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Abstract— Electroconvulsive therapy (ECT) is an effective
and widely used treatment for major depressive disorder, in
which a brief electric current is passed through the brain to
trigger a brief seizure. This study aims to identify seizure
quality rating by utilizing a set of seizure parameters. We
used 750 ECT EEG recordings in this experiment. Four seizure
related parameters, (time of slowing, regularity, stereotypy and
post-ictal suppression) are used as inputs to two classifiers,
decision tree and fuzzy inference system (FIS), to predict seizure
quality ratings. The two classifiers produced encouraging re-
sults with error rate of 0.31 and 0.25 for FIS and decision tree,
respectively. The classification results show that the four seizure
parameters provide relevant information about the rating of
seizure quality. Automatic scoring of seizure quality may be
beneficial to clinicians working in this field.

I. INTRODUCTION
Electroconvulsive therapy (ECT) is an effective treatment

for psychiatric disorders such as depression [1]. ECT is a
procedure done under general anaesthesia in which small
electric currents are passed through the brain, intentionally
triggering a brief seizure. ECT is safe and is considered as
one of the most effective treatment methods for depression
[1]. Previous research has shown that ECT efficacy may
depend on the placement of the stimulating electrodes and
the electrical dosage used, among other treatment parameters,
and that the quality of the induced seizures is related to
the efficacy of ECT [2]–[5]. Well-defined criteria for seizure
quality are therefore useful for the evaluation of the thera-
peutic effectiveness of ECT treatments.

The detection and characterisation of seizures has also
been widely studied in epilepsy and several methods have
been developed for the automatic detection of seizures and
prediction of their onsets [6], and the existing seizure de-
tection methods are mainly based on electroecephalography
(EEG) signal analysis [7]. However, most of these methods
have not been developed for ECT induced seizures, and there
is hence a gap of knowledge in this area.

The first seizure prediction method was proposed in 1970
by Viglione and colleagues [8]. Recently, there has been
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an increased interest in utilizing machine learning for the
development of seizure prediction techniques. For example,
a method is presented in [9] to predict seizure by classifying
brain activity into four states: interictal (baseline), pre-ictal
(pre-seizure), ictal (during the seizure), and post-ictal (after
the seizure). Interictal and pre-ictal are the most significant
states that can be used to predict seizure. Another seizure
detection method consists of two major steps: the first one is
the extraction of appropriate quantitative features from EEG
data and the second step is classification of features into two
classes (seizure and non-seizure) [10].

For ECT-induced seizures, a number of studies showed
that the earlier mentioned seizure parameters are related to
treatment efficacy; i.e., slow wave onset, amplitude, regu-
larity, stereotypy and post ictal suppression [2], [4], [5].
In this study, we evaluate an ECT-induced seizure scoring
approach based on two classification methods, namely deci-
sion tree and fuzzy inference system (FIS). The four seizure
parameters were used as inputs for the two classification
methods. Decision tree is a machine learning method that
has the ability to discover hidden rules in data. It produced
reliable results when applied to different classification prob-
lems and has the capacity to handle missing data, which
is important for the decision-making process in the medical
field [11]. The fuzzy inference system is also rule-based and
utilizes fuzzy features, which makes it suitable for handling
uncertainties that commonly exist in medical applications.
Moreover, unlike other black-box classification methods,
the two classification methods are considered transparent
models, as they allow interpretable mapping from the inputs
to the output, which is considered an advantage for a number
of medical applications. The approach presented in this study
is expected to help clinicians to estimate the scoring of
seizure quality as an aid in evaluating the effectiveness of
ECT sessions.

II. RATING OF SEIZURE PARAMETERS AND QUALITY

The onset of the seizure consists of two parts, the first part
represents recruitment phase (amplitude gradually increases),
and is followed by the second part that consists of chaotic
polyspike activity, known as polyspike phase [4]. The next
phase after the polyspike phase (high frequency, low ampli-
tude) is referred to as the slow-wave phase (low frequency
and high amplitude), where it represents a spike and wave
activity. Slow wave phase of the ictal-EEG: is the period of
high amplitude polyspike and slow-wave activity. Following
this is the termination phase that starts when the slow-wave



TABLE I
SEIZURE QUALITY SCORE

Seizure quality rating
Very Poor 1
Poor 2
Average 3
Good 4
Very Good 5

phase becomes irregular and is reduced in amplitude. In this
phase the amplitude and frequency of the seizure are reduced
until it terminates, then the EEG trace will have a post-ictal
phase [4]. We focus in this study on the major seizure quality
parameters. The first parameter is time to onset of slowing
(TSLOW). TSLOW represents the time where the frequency
(wave/sec) of the seizure starts slowing to ≤ 5 Hz [5], [12].
TSLOW is scored 0 if frequency does not initially exceed
5 Hz [13]. The second parameter is the regularity, which
represents the score of predominant morphologic pattern
during slow wave/spike and wave phase [12], [13]. Another
parameter that reflects the seizure quality rating is stereotypy,
which is scored in the range (0-3) with half scores allowed
[5]. Three variables are used to identify stereotypy scoring:

• High stereotypic: The progressive from low amplitude
(chaotic polyspike activity) to high amplitude (slow-
wave/spike activity) is obvious without the reappearance
of chaotic polyspike activity.

• Not clear spike wave morphology and the chaotic
polyspike may appear after the onset of the slow-
wave/spike and phase.

• The amplitude is changing during the slow-wave/spike
and wave-phase (investigate variability). A score of 0,
0.5 or 1 is assigned to each of the above mentioned three
variables and their summation represents the stereotypy
score.

Finally, the last parameter we use to rate the seizure is
post-ictal suppression. Post-ictal suppression is considered an
essential parameter to predict therapeutic clinical outcomes
when controlled by baseline Hamilton Rating Scale for
depression and mode of stimulation [14]. The rating score
of suppression ranges between (0-3) [15], with half-point
scores allowed [5]. We take into consideration the time length
for the decline in amplitude and frequency from the last
stereotypic spike/wave. Table I lists the rating of global
seizure quality using (1-5) scale [16].

III. METHOD

A. Participants

In this experiment, we used EEG data recorded from
patients were drawn from the dataset of Gálvez et al. (2016),
a study of the impact of anaesthetic technique on EEG
seizure quality [16]. Patients were ≥ 18 years old and
had a clinical indication for acute ECT [16]. Patients with
no medication information, especially prn medication, 24
hours before the ECT session were excluded. This study

was approved by the Human Research Ethics Committee
of University of New South Wales. The EEG data were
collected at Wesley Hospital (Kogarah, Sydney, Australia)
from April 2011 to April 2013. In total 750 recordings from
84 patients were obtained.

B. Electroconvulsive Therapy Procedures

ECT was delivered using a Mecta device (MECTA Spec-
trum 5000Q, maximum output 1152 mC Mecta Corp., Lake
Oswego, OR). Anaesthesia induction was with Propofol
1/2 mg/kg. EEG was recorded from two fronts-mastoid
EEG channels; electrode-sites were cleaned adequately [16].
Expert trained clinicians scored the seizure parameters and
rated seizure quality from the recorded EEG traces, using a
previously described system of rating [13].

IV. EXPERIMENT

A. Prediction seizure quality

We propose an approach that utilizes the seizure param-
eters scored by clinicians to estimate the seizure quality.
These features are classified using two methods as shown
in Fig.1. The first one is decision tree and the second one is
implemented through the construction of a fuzzy inference
system. The following two sections provide details of the
two methods.

Fig. 1. Predicting model

B. Decision tree classification

A decision tree is constructed using the classification tree
method. In order to reduce the tree complexity and enhance
generalisation, we considered (i) enforcing a limit on the
number of splits (branches and leaves) and (ii) pruning the
tree using the cost-complexity pruning method that pruned
the tree based on optimal pruning scheme. We used a
classification error rate to select the best splitting; i.e., limits
for the number of branches at the various tree levels and
fixing the number of leaves to 32. Tree-pruning aims to trim
the initial branches of the tree. In general, the initial tree
generated from the tree building part is large and complex,
which could increase the chance of overfitting, especially if
training data is noisy or contains limited samples. Pruning
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Fig. 2. Membership functions: a) fuzzy inputs , b) fuzzy output (seizure
quality)

was used to improve the generalisation capability of the
decision tree. An iterative approach is used in this process,
which is terminated when the performance stops improving.

C. Fuzzy inference systems FIS

The designed fuzzy rule-based system (Mamdani) contains
four inputs and one output with 11 linguistic rules. The range
of the fuzzy variables (inputs and output) are: TSLOW (1-
10), regularity (1-6), suppression (1-3), stereotypy (1-3) and
seizure quality (1-5). Three different membership functions
were selected for each of the four fuzzy inputs (Low, Medium
and High) and five membership functions for the fuzzy
output, as shown in Fig. 2. The membership functions of
fuzzy output are selected based on scoring of seizure quality
in Table I:

In general, the fuzzy rule-based system consists of sets of
linguistic term rules in the form of IF a set of conditions for
the input variables are satisfied, THEN a consequence of the
output variable is inferred. In this study, we built 11 rules
based on the characteristics of the input variables and their
effect on seizure quality rating, as outlined in the literature.
More specifically, The proposed rules are:

• Rule 1: If TSLOW is High and Stereotypy is Low, then
seizure quality is Very Poor (VPoor)

• Rule 2: If Regularity is Low and Stereotypy is Medium,
then seizure quality is Very Poor (VPoor)

• Rule 3: If Regularity is Medium and Stereotypy is Low
and Suppression is Low, then seizure quality is Poor

• Rule 4: If Regularity is Medium and Suppression is
Medium, then seizure quality is Average

• Rule 5: If Regularity is Low and Stereotypy is Medium
and Suppression is Medium, then seizure quality is
Average

• Rule 6: If Regularity is High and Stereotypy is Medium,
then seizure quality is Good

• Rule 7: If Regularity is Medium and Stereotypy is
Medium and Suppression is High, then seizure quality
is Good

• Rule 8: If Regularity is High and Suppression is High,
then seizure quality is Very Good (VGood)

• Rule 9: If TSLOW is Low and Regularity is High and
Stereotypy is High, then seizure quality is Very Good
(VGood)

• Rule 10: If TSLOW is High and Regularity is High and
Suppression is Medium, then seizure quality is Good

• Rule 11: If Regularity is Medium and Stereotypy is
High, then seizure quality is Very Good (VGood)

(a) (b) (c)

Fig. 3. Seizure quality based on (a) Stereotypy-Regularity (b) Suppression-
Regularity, (c) Suppression-Stereotypy

V. RESULTS AND DISCUSSIONS

In order to evaluate the performance of decision tree and
FIS, we used a cross-validation approach to split the data
into training and testing. In the training phase, we con-
structed the decision tree and identified the best parameters
of FIS. When provided with the seizure parameters of the
750 recordings, FIS produced 481 matches (similar scores
to those recorded by the clinician experts) and 252 that
differed by one point only. The scores of the remaining 17
recordings differed by two points. As the FIS provides real
numbers, we calculated the error rate between the FIS output
and the true scores. We found that the error rate for this
case = 0.36. Fig. 3 shows the fuzzy surface between pairs
of seizure parameters and the seizure quality. The results
show that there is a monotonic relationship between the
seizure parameters (regularity, stereotypy and suppression)
and seizure quality, which indicate that these parameters are
indeed good measures for the seizure quality.

In the second case, we first predicted the seizure ratings
using the fully constructed decision tree without enforcing
any conditions on splitting and without applying pruning.
The tree produced (105) rules and the classification results
of this tree are: 520 matches, 227 differed by one score
only, and the remaining 3 differed by two scores. The
classification error rate is found to be 0.31. To reduce the size
of the tree and improve its classification accuracy, we used
splitting and pruning techniques that resulted in noticeably
simpler trees, as shown in Fig. 4. The error rates of the
constrained splitting tree and pruned tree are found to be 0.30
and 0.25 respectively. Fig. 5 shows a comparison between
the two prediction techniques; fuzzy inference system and
decision tree (three cases; initial constrained, splitting and
pruning). Table II shows the confusion matrices of FIS and
three cases of decision trees. The diagonal of each matrix
represents the number of correctly identified seizure quality
rating, and average class-wise accuracy for two classification
methods are: FIS=0.48 and decision tree = 0.69. The class-
wise accuracy for FIS was as following: C1 = 3/13 =
0.23, C2 = 1/79 = 0.01, C3 = 133/186 = 0.75, C4 =
220/263 = 0.84, C5 = 124/208 = 0.60). Hence, this
result was influenced by the bad performance of the first two
classes. particularly the second one. The overall classification
accuracy for two classification methods were: FIS = 0.64,
and the overall accuracy for decision tree (initial tree = 0.69,
splitting = 0.70, and pruning = 0.76). Despite the fact that
decision trees produced better results compared to FIS, we
believe the performance of FIS could be improved through
optimization of the fuzzy rules and membership parameters.



Fig. 4. Tree pruning

Fig. 5. Prediction seizure quality rating

More specifically, rules could be modified or weighted to
enhance the accuracy of the first two classes.

TABLE II
CONFUSION MATRIX

Fuzzy inference system Decision tree
3 6 4 0 0 10 3 0 0 0
0 1 70 8 0 2 43 33 1 0
0 2 133 51 0 0 19 133 34 0
0 4 23 220 16 0 1 29 183 50
0 0 0 84 124 0 0 0 57 151

Decision tree (Splitting) Decision tree (Pruning)
10 3 0 0 0 10 3 0 0 0
2 38 39 0 0 1 51 25 2 0
0 14 146 26 0 0 10 138 38 0
0 0 34 188 41 0 0 15 208 40
0 0 0 64 144 0 0 0 48 160

VI. CONCLUSIONS

In this study, we identified and tested rules for automatical
rating of seizure quality for ECT-induced seizures. We pro-
posed a fuzzy rule-based inference system and a decision
tree classification for this task. Rules of the fuzzy infer-
ence system (FIS) were derived from the literature through
identifying relationships between the input parameters and
seizure quality. We also considered using decision tree to
perform this classification task, as it also provides transparent
mapping from inputs to outputs. We used parameters that
were rated by a team of expert clinicians as inputs to the
two methods. The obtained results are encouraging in terms

of achieving scores that were similar to the scores produced
by expert clinicians. The proposed approach indicates that
scoring of ECT induced seizures can be automated, which
will be beneficial to clinicians working in this field and will
provide usefuls tool for the treatment of major depressive
disorder using ECT.
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