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Abstract—The problem of estimating the pose of metallic
objects with shiny surfaces is studied. A new application has
been developed using state-of-the-art 3D object segmentation
(euclidean clustering) and pose estimation (ICP) methods. We
analyze the planar surfaces of the metallic objects in 3D laser
scanner data. First we segment these planar objects using
euclidean clustering based on surface normals. Thereafter to
estimate the pose of these segmented objects we compute Fast
Point Feature Histograms (FPFH) descriptors. Finally we use
an ICP algorithm that computes the rigid transformation with
Singular Value Decomposition(SVD). Two different round of
experiments are conducted:- one for the clustering and the
other one for the pose estimation. We present the experimental
results and analysis along with the possible application scenario
and future work.
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I. INTRODUCTION

The pose estimation has gained a lot of attention in
computer vision community in recent years. Although there
is still a gap to be filled by bringing the computer vision on-
line/offline recognition systems for the robotics community.
We focus on a simple planar object pose estimation method
at the cost of acceptable recognition rate. The high recogni-
tion is not required in this typical pile of object application.
The objects which will not be recognized in the first round
will be treated in the next data scan.

In this work, we investigate the object recognition and
pose identification of metallic objects for bin picking appli-
cations. We studied a two step procedure:- (i) segmentation
of the planer objects using euclidean clustering based on
the angular deviations between geometric surface normals,
and (ii) the pose estimation of extracted clusters using
Fast Point Feature Histograms (FPFH) descriptors with the

representation of a rigid transformation.

II. RELATED WORK

A Generalized Hough Transform based 3d object de-
tection method has been proposed by N. Guil et. al [3].
They calculate tilt and pan transformations between the
image and template to detect planar objects. Another Pose
estimation for planar structures has been proposed by Gilles
Simon et. al [4] by computing homo-graphic projection
matrix in the image. They compute camera pose using
homo graphic information between consecutive images. The
method is composed of single plane and multi plan registra-
tion schemes and has been tested in indoor as well as outdoor
environments.Carmen de Trazegnies et. al [5] has proposed
a contour based 3d planar object recognition method. A
linear combination of planar images in a sequence of views
has been introduced in the Fourier domain using Hidden
Markov Models. A 3d planar object pose estimation method
using eigenspace analysis and range data analysis has been
investigated by Ovidiu Ghita et. al [7]. The approach is based
on a rejection criteria by computing surface normal in the
scene and relevant object model. Another normal estimation
of 3D planer objects pose using Bayesian inference method
has been proposed by Changhai Xu et. al [8]. The method is
robust to find an optimal solution for low-textured and high-
textured planer objects in a noisy data. Mondragon, LF. et. al
[9] has proposed a real time 3d UAVs pose estimation using
projective transformation of planer objects. This method has
been tested to track homographies based planar objects in
aerial data.

We address the problem of pose estimation by computing
the rigid motion from an identified object with an unknown

pose to an object model with a known pose. When using 3D



scanners, this rigid motion is obtained by registering the 3D
point clouds. 3D registration is classified into two problems,
coarse and fine registration [6]. Their difference is based on
whether an initial guess of the rigid motion is available. If
this initial guess is available, a fine registration is sufficient.
However, in most cases this information is not available.
Coarse registration techniques generate an initial guess of the
motion between two point clouds. This guess is estimated
by matching correspondences. The correspondence matching
can use local descriptors which represent the surrounding
surface of a single point (Point Signatures [18], Spin Images
[15]) or global descriptors, which are representations of the
surface of the complete point cloud (Principal Component
Analysis [16], Algebraic Surface Models [17]).

Since the introduction of point signatures and spin images,
new local feature descriptor alternatives have been devel-
oped. These alternatives differ on their computation tech-
niques, either as a signature/histogram or on the description
of relationships between neighboring points, based on their
surface normals (Point Feature Histograms [12], Signature
of Histograms of Orientations [19]).

The matching and rigid motion estimation step is gen-
erally implemented with RANSAC-based algorithms, as
introduced by Chen et al.[20] and Feldmar [21]. Chen et
al. sample point triplets between point clouds to find the
best euclidean motion. They demonstrate that 3 points is
the minimum required to estimate the rigid motion, if no
additional information on the points is available. Feldmar
uses a single sampled point, however he considers the
surface normal and principal curvature of the point. These
techniques have been extended to using local features. Radu
et al. [11] introduce a Sample Consensus Initial Alignment
algorithm (SAC-IA), that samples point triplets based on
their Point Feature Histogram correspondence.

Fine registration methods use an initial estimation to
converge to a more accurate solution. The most widely
used fine registration method to date is the Iterative Closest
Point (ICP). The point-to-point ICP algorithm was first
described by Besl and McKay [13]. Zhang [14] adds a
robust outlier rejection in the matching correspondences
stage. Chen and Medioni [22] created the point-to-plane
variant, which considers the locally planar surfaces.

We use the Fast Point Feature Histogram (FPFH) de-

scriptor with the SAC-IA to find our initial guess [12]. For
fine tuning the initial guess, we use an ICP algorithm that
computes the rigid transformation with Singular Value De-
composition(SVD). These methods have been implemented
within the framework of the Open Source Point Cloud
Library (PCL) [23].

III. DATA ACQUISITION

We have collected the data using the hand held laser
scanner ModelMaker D100 [3]. This can make scans with
stripes of width 50,100 and 200 mm and provides better
scans with glossy and highly changing contrast surfaces. The
data has been collected with a minimum sample distance
(0.4mm) and the maximum sample distance (1.0mm) as
shown in the (Fig.1), (Fig.2).

Figure 1: Laser Scanner ModelMaker D100: Scanning Scenario

IV. SURFACE NORMALS ESTIMATION

The surface normals are generated using surface normal
estimation from the mesh based on the sensor viewpoint as
presented in the (Fig.3). A triangulation mesh is composed
of set of vertices PV = [p;: 1 <i < np] and triangles T =
[tj:1 < j<nr]. The surface of each triangle are computed.
The surface normals of each vertex point n = (ny,ny,n;)
are estimated by weighting the surface normals of the

neighboring triangles [1],[2].



Figure 2: An example scene with a un-ordered pile of objects:
Closer View

Figure 3: A pile of objects with surface normals

V. EUCLIDEAN CLUSTERING

We have a scene containing a pile P of unorganized
metallic objects placed on top of each other inside a box. The
pile consists of the same metallic objects, but with different
orientations. These objects have a completely planar surface
on one side and a semi-planar surface on the other.

The objective is to find and segment the objects whose
planar surface is visible to the sensor. This is done by
extracting n-clusters C from pile P that represent the planar
objects. A simple Euclidean clustering consists on extracting
clusters of data that lie within a certain search radius. We
extend this technique to only cluster data that represents a
planar surface. We do this by analyzing the angle deviations

between the surface normals of the clustered points within

a search radius.
The estimated surface normal directions ny,ny,n; repre-
sent the surface normal vector n. We compute the angle 0

between two normals n;,n; as follows:
0;j = arccos(n; -n;) (1)

This angle is computed for every point-pair within a Eu-
clidean cluster. We set an angle threshold €. € is the
maximum permissible angle between surface normals that
can belong to a plane. If 6;; > ¢ for points p;, p; within a
euclidean cluster, p; is rejected from the cluster. This anal-
ysis is applied to each point neighbor during the Euclidean
cluster creation. For fast nearest neighbor search, we use
a kd-tree representation of the point cloud [11]. This was
implemented under the Open Source Point Cloud Library
Framework [23].

A. The Clustering Algorithm

The algorithmic steps are the following:-

1) We acquire a point cloud of pile P containing 3D
coordinates and ny,ny,n, directions of each points
surface normal.

2) We create a kd-tree representation of the point cloud
of the pile P based on the 3D coordinates.

3) We create an empty list of clusters C and a list of
points that need to be processed L.

4) For every point p; in P, we perform the following
steps:

e« Add p; to the list of points that need to be

processed L.

« For every point p; in L, we perform the following
steps:

— We search for the nearest neighbors NN’ of p;
within a sphere of radius r < dj;

— For every neighbor nn};, we check if the point
exists in L, if it exists we skip to the next neigh-
bor nnj{ 41> otherwise we apply the following
check.

— We estimate 6 for p; and its valid neighbor nn!,
if 8 < € we add it to L, otherwise we skip to

the next neighbor

« When all points of L have been processed, we add

it to the list of clusters C, and reset it to empty.



5) This algorithm terminates when all points in P have

been processed and belong to one cluster.

B. Experimental Results

We set the following parameters for the decomposition
of a region of space into clusters based on the euclidean

distance between points, and the normal angular deviation.

o dy: Is the maximum spatial cluster tolerance. It is
computed as a measure in the L2 Euclidean space.
We have analyzed the points distribution of the object
model generated by the laser scanner and found that
the minimum sample distance is 0.4mm. Considering
this, we limit the cluster growing to one or two nearest
neighbors so we use d;; = lmm.

e &: This is the maximum allowed angular difference
between normals in radians for cluster/region growing.
This is the most important parameter for the specific
clustering of planar objects. Initially, we have computed
the angle difference between normals of a planar model.
We take this into account and identified 0.3 rad as a
maximum tolerance € for discarding points that do not
lie on a plane.

o MinClusterSize: Not all extracted clusters are used for
identification. We limit the size of the clusters by setting
a minimum number of points that a cluster may contain.
We have chosen 1000 points as a minimum size of the
cluster, this value is the total number of points contained
in the planar object model.

In (Fig.4) all the extracted clusters are shown which
are below the above specified threshold parameters in the

euclidean clustering process.

VI. CLUSTER REGISTRATION

We estimate the pose of a specific object cluster C;
by registering it to a model M. We use a two step 3D

Registration procedure:-

1) Coarse Registration: We match correspondences be-
tween C; and M based on local features. Using these
correspondences we estimate a rough rigid transfor-
mation between them.

2) Fine Tuning: The rough rigid transformation is used an
initial guess for a fine registration method like Iterative
Closest Point (ICP) [13] [14].

e

Figure 4: An example of extracted clusters

For the Coarse Registration step we compute Fast Point
Feature Histograms (FPFH) [12] descriptors to find the
correspondences between the model M and the cluster C;.

FPFH Descriptors represent the geometry of a point’s
neighborhood, by computing histograms of relationships
between point-pairs. The relationships are the relative dif-
ference between a point-pair’s 3D coordinates x,y,z and
surface normals n = (ny,ny,n;). These relative differences
are computed as a triplet of angles < &, ¢,60 > between a
pair of normals n;,n; within a fixed coordinate frame [12].

To find correspondences in the FPFH search space and
estimate a rigid transformation, we use the Sample Consen-
sus Initial Alignment (SAC-IA) method proposed by Rusu
et al [11] [12]. In this method, correspondence candidates
are sampled and ranked by computing an error metric. The
rigid transformation that generated the lowest error metric
is used as the initial alignment.

The fine tuning method used is the Standard ICP point-
to-point method [14]. The ICP algorithm can be described
in two steps:

1) Searches for correspondences in the 3D space using a

nearest neighbor approach.

2) Estimates a rigid transformation that minimizes the

distance between the corresponding points.
The method iterates over these two steps to find the trans-
formation that yields to a minimum distance or threshold.

A. The Pose Estimation Algorithm

As an initial offline step the FPFH descriptors of M are

computed. The algorithmic steps for pose estimation are the



following:-
1) We compute the FPFH descriptors of cluster C;.
2) We estimate a coarse rigid transformation, using the
SAC-IA algorithm:

a) Select n (3) random points from cluster C;, whose
pairwise distances are greater than minimum
threshold d,,;, (2cm)

b) A set of m (10) corresponding points from the
model M, whose histograms are similar to the
cluster point are chosen. For each cluster point
a match is randomly selected from this set of
similar points.

c) A rigid transformation is computed between the
sampled points from C; and the corresponding
points from M. An error metric that describes
the quality of the transformation is computed.

We iterate over this step with a user-defined number of
iterations. The rigid transformation yielding the lowest
error metric is chosen.

3) We use the rigid transformation computed in the last
step as an initial guess to ICP.

4) The final rigid transformation is obtained.

We follow these steps for every cluster C; extracted from P.

B. Experimental Results

As an initial offline step we have generated a 3D model
of the metallic object M using the Focus Handheld Software
provided with the laser scanner (Fig.5). Each extracted
cluster is registered to this model to generate a rigid trans-
formation matrix.

Figure 5: An example of metallic object 3d Model

We have identified one negative (Fig.7) and ten positive
aligned clusters (Fig.6). The local FPFH descriptors of
planar surfaces like the extracted clusters are very similar.

The similarity between the descriptors may lead to align
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Figure 7: Negative Aligned Clusters to the Model

the planar surfaces in opposite direction. This behavior was
identified with occluded clusters and clusters with non-
uniformly distributed points. The computed features from
non-uniformly distributed points in the clusters may get into
a local minima while aligning to the model. We have used
Point Cloud Library (PCL) implementations of algorithms
for this task. [1] [2].

VII. APPLICATION

We aimed the 3d metallic object recognition task for a
bin picking application scenario. We plan to use KUKA
Lightweight Robot (LWR 4) which is developed for a
payload of 7 Kg and itself has a mass of 15 Kg [10]. It
has a small 2 finger gripper which can pick the estimated

metallic objects from a pile based on their pose (Fig.8). We



focus to scan the object as an offline activity and bring the
segmentation and pose estimation task on-line. Additionally
a ranking module is under-development for computing the
rank of good aligned clusters based on the fitness score of

the registration.

Figure 8: An example of the possible future application scenario

VIII. CONCLUSION

We have presented a simple method for planar object
segmentation and pose estimation with quite promising
results. As presented in the experimental results, most of
the clusers are well aligned to the model. There exists very
few flipped and negatively aligned clusters due to the non-
uniform distribution of points. For these specific metallic
objects laser scanner has been used, because it can deal
with the reflectance of the metallic surfaces. This method
is extend-able to other planar objects obtained by stereo or
kinect sensors. We plan to work on real life non-metallic
objects obtained by Kinect while they provide comparable
planar surfaces. In the future work, we will use the estimated

pose for a bin picking application.
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