Designing DNNs for a trade-off between robustness
and processing performance in embedded devices*
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Abstract—Machine learning-based embedded systems em-
ployed in safety-critical applications such as aerospace and
autonomous driving need to be robust against perturbations
produced by soft errors. Soft errors are an increasing concern
in modern digital processors since smaller transistor geometries
and lower voltages give electronic devices a higher sensitivity
to background radiation. The resilience of deep neural network

(\J (DNN) models to perturbations in their parameters is determined,
(O to a large extent, by the structure of the model itself, and also by
(\Jthe selected numerical representation and used arithmetic preci-
sion. When compression techniques such as model pruning and
model quantization are applied to reduce memory footprint and
computational complexity for deployment, both model structure
Dand numerical representation are modified and thus, soft error
robustness also changes. In this sense, although the choice of
activation functions (AFs) in DNN models is frequently ignored,
——it conditions not only their accuracy and trainability, but also
(Dcompressibility rates and numerical robustness. This paper in-
vestigates the suitability of using bounded AFs to improve model
“robustness against DNN parameter perturbations, assessing at
(/) the same time the impact of this choice on deployment in terms
() of model accuracy, compressibility, and computational burden.
——in particular, we analyze encoder-decoder fully convolutional
models aimed at performing semantic segmentation tasks on
thperspectral images for scene understanding in autonomous
>driving. Deployment characterization is performed experimen-
c\Itally on an AMD-Xilinx’s KV260 SoM.
Index Terms—robustness, activation function, model compres-
sion, edge computing, semantic segmentation
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I. INTRODUCTION

C;{ Deploying Al accelerators on the edge help to reduce issues
related to security, reliability, and high response latencies
(\Jby avoiding the communication of data from/to external,
~_ more powerful computing platforms. Moreover, by providing
. —full execution autonomy to complex Al algorithms such as
><deep neural networks (DNNs), AI can be applied to tasks
Ewith strict communication, reliability, and real-time response
requirements. Computer vision-based intelligent systems for
autonomous driving systems (ADSs) and aerospace applica-
tions are two relevant examples with high economic impact.
However, the success of DNNs in many applications very often

*This work was partially supported by the University of the Basque Country
(UPV-EHU) under grant GIU21/007, by the Basque Government under grants
PRE_2023_2_0148 and KK-2023/00090 and by the Spanish Ministry of
Science and Innovation under grant PID2020-115375RB-100.

2" Koldo Basterretxea
Dept. of Electronics Technology
University of the Basque Country

Bilbao, Spain
koldo.basterretxea@ehu.eus

3 Javier Echanobe
Dept. of Electricity and Electronics
University of the Basque Country
Leioa, Spain
franciscojavier.echanove @ehu.eus

comes at the cost of designing highly complex models with
millions of parameters that require tens of giga floating-point
operations (GFLOPS) per inference. Deploying such models
on resource-constrained embedded AI processors inevitably
requires applying certain compression techniques and address-
ing a trade-off between accuracy, hardware occupation, and
inference speed.

In addition to the above, a major concern in the deploy-
ment of Al-based autonomous systems is the requirement of
meeting strict safety and reliability standards, especially in the
aerospace (ARP-4754) and automotive (ISO 26262) industries,
One of the main factors that jeopardize the reliability of such
systems is the exposure of electronic components to back-
ground radiation. This is particularly true for memory devices
that rely on storing small amounts of charge and that also
occupy large proportions of total silicon area. In the simplest
case, the logical value stored in a cell may be perturbed,
resulting in a single event upset (SEU) or a single bit upset
(SBU) if just a single bit is altered. Field programmable
gate arrays (FPGAs), which are increasingly being used in
these fields, are particularly sensitive to SBUs, since both
the configuration memory (LUTs) and the sequential elements
of the deployed circuit (flip-flops or Block RAMs) can be
affected. Without sufficient protection against soft errors, the
mean time between failures could be seconds.

Most published papers on the field have focused on image
classification tasks, with little attention to semantic segmenta-
tion models. The most widely used approach to assess DNN
robustness is through simulated software fault injection (FI)
campaigns, while only a few authors report a theoretical
analysis based on vulnerability models [1]]. One of the most
exhaustive analyses of the vulnerability of 32-bit floating-
point convolutional neural networks for image classification is
described in [2]. The key findings are that most of errors come
from drastic spikes in parameter values, with positive ones
being more threatening, and that dropout and batch normal-
ization layers are ineffective in preventing error propagation.
It is also worth mentioning the work presented in [3[], in which
two software tools for exhaustive FI in both TensorFlowl and
TensorFlow?2 [4] frameworks are explained.

Regarding methods to harden DNNs against soft errors, the
main approaches include redundancy, parameter modification,
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changes in the training/inference strategy, and reshaping of
activation functions (AFs). However, most of them require
additional computing resources, making its applicability to
embedded systems difficult. Particularly interesting is the work
in [5]], where the authors observe that the least significant
bits of the mantissa of the parameter values are weakly
linked to accuracy. Accordingly, the authors present MATE,
an error correction tool with no memory overhead based on
the substitution of those bits by error correction codes for
the weights. A different methodology is presented in [6],
where the maximum values of the AFs are evaluated and then
replaced with either lower or upper-bound values to reduce
the propagation of errors through layers.

In this work we study the suitability of using bounded AFs
as a means to improve the robustness of image segmentation
DNNs and how this choice can impact the performance and
implementability of these models. With this aim, we analyze
the process of deploying an encoder-decoder DNN on an
FPGA for a real-world task: the semantic segmentation of
hyperspectral images in the context of autonomous driving.

Section [[I] describes how the DNN under study has been
developed in terms of selection of the AFs, training, pruning,
and quantization for deployment on edge devices. In Section
we analyze the effects of applied compression techniques
on model robustness according to the choice of the AFs by
means of an statistically significant FI campaign. In Section
we give details about the deployment of the models on an
FPGA and report comparative performance figures. Finally,
the concluding remarks are presented in Section [V]

II. MODELS’ DEVELOPMENT

The reference segmentation model in this study is a U-
Net, an encoder-decoder fully convolutional network for image
segmentation tasks. This DNN has been adapted to use hy-
perspectral images (HSI) from HSI-Drive v2.0 [7], a dataset
intended for developing ADS systems using HSI. The most
recent version, described in [8]], is based on a 5-level encoder-
decoder architecture containing two sequences of 3x3 conv2D
layers (initially with 32 filters) followed by Batch Normal-
ization and Rectified Linear Unit (ReLU) AFs at each level.
Additionally, it includes one 2x2 Max-pooling 2D layer per
encoder level and one 2x2 conv2Dy, layer per decoder level.
The resulting model features 31.14 million parameters and
requires 34.60 GFLOPS per inference to execute.

Since the lack of bounds in most widely used AFs for DNN
implementation (e.g. ReLU) facilitates the propagation of soft
errors, in this article we also explore the use of squashing
AFs, such as Sigmoid and Hard Sigmoid, being the latter a
more basic, computationally efficient version of the former [9].
The objective is to analyze their potential benefits on model
robustness, while also assessing their impact on performance
and implementability. The DNNs have been designed with
TensorFlow?2 and trained on a Dell Precision 7920 Workstation
equipped with an NVIDIA RTX 3090 GPU.

TABLE I: IoU of 32-bit floating-point DNNs on the test set.

Class AF ReLU | Sigmoid | Hard Sigmoid
Road 97.84 96.94 96.32
Marks 87.99 82.88 83.43

Vegetation 94.23 92.53 92.39
Sky 92.83 89.47 85.17
Others 78.12 76.38 69.07
Global 94.71 93.32 92.02
Weighted 88.54 84.75 82.69

A. Reference model’s performance

First, the three AFs are evaluated based on their perfor-
mance in training and testing using the reference noncom-
pressed model. The Sigmoid-based and Hard Sigmoid-based
models required 1000 epochs, while the RelLU-based DNN,
which allows for faster convergence, was trained for only
200 epochs. Table [I] shows the best Intersection Over Union
(IoU) results of the 32-bit floating-point DNNs on the test set
according to the used AF.

The best metrics are obtained for the ReLU model, although
in all three cases, the Global IoU (GIoU) is above 92%. The
Weighted IoU (WIoU), which is calculated by weighting each
class by the inverse of its frequency in the dataset, is above
82%. These results are considered satisfactory given the highly
unbalanced nature of the dataset [7].

B. Model pruning

For this model to be implemented on an edge device, it
is necessary to apply certain compression techniques such as
pruning and quantization. Channel pruning aims to reduce
both the number of parameters and the number of FLOPS by
removing channels that have minimal impact on the output.
This is achieved through a model sensitivity analysis which
consists of gradually pruning (in increments of 0.1 in our case)
each of the parameters, while the rest of the model remains
frozen, to estimate which layers are the least essential ones.
After choosing an overall pruning ratio in terms of FLOPS,
each of the layers is pruned accordingly, and then the DNN is
fine-tuned for a certain number of epochs (60 for ReLU and
200 for the other two AFs) to recover any lost accuracy.

This process is repeated twice for each model in what is
known as iterative pruning, thus requiring the whole process
to be repeated on the pruned model after the first iteration.
To consider pruning as valid, a maximum degradation of 1.5
points in both GloU and WIoU has been accepted, ensuring
both remain above 90% and 80%, respectively.

The overall pruning ratios have been: 0.75 (0.5 and 0.5) for
the ReLLU-based model, 0.52 (0.4 and 0.2) for the Sigmoid-
based model, and 0.7 (0.5 and 0.4) for the Hard Sigmoid-based
model. Fig.[T]illustrates the pruning ratio applied to each layer,
where it can be noted that, even though the overall pruning
ratio of the ReLU-based DNN and the Hard Sigmoid-based
model are very similar, the individual pruning ratio greatly
varies from layer to layer, especially in the initial layers of
the encoder and the final layers of the decoder. It can also be
seen that, from layer cnv_6 to layer cnv_15, which are the
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Fig. 1: Overall pruning ratio in each of the layers in the
models with ReLU (0.5 and 0.5), Sigmoid (0.4 and 0.2) or
Hard Sigmoid (0.5 and 0.4) AFs.

ones placed around the base, the Sigmoid-based DNN is more
pruned than the Hard Sigmoid-based DNN.

As the layers next to the base of the architecture are the
ones that contain most of the parameters, even though the
overall pruning ratio in terms of FLOPS is smaller for the
Sigmoid-based DNN, it results in a model containing fewer
parameters than the Hard Sigmoid-based DNN. Table [l shows
the complexity and size of the models, which have been
significantly reduced after the pruning process.

C. Quantization

Quantization is another compression technique aimed at
reducing the size of the parameters to store and accelerating
model inference when deployed on customized hardware. In
this article, we apply a homogeneous post-training quantiza-
tion scheme where all parameters and activations are converted
to 8-bit integers. For further details on the quantization pro-
cess, the reader is referred to [10]]. It is worth noting that
after quantization, the Sigmoid-based model has experienced a
noticeable degradation. To recover the lost accuracy, a process
called fast finetuning has been carried out.

III. ANALYSIS OF ROBUSTNESS AGAINST SBUS

To test the models’ robustness against SBUs, an extensive
FI campaign was conducted on the aforementioned models,
which involved injecting single bit-flips into the parameters
of the DNNs. Perturbations were inserted using our modified
version of the original TensorFI2 framework [4], and the
code is shared at |https://github.com/jonGutil 3/ TensorFI2. To
ensure the statistical significance, which is very important as
stated in [[11]], of the performed FI campaign 1550 different

TABLE II: DNN complexity and size reduction after applying
channel-pruning and quantization.

Metric AF Original | ReLU | Sigmoid | Hard Sigmoid
Params (M) 31.13 0.32 1.38 1.47
OPS (G) 34.59 8.41 16.46 10.35
Memory (MB) 249.04 2.49 11.04 11.76

soft errors per parameter set (a 2.5% error margin, a 95%
confidence level, and a 50% failure probability to maximize
sample size [12]) have been injected. To evaluate the impact
of the FI campaign, it is first necessary to define what an
inference error is. A bit-flip is considered to have caused an
error if the predicted class at any pixel in the test images
changes with regard to the prediction made by the unperturbed
original model, i.e., critical errors. The error rate is therefore
presented as a percentage between 0 and 100, with 100
representing the situation where a bit-flip has changed the
predicted class of every single pixel.

A. Original noncompressed models

Fig. [2] displays the error rate for each parameter set and
flipped bit for the ReLU-based 32-bit floating-point DNN (for
an in-depth analysis of this model the reader is referred to [§]]).
Only sign and exponent bits are shown because perturbations
in mantissa bits generate a negligible amount of errors. Even
though Fig. 2] varies for each of the nonquantized DNNs under
study (nonpruned/pruned and ReLU/Sigmoid/HardSigmoid),
they also share a common pattern.

Firstly, errors primarily occur as a consequence of the
increment of the perturbed parameters’ values. Secondly, the
most sensitive bit is the MSB bit of the exponent as it is
originally a 0’ in most of the DNNs parameters (the ones in
0 < |z| < 2 range). In fact, if the original parameter value is
lorisin 1< |z| < 2 range, a bit-flip converts the parameter
into a =00 or a NalN, respectively. Thirdly, the most sensitive
parameter is the gamma set of Batch Normalization layers
as it usually has a value near 1. Finally, leaving aside the
MSB, the most sensitive zones are the initial layers of the
encoder and the final layers of the decoder, which are both
directly connected to the output as a consequence of the skip-
connections typical of encoder-decoder architectures.

Fig. 3] displays a comparison of measured mean error rates
of each parameter set for the three AFs. The error rates are
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Fig. 2: Bit-flip error rate for the original ReLU-based DNN.
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smaller for the DNNs with squashed AFs, especially in the
kernel/bias parameters of the Conv2D layers, benefiting from
the fact that faulty parameter values cannot grow indefinitely,
and neither can the error. The Hard-Sigmoid-based model
exhibits the highest level of robustness.

Another aspect that differs as a consequence of the AF
used is the range of parameter values. As explained, a range
considered to be potentially dangerous is 1 < |z| < 2. In Fig.
[] the difference between the MSB bit-flip error rate and the
ratio of parameter set values in 1 < |z| < 2 is displayed.
Minor negative peaks are a consequence of the statistical FI
campaign where not all the parameters per set are perturbed.

Fig. @] shows how the MSB bit-flip errors in the central
area of the U-Net, which is composed of the last layers of the
encoder, the base, and the first layers of the decoder, mainly
occur because of the MSB bit-flip of the parameters which are
in the 1 < |z| < 2 interval. At the same time, we can also see
the benefits of using bounded AFs as the MSB bit-flip error
rate is smaller than in ReLU based DNN.

B. Pruned models

In this subsection it is analyzed to what extent the vulner-
ability of the DNNs against SBUs changes as a consequence
of the pruning process described in Section [[I-B] From the
comparison between Fig. [3] and Fig. [5it can be concluded that
the error rate has augmented after the DNNs have been pruned.
However, the three models have not experienced an equal loss
of robustness. The more over-parameterized a model is, the
greater the likelihood that a bit-flip will occur on a less critical
parameter, thus not impacting the predicted classes. Indeed,
the two most pruned models (ReLU and Hard Sigmoid) have
shown the most degradation, while the Sigmoid-based DNN
now exhibits the highest robustness, surpassing the Hard-
Sigmoid in terms of mean bit-flip error rate (as indicated
by the black bar in Fig. [5). Nevertheless, albeit marginally,
the Hard-Sigmoid demonstrates a lower standard deviation,
suggesting less variability in the bit-flip error rate across
different positions.
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. 3: Mean bit-flip error rate in the original model.
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Fig. 4: Difference between MSB bit-flip error rate and ratio
of parameter set values in 1 < |z| < 2. Unfilled dots indicate
MSB bit-flip error rate. Original model.

From this analysis, it may seem that pruning is only recom-
mended for reducing the complexity of DNNs and accelerating
their inference, and that it has detrimental effects on their
robustness. However, in most implementations, the probability
of a SEU occurring in smaller models is also lower due
to decreased device occupation, so to accurately assess the
influence of pruning on vulnerability to SEUs, factors such as
circuit design and chosen target device must be considered.

Pruning also increases the proportion of values in the range
1 < |z|] < 2 by removing channels with parameters that are
usually close to 0 and considered irrelevant.

As shown in Fig. [6] the central region of the ReLU-based
DNN has the fewest errors, with most errors resulting from
bit-flips in parameters within the range 1 < |z| < 2. This
pattern also holds for bounded AFs, where almost all errors
in the central region are due to this kind of bit-flips.
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Fig. 5: Mean bit-flip error rate in the pruned model.



100 e o "o

Base

2 4 2 4
Sigmoid
100 o ™ o 5
50 F° % ° o © ®
o P o o
0 N A Y
Enc2 Enc Base Dec 5 Dec 4
Hard sigmoid
100 ‘ ‘ 2
o o
50 Fo o o© °
o, ° o
0 © O OO o)
Enc2 Enc4 Base

Fig. 6: Difference between MSB bit-flip error rate and ratio
of parameter set values in 1 < |z| < 2. Unfilled dots indicate
MSB bit-flip error rate. Pruned model.

C. Pruned quantized models

Finally, the combined effects of applying pruning and full
integer quantization are assessed. Since this is a general anal-
ysis based on simulations, we used TensorFlow Lite’s quanti-
zation scheme [13]] to evaluate robustness against SBUs, while
the AMD-Xilinx’s Vitis Al tool quantization was applied for
final implementation (see Section [[I-C). The main difference
is that TensorFlow Lite uses a 32-bit integer representation
instead of a 8-bit integer representation for biases (however,
we verified that the variation in GIoU is below £0.08 between
both schemes). According to [[13], the quantized version 7
of a real number r is approximated by (I, where S is a
positive real scale factor, g is an 8/32-bit integer value, and Z
is the zero-point, an integer value which is 0 for symmetric
quantization.

Frr=2S(q—2) (1)

Thus, the value g, resulting from Y = Wz + b is:

— Z2qQuw +Qb) 2

Due to the per-tensor and mainly symmetric quantization
scheme, the number of g; values to store is significantly greater
than that of Z; and S; values, so bit-flips were only injected
on ¢, and qp. The results for the pruned and quantized ReLU-
based model are shown in Fig. []] Although the quantized
model may initially seem less robust than its nonquantized
counterpart, in this case only the biases are sensitive param-
eters. Since biases make up an small part of the model, the
overall proportion of sensitive parameters is much smaller than
in the nonquantized model. Regarding the comparison among
AFs, bounded ones consistently offer greater robustness to the
model as depicted in Fig. [§]
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Fig. 7: Bit-flip error rate for the pruned quantized ReLU-based
DNN (weights are 8-bit long and biases are 32-bit long).
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Fig. 8: Mean bit-flip error rate in the pruned quantized model.

IV. DEPLOYMENT AND PERFORMANCE
CHARACTERIZATION

The DNNs were implemented on an AMD-Xilinx K26 SoM,
which features an XCK26-SK-KV260-G Zynq UltraScale+
MPSoC containing a 64-bit Quad-Core ARM A-53 processor
along with a 16nm FinFET Programmable Logic FPGA. The
DNNs have been deployed using AMD-Xilinx’s Vitis Al 3.5
environment on a single-core B4096 Deep Processing Unit
(DPU). To characterize the performance of the models, the loU
on the test images, the throughput and the power consumption
during DPU inference were measured on the KV260 SoM
running Petalinux operating system (see Table [ITI).

Throughput measurements were conducted by averaging the
inference execution of 100 iterations on the test images. The
fact that the ReLU-based model was the most compressed
after pruning, combined with the simplicity of calculating the
AF, results in the highest throughput among the three, closely
followed by the Hard Sigmoid-based model. Since the Sigmoid



TABLE III: IoU of the pruned 8-bit integer DNNs on the test
set.

Class AF ReLU | Sigmoid | Hard Sigmoid
Road 97.72 96.01 96.74
Marks 88.15 82.73 81.07
Vegetation 93.85 88.94 90.76
Sky 92.45 82.82 82.05
Others 77.38 65.73 69.95
Global 94.47 90.67 91.80
Weighted 88.37 80.96 80.72

function is not piecewise linear, its direct implementation on
a DPU is unsupported and must be computed on a CPU core,
thus dramatically augmenting the inference latency.

Power consumption in the SoM was measured using the
tegrastats application thanks to the INA260 current sensor
integrated in the KV260. The Sigmoid-based DNN deploy-
ment consumes the least power since AFs are computed on
the CPU, but its slow execution makes it the most energy-
intensive, which is estimated by multiplying the inverse of the
throughput by the mean power consumption. On the contrary,
the ReLU-based implementation is the most energy efficient.

V. CONCLUSIONS

This article explores the use of bounded AFs in image
segmentation DNNs to assess the robustness of these models
against soft errors when deployed on embedded processing
platforms for safety-critical applications. As a general conclu-
sion, we found that it is a trade-off between the resilience
enhancements that bounded squashing AFs provide and the
need for more aggressive model compression to improve
computational performance and reduce memory footprint.

Regarding pruneability, ReLU-based and Hard Sigmoid-
based models prove to have the larger pruneability factors,
achieving a reduction in the number of parameters by over
95% and a reduction in the number of GFLOPS by over
70% in both cases. When it comes to robustness against
single bit-flips, bounded AFs show the best resilience as the
propagation of generated perturbations throughout the model
layers is notably reduced. In 32-bit floating-point models,
the most critical situation occurs when a bit-flip affects the
MSB of the exponent for values in the range 1 < |z| < 2,
resulting in a conversion to NalN. This primarily affects
the Gamma parameters in Batch Normalization layers. The
over-parameterized nature of the original DNNs imply that
as a model is pruned deeper, it seems to lose robustness.
However, the relative difference between Rel.U-based and

TABLE IV: Characterization of the optimized models with
different AFs on the KV260 SoM.

AF

Metri ReLU | Sigmoid | Hard Sigmoid

etric

Throughput (FPS) | 22.68 0.59* 19.83
Power (W) 6.62 5.74* 6.90
Energy (J) 0.29 9.73 0.35

*Activation runs on CPU.

Hard Sigmoid-based models, both with similar pruning ratios,
remains constant. Nevertheless, the advisability of applying
pruning techniques in relation to its influence over robustness
must be contrasted with the particular design of the proces-
sor for deployment, since smaller models generally require
fewer logic resources, decreasing the likelihood of an SBU
occurring in a sensitive parameter. For pruned and quantized
integer models, the inherent binary representation prevents the
occurrence of NalVs or infinities, significantly reducing the
error rate, while the relative robustness between different AFs
show an identical pattern.

In terms of IoU, for DNNs implemented on an AMD-Xilinx
KV260 SoM, the ReLU-based model achieved the best results.
This, combined with the computational complexity and high
latencies of computing Sigmoid AF, makes the ReLU-based
DNN the most efficient in terms of throughput and power
consumption. However, using Hard-Sigmoids as nodal AF
deserves to be considered as a suitable design option for a
good trade-off between robustness and performance.
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