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Abstract—Spatial consistency was proposed in the 3GPP TR
38.901 channel model to ensure that closely spaced mobile
terminals have similar channels. Future extensions of this model
might incorporate mobility at both ends of the link. This requires
that all random variables in the model must be correlated
in 3 (single-mobility) and up to 6 spatial dimensions (dual-
mobility). Existing filtering methods cannot be used due to the
large requirements of memory and computing time. The sum-of-
sinusoids model promises to be an efficient solution. To use it in
the 3GPP channel model, we extended the existing model to a
higher number of spatial dimensions and propose a new method
to calculate the sinusoid coefficients in order to control the shape
of the autocorrelation function. The proposed method shows good
results for 2, 3, and 6 dimensions and achieves a four times better
approximation accuracy compared to the existing model. This
provides a very efficient implementation of the 3GPP proposal
and enables the simulation of many communication scenarios
that were thought to be impossible to realize with geometry-
based stochastic channel models.

Index Terms—Channel model, propagation, shadowing, spatial
correlation, sum of sinusoids.

I. INTRODUCTION

Channel models are an essential requirement for the devel-
opment of new wireless communication protocols and systems.
Standardized channel models can be used to evaluate and
compare the different proposals against each other. For the
upcoming fifth generation (5G) of wireless cellular commu-
nications, a new channel model was proposed by the 3rd
generation partnership project (3GPP) [1]. An open-source
implementation of this model is provided by the quasi de-
terministic radio channel generator (QuaDRiGa) [2], [3]. An
essential new feature that was introduced by 3GPP is spatial
consistency which solves one major drawback of previous
geometry-based stochastic channel models (GSCMs), namely
the lack of realistic correlation in the small-scale-fading (SSF).
Without spatial consistency, the positions of individual scat-
tering clusters are generated randomly for each new mobile
terminal (MT) position. This contradicts the causality and the
observations made in channel measurements [4].

GSCMs consist of two main components: a stochastic
part that generates a random propagation environment, and
a deterministic part that lets transmitters and receivers interact
with this environment. In order to make realistic predictions
of the wireless system performance, the random environment

must fulfill certain statistical properties which are determined
by measurements. This means that for a given set of model
parameters the joint spatial correlation of these parameters
must be captured for a large number of transceivers. This
is done in the so-called large-scale fading (LSF) model. A
subsequent SSF model then generates individual scattering
clusters for each MT.

Large-scale parameters (LSPs) are more or less constant
within an area of several meters. An example for this is
the shadow fading (SF) which is caused by buildings or
trees blocking a significant part of the signal. The so-called
decorrelation distance of the SF, i.e., the distance a MT must
move to experience a significant change in the SF, is in the
same order of magnitude as the size of the objects causing it.
Thus, if a MT travels along a trajectory or if multiple MTs are
closely spaced together, their LSPs are correlated. A common
approach to model such correlation is by filtered Gaussian-
distributed random numbers [5]. However, when it comes
to spatial consistency, the positions of the scattering clusters
must also be spatially correlated. The 3GPP proposal suggests
that “spatially consistent powers/delays/angles of clusters are
generated” [1]. However, this requires that all random vari-
ables that determine the location of the scattering clusters are
correlated. For a moderate scenario with 12 clusters and 20
sub-paths per cluster, this results in 2288 random variables1.
Compared to the 7 variables needed for the LSF model,
the filtering approach therefore requires a prohibitively large
amounts of memory and computing time.

Another problem arises when incorporating so-called ver-
tical industries into the 5G infrastructure which is not yet
covered by the 3GPP new-radio model but discussed in several
ongoing research projects and standardization activities. Such
verticals could be vehicular networks, air-to-ground com-
munications, industrial peer-to-peer (P2P) communications,
or communication scenarios involving satellites in low-earth
orbit. All of these examples have in common that both ends
of the link are mobile. However, the simultaneous mobility of
both communication partners is not supported by the classical

1In the 3GPP new-radio model, scattering is based on the LOS / NLOS
state (1 variable); LSPs (7 variables: delay spread, shadow fading, 4 angular
spreads, K-factor); delays, powers, per-cluster angles (10 · 12 variables);
random coupling of sub-paths (4 ·12 ·20 variables); Cross polarization power
ratios (12 · 20 variables); Initial random phases (4 · 12 · 20 variables)
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cellular shadowing models. Therefore, an alternative method
for the generation of the random propagation environment is
needed [6].

A computational efficient method to generate correlated
random variables has been introduced by Pätzold el. al. [7]
who approximated the filtered white Gaussian noise process
by a finite sum of properly weighted sinusoids. This idea was
further developed into a two-dimensional (2-D) shadowing
model [8]. Wang et. al. then extended this 2-D method into
a four-dimensional (4-D) method for device-to-device (D2D)
channels [9]. A common problem for all these methods is
finding the coefficients that best approximate a desired auto-
correlation function (ACF) with a limited number of sinusoids.

In this paper, a new approximation method is presented that
allows the efficient calculation of the sinusoid coefficients for
an arbitrary ACF in three-dimensional (3-D) space. Previously
published results focused solely on the exponential ACF and
mobility was limited to planar movements. Furthermore, it
is shown how this translates directly into a six-dimensional
random process for D2D channels where both ends can be in
different propagation environments, such as in air-to-ground
channels. Compared to [9], the proposed method also achieves
a 6.5 dB better approximation average squared error (ASE)
with the same number of sinusoids. An implementation of
this model is available in MATLAB and Octave as part of the
open-source QuaDRiGa channel model [3].

II. THE SUM OF SINUSOIDS MODEL

A spatially correlated Gaussian random process generates
Normal distributed random numbers

k(x, y, z) ∼ N (0, 1), (1)

with zero mean and unit variance. The value k is a function
of the terminal location in 3-D Cartesian coordinates (x, y, z).
From these numbers, other types of distributions can be
obtained, e.g. Uniform or log-Normal distributed random num-
bers having a different mean or variance. The one-dimensional
(1-D) spatial autocorrelation function (ACF) describes how
fast the local mean of k(x, y, z) evolves as a terminal moves.
The ACF is usually modeled as an exponential decay function

ρ(d) = exp

(
− d

dλ

)
, (2)

with d as the distance between two positions and dλ as the
so-called decorrelation distance, i.e. the distance at which the
correlation between two samples falls below e−1 ≈ 0.37 [10].
However, other types of decay functions may be desirable. The
sum-of-sinusoids (SOS) method outlined in [7] approximates
a 1-D Gaussian random process k(x) as a function of the
position x on a 1-D linear trajectory as

k̂(x) =

N∑
n=1

an cos {2πfnx+ ψn} (3)

with N sinusoids. The variables an, fn, and ψn denote
the amplitude, the frequency, and the phase of a sinusoid,
respectively. The amplitudes an and the frequencies fn are

determined in a way that k̂(x) has similar statistical properties
as k(x), i.e. k̂(x) has the same approximate ACF and the
cumulative distribution function (CDF) is close to Gaussian
density if N is sufficiently large. According to [7], 6 to 30
sinusoids are sufficient for a 1-D approximation. The phases
ψn are random variables distributed in the range from −π to
π. Hence, exchanging the ψn while keeping an and fn fixed
creates a new set of spatially correlated random variables at
minimal computational cost. A straight-forward expansion to
a 3-D Gaussian random process follows from [9] as

k̂(x, y, z) =

N∑
n=1

an cos {2π (fx,nx+ fy,ny + fz,nz) + ψn} .

(4)
Under the assumption that the fluctuations of k(x, y, z) are
wide sense stationary, the ACF only depends on the distance
between two terminal positions. Hence, the 3-D spatial ACF
of k̂(x, y, z) can be expressed as [9]

ρ̂(∆x,∆y,∆z) =
N∑
n=1

a2n
2

cos {2π (fx,n∆x+ fy,n∆y + fz,n∆z)} . (5)

When a MT moves from one location to another, the corre-
lation ρ(∆x,∆y,∆z) between the generated values k(x, y, z)
depends not only on the distance, but also on the direction
of movement. In 3-D space, the traveling direction can be
expressed by pitch and yaw. The pitch angle θ describes the
vertical (tilt) angle relative to the horizontal plane. Positive
rotation is up. The bearing or yaw angle φ describes the
orientation on the ground. Here, it is defined in mathematic
sense, i.e., seen from above, a value of 0 points to the east and
the angles increase counter-clockwise. By assigning a direction
(θn, φn) to each of the N sinusoids, the relative movement in
x, y, and z direction can be expressed as

fx,n∆x = fn · d · cosφn cos θn, (6)
fy,n∆y = fn · d · sinφn cos θn, (7)
fz,n∆z = fn · d · sin θn, (8)

where fn is the root-frequency of the n-th sinusoid frequency
and d is the distance. The directions (θn, φn) have to be chosen
in a way that covers all possible movement directions of the
MT. This can be done by generating equidistributed points on
the surface of a sphere as described in [11].

Pätzold et. al. [7] proposed four methods to determine the
amplitudes an and frequencies fn in a SOS model. All of
them show different performance in terms of average squared
error (ASE) vs. the number of sinusoids, and computational
complexity. They have in common that the approximated ACF
is an exponential decay function (2). However, this is not
always desirable since other types of decay functions might be
needed. Hence, in the next section, a numeric approximation
method is presented that calculates the sinusoid coefficients
for arbitrary ACFs.



III. APPROXIMATION OF ARBITRARY ACFS

The approximation method is derived from the Monte Carlo
method [12], [7]. The sinusoid frequencies fn are generated
by an iterative optimization method that minimizes the error
between the desired ACF and the approximate ACF for a given
number of sinusoids. This method requires that the ACF is
discretely sampled at s = 1 . . . S sampling distances. This
is done by defining a vector d that contains the sampling
distances in increasing order.

d =
(
d1 d2 . . . dS

)T
(9)

Then, the sampled ACF ρ(d) is obtained. The first distance
value d1 must be 0 and the first correlation value ρ1 must
be 1, i.e. at zero-distance the generated values k̂(x, y, z) are
identical. The N root-frequencies are randomly initialized to

fn ∼
1

dS
· U(−π, π), (10)

where U(−π, π) describes an uniform distribution with values
between −π and π, and dS the maximum distance for which
the ACF is defined. The directional components fx,n, fy,n,
and fz,n are calculated according to (6), (7), and (8) with
d = ∆x = ∆y = ∆z = 1, respectively.

The iterative optimization is done by updating the n-th root
frequency while keeping all other N − 1 frequencies fixed.
Then, the ASE is calculated. If it improves, the update is
applied, otherwise it is discarded and the previous value of
fn is used. The update is calculated by

fn =
1

dS
arg min

f

S∑
s=1

{
ρ(ds)− ρ̂(ds)−

1

N
cos

(
2π

dS
fds

)}2

,

(11)
where ρ(ds) is the desired ACF and ρ̂(ds) is the approximate
ACF constructed from all N−1 components from the previous
iteration. The amplitudes of all sinusoids are set to a2n = 2

N
and standard numerical methods can be applied to find the
values f . However, (11) can only be used to approximate a 1-D
random process such as (3). For a 3-D random process (4) it is
necessary to estimate the three sinusoid components fx,n, fy,n,
and fz,n. This can be done by performing the estimation along
the axes of the coordinate system. For example, combining
(6) and (5) while setting ∆y = ∆z = 0 leads to a directional
ACFs in x-direction

ρ̂(∆x) =
1

N

N∑
n=1

cos(2πds · fn cosφn cos θn︸ ︷︷ ︸
=fx,n

). (12)

This function is used instead of ρ̂(ds) in (11) to get an update
of the n-th root frequency fn. Due to the linear dependency,
fx,n, fy,n, and fz,n can be calculated from (6), (7), and (8).

The same approach can be used to perform the estimation in
y or z-direction, where

ρ̂(∆y) =
1

N

N∑
n=1

cos(2πds · fn sinφn cos θn︸ ︷︷ ︸
=fy,n

), (13)

ρ̂(∆z) =
1

N

N∑
n=1

cos(2πds · fn sin θn︸ ︷︷ ︸
=fz,n

). (14)

Depending on which of the N sinusoid frequencies is esti-
mated, the estimation direction is chosen according to

ρ̂(ds) =

 ρ̂(∆x), for ∆x ≥ ∆y and ∆x ≥ ∆z;
ρ̂(∆y), for ∆y > ∆x and ∆y ≥ ∆z;
ρ̂(∆z), for ∆z > ∆x and ∆z > ∆y,

(15)

where ∆x, ∆y, and ∆z are calculated according to (6), (7),
and (8) with d = 1, respectively.

Cai and Giannakis [8] introduced the ASE as a performance
measure of the approximation. It is defined as the average
squared error between the desired ACF ρ(d) and the approx-
imate ACF ρ̂(∆x,∆y,∆z). Here it is calculated as

ASE =
1

ST

T∑
t=1

S∑
s=1

{
ρ(ds)−

1

N

N∑
n=1

cos

(
2π

dS
ft,nds

)}2

.

(16)
Since the approximate ACF depends on the direction, the ASE
calculation must take the directivity into account. Hence, the
evaluation is done for t = 1 . . . T test directions (θt, φt). The
corresponding test frequencies ft,n are

ft,n = (fx,n cosφt + fy,n sinφt) cos θt + fz,n sin θt. (17)

The ASE is used as a cost function for the iterative refinement
of the sinusoid frequencies. If the ASE improves for a newly
estimated frequency, the sinusoid frequencies are replaced
by the newly estimated ones, otherwise the new values are
discarded. The iteration stops when no further improvement
can be achieved for any of the N frequencies.

The output of the approximation method are the sinusoid
frequencies that can be used in (4) to generate spatially corre-
lated Normal-distributed random numbers with an arbitrary
ACF. It is possible to adjust the decorrelation distance dλ
and the distribution function of the random process without
having to recalculate the sinusoid frequencies. Doubling the
distances in (9) is equal to halving the frequencies in (4). For
example, if the approximation was done for dλ = 10 m, but
correlated random variables are needed for 20 m decorrelation
distance, then simply dividing the frequencies by 2 creates
the correct results. Uniform distribution can be achieved by
a transformation from Normal to Uniform samples2. In the
next section, it is shown how the SOS method can be used to
generate correlated random numbers for P2P links where both
ends of the communication channel are mobile.

2Given a standard Normal distributed random variable k ∼ N (0, 1),
then remapping the probability density to u ∼ U(0, 1) is done using the
complementary error function as u = 0.5 · erfc(−k/

√
2).



IV. DEVICE-TO-DEVICE EXTENSION

It was found in [9] that the MT movement at each end
of the P2P link has an independent and equal effect on the
correlation coefficient and that the joint correlation function
(JCF) can be decomposed into two independent ACFs

ρ(∆xt,∆yt,∆zt,∆xr,∆yr,∆zr) =

ρ(∆xt,∆yt,∆zt) · ρ(∆xr,∆yr,∆zr). (18)

The locations of the transmitting and receiving terminal
are given in 3-D Cartesian coordinates as (xt, yt, zt) and
(xr, yr, zr), respectively. [9] proposes to approximate a com-
bined ACF. However, with six dimensions this results in a pro-
hibitively large number of sinusoid coefficients and computing
time. A simpler approach is to combine two independent
Gaussian random processes, one for the transmitter and one
for the receiver into

k(xt, yt, zt, xr, yr, zr) =
kt(xt, yt, zt) + kr(xr, yr, zr)√

2
.

(19)
The approximated six-dimensional Gaussian process is

k̂(xt, yt, zt, xr, yr, zr) =
2N∑
n=1

an√
2

cos
{

2π · fTn · [xt yt zt xr yr zr]
T

+ ψn

}
, (20)

where the sinusoid frequencies are obtained independently for
the transmitting and receiving side.

fn =

{ [
fxt,n fyt,n fzt,n 0 0 0

]T
, for n ≤ N ;[

0 0 0 fxr,n fyr,n fzr,n
]T
, for n > N .

(21)
The scaling by

√
2 in (19) accounts for doubling the number

of SOS components in (20).

V. NUMERIC RESULTS

In the following, we present numerical results for the pro-
posed estimation method. To demonstrate the approximation of
an arbitrary ACFs, we study the performance of the model for
a combination of a Gaussian and an exponential ACF which
has the same decorrelation distance as (2) with closely spaced
samples showing a higher correlation.

ρ(d) =

 exp
(
− d2

d2λ

)
, for d < dλ;

exp
(
− d
dλ

)
, for d ≥ dλ

(22)

Results for the exponential ACF are presented at the end of this
section. The decorrelation distance dλ was set to 10 meters and
the ACF was sampled in intervals of 0.25 meters ranging from
0 to 49.75 meters. Hence, ρ(ds) contains 200 values. A 2-D
plot of this function is shown in Fig. 1 (top). This function
was approximated using the method outlined in section III
with a varying number of sinusoid coefficients. The number
of test directions for the iterative search was set to 28 and
the entire estimation process was repeated 5000 times with
different initial values for the directions (θn, φn) and the initial
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Fig. 1. Desired 2-D ACF on the x − y plane (top) and approximated ACF
using 300 sinusoids (bottom)
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Fig. 2. Example of a spatially correlated 2-D process

root-frequencies. Fig. 1 (bottom) shows the best result of an
approximation using 300 sinusoids. An example of the 2-D
random process resulting from this approximation is shown in
Fig. 2. The output was generated by defining x, y-positions on
a 250 × 250 m grid with 0.5 m spacing. The z-position was
set to 0 m and no D2D extension was used.

a) ACF approximation accuracy: The achievable ASE
as a function of the number of sinusoids is shown in Figure 3
(lower values are better). The red dashed curve shows the ASE
calculation using (16) whereas the blue, solid line compares
the 2-D ACFs on the x− y, x− z, and y − z plane with the
one shown in Fig. 1 (taking only the disk-shaped area covered



by the ACF into account). Both methods estimate similar
values for the ASE. The curves indicate that when doubling
the number of coefficients, the ASE improves by roughly
3 dB. However, this also comes at the cost of doubling the
computation time for the generation of the random numbers.
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Fig. 3. Achievable ASE vs. number of sinusoids for the combined ACF

b) Random number generation: Figure 4 compares the
desired ACF (thick dashed line) with the output of the random
number generator using 300 sinusoids. For the upper plot,
6000 positions were randomly chosen within a cube of 56 m
edge length. Then, spatially correlated Normal distributed
random numbers were generated for each position using (4).
The distance between each pair of positions was calculated and
pairs with similar distance were grouped, i.e. positions with a
distance between 0 and 2 meters of each other belong to group
1, positions with a distance between 2 and 4 meters belong
to group 2, and so on. The Pearson correlation coefficient
was calculated for the samples within each group. The entire
process was repeated 10 times to obtain an average ACF
(blue squares) and the spread for different initializations (bars
showing the minimum and maximum values of the 10 initial-
izations). For the lower part of the figure, 3000 positions were
randomly chosen for the transmitter and 3000 were chosen for
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Fig. 4. Estimated ACF from spatially correlated random values

the receiver. Then, spatially correlated values were generated
using (19). The grouping was done for the transmitter positions
under the constraint that the receiver does not move faster
than the transmitter. For example, group 3 contains all pairs
where the transmitters have a distance between 4 and 6 meters
and the receivers have a distance between 0 and 6 meters of
each other. Both curves indicate that the given ACF can be
approximated with good accuracy.

Figure 5 shows that the CDF of the generated random
numbers is close to Gaussian density. For this, 104 random
positions were generated in a cube of 1000 × 1000 × 50 m
edge length and spatially correlated random numbers were
generated using (4) and (19). There is no notable difference
between the distribution of the generated values and the
Gaussian CDF.
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Fig. 5. CDF of the output values vs. the Gaussian CDF

c) Complexity considerations: As mentioned in the in-
troduction, the state-of-the-art alternative for the generation
of correlated random numbers is by filtering white noise [5].
Here, the filter approach is compared with the SOS model
in terms of memory requirements, initialization time, time to
generate the output values, and the restrictions on the MT
placement. The results are summarized in Table I.

TABLE I
PERFORMANCE COMPARISON OF FILTER-BASED AND SOS MODEL

Filter approach Sum-of-sinusoids
Required memory ND elements (D + 1) ·N elements
Initialization ≈ D · S ·ND op. ≈ N operations
Output generation 2D2 + 5D op. ≈ N · (2D + 15) op.
MT placement inside map area no restriction

For the filter approach, the parameter N in Tab. I refers
to the edge length of the sampled area and D refers to the
number of dimensions. The sample resolution needs to be
high enough to captures the variation in the random process.
With dλ = 10 m, we assume that a resolution of 2.5 m is
sufficient. With N = 300 and D = 2, the filtered map covers
an area of 750 × 750 meters and requires 360 kilobytes of
memory3. Without increasing N or lowering the resolution,
all MTs must be located within this area. In comparison, the
SOS method requires only 3.6 kilobytes of memory for the
sinusoid coefficients and there are no restrictions on the MT
positions.

3Assuming single-precision floating point accuracy.



Initializing the random number generator means that a new
map must be generated, i.e. for the filter approach, generating
ND random numbers and processing each number with D
finite impulse response filters4 of order S. For the SOS
method, only the N phases ψn must be randomly initialized in
(4). The sinusoid frequencies can be precalculated and stored
in a table. This makes the SOS method very efficient when
many random variables are needed, such as for the spacial
consistency model from 3GPP [1]. The downside of the SOS
method resides in the commutation time required to generate
the correlated output values. Calculating the cosine in (4) is
computationally expensive5 and the sum over all N sinusoids
must be calculated for each output value. With N = 300 and
D = 2, approximately 5700 operations are needed to generate
one output value. For the filter approach, the map only needs to
be interpolated to obtain the output value at the MT position.
This requires 18 operations using bilinear interpolation. Hence,
the filter approach might be preferred when the output value
generation is the dominating factor in the overall computing
time.

d) Exponential ACF approximation: The achievable ASE
performance is compared with the results from Wang et.
al. [9], where an exponential ACF was approximated by
different methods using 100, 500, and 2000 sinusoids. With
the Monte Carlo method, [9] reported an ASE for a 2-D
approximation of −23 dB, −30 dB, and −36 dB, respectively.
The other proposed methods performed similarly. Our iterative
approximation method achieved −29 dB, −36.8 dB, and
−42.7 dB for the 2-D approximation of the exponential ACF
using the same number of sinusoids, respectively. This is an
average improvement of 6.5 dB. Results are shown in Fig. 6.
The 3-D approximation has an average performance loss of
2.7 dB compared to 2-D6. However, this is still a significant
improvement compared to [9].
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Fig. 6. Achievable ASE vs. number of sinusoids for the exponential ACF

4The filter order S corresponds to the length of the sampled ACF.
5Calculating the cosine requires approximately 15 floating point operations,

depending on the implementation and the value of the argument.
6The performance loss can be explained by the additional degree of freedom

added by the mobility in z-direction in (8), where the scaling of the resolution
in the x, y-direction follows from

∫ π/2
−π/2 cos

2 θdθ/
∫ π/2
−π/2 dθ = 1

2
.

VI. CONCLUSIONS

The proposed iterative approximation method can obtain
the sinusoid coefficients for arbitrary autocorrelation functions
with better accuracy compared to previous results. It is possi-
ble to change the decorrelation distance and the distribution of
the spatially correlated random process without recalculating
the sinusoid frequencies. They can be precomputed and stored
in a table for fast access. Therefore, generating spatially cor-
related random numbers, even for a large number of positions,
can be done by simply calculating a weighted sum. The
performance scales linearly with the number of sinusoids and
the number of positions. Furthermore, memory requirements
are negligible. This provides a very efficient implementation
of the 3GPP proposal for spatial consistency. The scheme can
be used with minimal adjustments to support a system where
both ends of a link are mobile.
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