufficiently large. Employing
longer polling interval also reduces network management
overhead. However, it is important to note that long polling
intervals decrease the responsiveness of the SDN controller.
For example, if a polling interval is 20 seconds, the controller
can only receive new data every 20 seconds and process it
before making a decision. In contrast, a 50-second polling
interval takes a minimum of 50 seconds to detect an attack.
Consequently, a SDN controller must mitigate attacks in an
adversarial environment before substantial damage to home
devices can occur. Therefore, an optimal polling interval must
be selected to establish a tradeoff between responsiveness,
accuracy, and overhead.

When selecting the optimal polling interval, 24 seconds is
chosen for two primary reasons. Firstly, among KNN, LK-
SVM and RF, KNN can achieve accuracy higher than 95% for
polling intervals longer than or equal to 24 seconds. Secondly,
our prior work [10] has identified that the minimum attack
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Fig. 5. (a)-(f): Normalized standard deviation of the percentages of packets
belonging to various protocol types. (g)-(h): Normalized standard deviation
of the diversity of the destination IP address of packets. The left column
present the results for Wemo Motion Sensor, and the right column represents
the results for TP Link Smart Plug.

duration to disconnect an IoT device from the AP is 120
seconds. Hence, using 24 seconds as the polling interval leaves
the model with enough time to block or remove devices attack-
ing the smart home network before a device is disconnected
[10]. This balances the needs for system responsiveness, high
accuracy, and low overhead.

When evaluating the datasets, KNN performs the best with
99.8% average accuracy in the SIOTLAB dataset. Further-



TABLE II
TRAFFIC CLASSIFICATION RESULTS (SIOTLAB DATASET)

Class KNN LK-SVM RF

Switches/Triggers 99.2% 87.0% 98.6%

Camera Systems 98.1% 93.3% 96.5%

IoT Hub Devices 99.3% 92.1% 98.9%

DDoS Attacks 99.9% 94.9% 99.1%

TABLE III
TRAFFIC CLASSIFICATION RESULTS (UNSW)

Class KNN LK-SVM RF

Switches/Triggers 96.7% 78.2% 77.3%

Camera Systems 97.1% 72.8% 81.2%

IoT Hub Devices 96.0% 69.3% 78.6%

DDoS Attacks 97.8% 79.5% 80.8%

TABLE IV
TRAFFIC CLASSIFICATION RESULTS (SIOTLAB AND UNSW DATASET)

Class KNN LK-SVM RF

Switches/Triggers 94% 65.2% 75.0%

Camera Systems 93.1% 67.8% 73.9.2%

IoT Hub Devices 96.2% 59.3% 71.6%

DDoS Attacks 99.2% 73.2% 80.8%

more, KNN also performs the best with 97.9% accuracy
for the UNSW dataset. Finally, for the combined dataset,
KNN accuracy remains high at 96.5%; however, the average
accuracy of LK-SVM and RF drops significantly highlighted
in Figure 4 (a)-(c). To identify the reason for the varying
performance of models, we analyzed the data and reached
the following conclusions. First, the data is tightly clustered
among samples belonging to the same device and category.
This helps KNN to pull the k nearest neighbors accurately.
Second, the data is not axis-aligned; thus, RF, an ensemble of
axis-aligned decision trees [36] does not perform well. Finally,
LK-SVM does not achieve high enough accuracy due to the
difficulty of cutting decision regions into linear hyperplanes.
This is because clusters can create dimensional spaces that are
significantly more difficult to cut into linear regions; hence,
KNN proves to be a suitable model for device classification
and DDoS detection.

This proposed scheme’s accuracy with the KNN model
makes it a strong competitor with existing works. For exam-
ples, Hamza et al. [23] achieved peak accuracy at 97.5%
while this work combines their dataset (UNSW) and our own
(SIOTLAB) to achieve an accuracy of 98%. Furthermore, their
work uses 20 total features while the proposed system uses six
features.

The final consideration for smart home deployment is the
memory requirements. Smart home IoT gateways do not have
high amounts of physical memory; therefore, the dataset must
be reduced as much as possible. Figure 6 shows the variation
of KNN accuracy with training dataset size for combined
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Fig. 6. For the combined dataset, using KNN shows 95% accuracy for 1820
data points, meeting the low memory requirement.
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Fig. 7. The relative importance of all six features when applying KNN on
the combined dataset with a 24-second optimal polling interval.

dataset and 24-second polling interval. A dropout from each
class of the data is performed in order to minimize the dataset
size. Also, the non-cumulative statistics that only include
signaling information such as DNS and NTP are removed. The
total dataset is reduced to 1820 data points before crossing the
95% threshold.

To determine the KNN model’s latency for the 24-second
non-cumulative statistics, we test it with the training dataset
that includes 1820 data points. This is important because the
KNN model scans its historical training data before each
inference. Thus, KNN often has a slow inference speed. To
measure the KNN’s average latency, we run approximately a
hundred trials of device classification and DDoS detection on
a machine with a 1.4 GHz i5 processor and 4 GB of RAM.
These trials yield an average latency of 1.18 milliseconds (ms).
This optimized storage of training data and low latency allows
for more accessible lightweight edge deployments.

The relative feature importance after minimization of com-
bined dataset and KNN is plotted in Figure 7. This feature
importance is calculated by performing a permutation of the
features and randomly dropping subsets of the feature set. This
results in an accuracy drop that is converted into a percentage
for the relative impact of each feature on the classification for
any model. This is accomplished by using the SciKit Learn
feature permutation function from [35]. As shown above, the
IP Diversity Ratio contributes approximately 20% to the device
classification and DDoS detection efficacy. This suggests that
this feature is a valuable addition for both device classification
and DDoS detection.

Table V shows various metrics used to compare the pro-
posed solution with existing solutions. The proposed solution



TABLE V
COMPARISON WITH EXISTING WORK

Existing Work Maximum
Accuracy

Detection Type Dataset Storage Latency Feature
Count

Owusu et al. [26] 92.7% Classification Tor dataset No No 6

Reza et al. [27] 97.6% Classification Custom dataset No No 13

Xu et al. [28] 87.8% Classification Custom dataset No No 21

Hamza et al. [23] 97.5% DDoS UNSW Yes Yes 20

Doshi et al. [24] 99.8% DDoS Custom dataset No No 11

Yang et al. [25] 99.8% DDoS KD99 No No 9

Proposed
solution

99.9% Classification
and DDoS

Custom (SIOTLAB) and
UNSW Dataset

Yes Yes 6

yields a high accuracy while performing both device classifica-
tion and DDoS detection. We also measure latency and storage
requirements for realistic edge deployment. Further, the results
are validated by using data from two different testbeds. The
proposed solution uses a limited feature set, specifically only
six features. This makes the training data for our system
significantly smaller than that of other works. The optimal
KNN model in this work takes up 541.282 KB. The work
from Hamza et al. [23] had a model size of approximately
14.2 MB. However, it is fair to note that their model did rely
on optimizations routinely used in scikit learn. Nonetheless,
the proposed model outperforms other models by reducing the
trained model size from 14.2 MB (in [23]) to 541.282 KB.

When comparing latency, it is essential to note that different
machines will have heterogenous hardware components that
can allow for different latencies. Moreover, the RAM and CPU
clocking speed can drastically affect latency time. Therefore,
we just present the hardware setup used in different works
and their corresponding latency. In particular, our experiments
are conducted on a machine with a 1.4 GHz Intel Core i5
processor and 4 GB of RAM, and achieved an average latency
of 1.18 ms. Hamza et al.’s [23] achieved 13 ms latency
time on an Intel Core CPU 3.1 GHz laptop with 16 GB of
RAM. Finally, our system performs both device classification
and DDoS detection, which extends prior solutions that only
focused on either device classification or DDoS detection.

VI. CONCLUSION

In this work, we propose a SDN-based security architec-
ture for smart homes. In particular, we perform IoT device
classification and DDoS detection using a minimal set of
features, including the percentage of ICMP, TCP, and UDP
flows, packet size, packet count, and IP diversity ratio. We
also evaluate the following machine learning models: KNN,
LK-SVM and RF. The proposed solution meets the memory,
latency, and security requirements by reducing the training
dataset size, selecting an appropriate machine learning model,
providing stateless and easy-to-calculate features, and increas-
ing the polling interval to reduce overhead on SDN controller.
We observe that for the proposed feature set and longer polling
intervals (i.e., more non-cumulative statistics), KNN performs

better than LK-SVM and RF. Also, for 1820 data points and a
24-second optimal polling interval, KNN achieves greater than
95% accuracy with an average latency of 1.18 milliseconds.
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